
Improving Performance with Interrupt Coalescing
for Virtual Machine Disk IO in VMware ESX Server

Irfan Ahmad Ajay Gulati Ali Mashtizadeh Maxime Austruy
VMware Inc., Palo Alto, CA 94304

{irfan, agulati, ali, maustruy}@vmware.com

Abstract
Interrupt coalescing is a proven technique for reducing
CPU utilization when processing high IO rates in storage
and networking controllers. Virtualization introduces a
layer of virtual hardware whose interrupt rate can be con-
trolled by the hypervisor. In this paper, we present the
design and implementation of a virtual interrupt coalesc-
ing scheme for virtual SCSI hardware controllers in a hy-
pervisor. We use the number of commands in flight from
the guest to dynamically set our interrupt coalescing rate.
Compared to existing techniques in hardware, our work
does not rely on high resolution interrupt delay timers
and thus leads to a very efficient implementation in a
hypervisor. Furthermore, our technique is generic and
therefore applicable to all types of disk IO controllers
which, unlike networking, don’t receive anonymous traf-
fic. We have built a prototype of virtual interrupt coalesc-
ing on the VMware ESX Server hypervisor and we pro-
vide preliminary experimental data on various workloads
and show performance improvements of up to 18%.

1 Introduction

Many important datacenter applications today exhibit
high IO rates. For example, transaction processing loads
can issue hundreds of very small IO operations in parallel
resulting in tens of thousands of IOs per second (IOPS).
Such high IOPS are now within reach of even more IT
organizations with faster storage controllers, increasing
deployments of high performance consolidated storage
devices using Storage Area Network (SAN) or Network-
Attached Storage (NAS) hardware and wider adoption of
solid-state disks.

For high IO rates, the CPU overhead for handling all
the interrupts can get very high and eventually lead to
lack of CPU resources for the application itself [3, 6].
CPU overhead is even more of a problem in virtualiza-
tion scenarios where we are trying to consolidate as many

virtual machines into one physical box as possible. Tra-
ditionally, interrupt coalescing or moderation has been
used in storage controller cards to limit the number of
times application execution is interrupted by the device
to handle IO completions. This technique has to care-
fully balance an increase in IO latency with the improved
execution efficiency due to fewer interrupts.

In hardware controllers, fine-grained timers are used
in conjunction with interrupt coalescing to keep an up-
per bound on the latency of IO completion notifications.
Such timers are hard and inefficient to use in a hypervi-
sor and one has to resort to other pieces of information
to avoid longer delays. This problem is challenging for
several other reasons, including the desire to maintain a
small code size thus keeping our trusted computing base
to a manageable size. We treat the virtual machine work-
load as an unmodifiable and opaque black box and we
assume based on earlier work that guest workloads can
change their behavior very quickly [2].

In this paper, we target the problem of coalescing in-
terrupts for virtual devices without assuming any support
from hardware controllers and without using high res-
olution timers. Traditionally, there are two parameters
that need to be balanced: maximum interrupt delivery
latency (MIDL) and maximum coalesce count (MCC).
The first parameter denotes the maximum time that one
can wait before sending the interrupt and the second pa-
rameter denotes the number of accumulated completions
before sending an interrupt to the operating system (OS).
The OS is interrupted based on whichever parameter is
hit first.

We propose a novel scheme to control for both MIDL
and MCC implicitly by setting the delivery rate of inter-
rupts based on the current number of commands in flight
(CIF) from the guest OS. The rate, denoted as R, is sim-
ply the ratio of how many virtual interrupts are sent to the
guest divided by the number of actual IO completions re-
ceived for that guest. Note that 0 < R≤ 1. Lower values
of R denote higher degree of coalescing. We increase



R when CIF is low and decrease the delivery rate R for
higher values of CIF. Unlike network IO, CIF can be used
directly only for storage controllers because each com-
pleted request has a corresponding command in flight.
Also as we show later, it is important to maintain certain
number of commands in flight to efficiently utilize the
underlying storage device. Many important applications
issue synchronous IOs and delaying the completion of
prior IOs can delay the issue of future ones.

Another problem we address is specific to hypervisors,
where the host storage stack has to receive and process an
IO completion before routing it to the issuing VM. The
hypervisor may need to send inter-processor interrupts
(IPIs) from the CPU that received the hardware inter-
rupt to the remote CPU where the VM might be running
for notification purposes. As processor core density in-
creases, it becomes more likely that hardware interrupts
will be received on processors not running the target VM,
thus increasing the number of times the IPIs need to be
issued. We provide a mechanism to reduce the number
of IPIs issued using the time-stamp of the last interrupt
that was sent to the guest OS. This reduces the overall
number of IPIs while bounding the latency of notifying
the guest OS about an IO completion.

We have implemented our techniques in VMware
ESX Server. Our experimentation with a set of micro-
benchmarks and real workloads shows that our virtual
interrupt coalescing (vIC) techniques can improve both
workload throughput and CPU overheads related to IO
processing by up to 18%.

The next section presents background on VMware
ESX Server architecture and overall system model along
with more precise problem definition. Section 3 presents
the design of our virtual interrupt coalescing mechanism
along with a discussion of some practical concerns. A
preliminary evaluation of our prototype implementation
is presented in Section 4. Section 5 presents an overview
of related work followed by conclusions and directions
for future work in Sections 6 and 7 respectively.

2 System Model

Our system model consists of two components in the
VMware ESX Server: ESX VMKernel and the virtual
machine monitor (VMM). The VMKernel is a hypervi-
sor server which is a thin layer of software controlling ac-
cess to physical resources among virtual machines. ESX
server provides isolation and resource allocation among
virtual machines running on top of it. The virtual ma-
chine monitor is responsible for correct and efficient vir-
tualization of the x86 instruction set architecture as well
as common, high performance devices made available to
the guest. It is also the conceptual equivalent of a “pro-
cess” to the ESX VMKernel. The VMM intercepts all

the privileged operations from a VM including IO and
handles them in cooperation with the VMKernel.

Figure 1 shows the ESX VMKernel executing storage
stack code on the CPU on the right and an example VM
running on top of its virtual machine monitor (VMM)
running on the left processor. In the figure, when an in-
terrupt is received from a storage adapter (1), appropriate
code in the VMKernel is executed to handle the IO com-
pletion (2) all the way up to the vSCSI subsystem which
narrows the IO to a specific VM. Each VMM shares a
common memory area with the ESX VMKernel, where
the VMKernel posts IO completions in a queue (3) fol-
lowing which it may issue an inter-process interrupt or
IPI (4) to notify the VMM. The VMM can pick up the
completions on its next execution (5) and process them
(6) resulting finally in the virtual interrupt being fired (7).

Without explicit interrupt coalescing, the VMM al-
ways asserts the level-triggered interrupt line for every
IO. Level-triggered lines do some implicit coalescing al-
ready but that only helps if two IOs are completed back-
to-back in the very short time window before the guest
interrupt service routine has had the chance to deassert
the line.

Only the VMM can assert the virtual interrupt line and
it is possible after step 3 that the VMM may not get a
chance to execute for a while. To limit any latency im-
plications of this, the VMKernel will take one of two ac-
tions. It will schedule the VM if it happened to have been
descheduled. Otherwise, if both the VM and the VMK-
ernel are executing on separate cores at the same time,
the VMKernel sends an IPI, in step 4 in the figure. This
is purely an optimization to provide low latency for IO
completions to the guest. For example, the guest might
be mostly doing user space operations which would re-
sult in a long delay till the VMM naturally ends up tak-
ing execution control. Correctness guarantees can still
be met even if the IPI isn’t issued since the VMM will
pickup the completion as a matter of course the next time
that it gets invoked via a timer interrupt or a guest exiting
into VMM mode due to a privileged operation.

Based on the design described above, there are two in-
efficiencies in the existing mechanism. First the VMM
will interrupt guest for every interrupt that it sees posted
by the VMKernel. We would like to coalesce these to re-
duce the guest CPU overhead during high IO rates. Sec-
ond, IPIs are very costly and are used mainly as a latency
optimization. It would be desirable to dramatically re-
duce them if one can keep track of rate at which inter-
rupts are being picked up by the VM monitor. All this
needs to be done without the help of fine grained timers
because they are prohibitively expensive in a hypervisor.

So the main challenges can be reduced to:

1. How to control the rate of interrupt delivery from
VMM to a guest without loss of throughput?



Figure 1: Virtual Interrupt Delivery Mechanism. When a disk IO completes, an interrupt is fired (1) from a physical
adapter to a particular Physical CPU (PCPU) where the interrupt handler of the hypervisor delivers it to the appropriate
device driver (2). Higher layers of the hypervisor storage stack process the completion until the IO is matched (vSCSI
layer) to a particular Guest Operating System which issued the IO and its corresponding Virtual Machine Monitor
(VMM). vSCSI then updates the shared completion queue for the VMM and if the guest or VMM is currently execut-
ing, issues an inter-processor interrupt (IPI) to the target PCPU where the VMM is known to be running (4). The IPI
is only a latency optimization since the VMM would have inspected the shared queues the next time the guest exited
to the VMM anyway. The remote VMM’s IPI handler takes the signal and (5) inspects the completion queues of its
virtual SCSI host bus adapters (HBAs), processes and virtualizes the completions (6) and fires a virtual interrupt to be
handled by the guest (7).

2. How and when to delay the IPIs without inducing
high IO latencies?

In the next section, we present our virtual interrupt co-
alescing mechanisms to efficiently resolve both of these
challenges.

3 vIC Design

In this section, we first present some background on ex-
isting coalescing mechanisms and explain why they can-
not be used in our environment. Next we present our
approach at a higher level followed by the details of each
component and a discussion of specific implementation
issues.

3.1 Background
When implemented in physical hardware controllers, in-
terrupt coalescing generally makes use of high resolu-
tion timers to cap the amount of extra latency that in-

terrupt coalescing might introduce. Such timers allow
the controllers to directly control MIDL (maximum in-
terrupt delivery latency) and adapt MCC (maximum co-
alesce count) based on the current rate. For example,
one can configure MCC based on a recent estimate of in-
terrupt arrivals and put a hard cap on latency by using
high resolution timers to control MIDL. Some devices
are known to allow a configurable MIDL in increments
of tens of microseconds.

Such a high resolution timer is feasible in a dedicated
IO processor where the firmware timer handler overhead
can be well contained and the hardware resources can
be provisioned at design time to meet the overhead con-
straints. However, in a hypervisor, we don’t have access
to such high resolution timing as a matter of course. If
we were to try to directly map that MCC/MIDL solution
to virtual interrupts, we would be forced to drive the sys-
tem timer interrupt using at least 100 µs resolution which
would have prohibitive performance impact on real ap-
plication workloads running in a guest OS (VM). As a
comparison, VMware ESX typically sets up its timers to



go off anywhere between every 1 ms and 10 ms, up to
two orders of magnitude less resolution than in hardware
controller firmware.

3.2 Our approach
In our design, we define a parameter called interrupt de-
livery rate R, as the ratio of interrupts delivered to the
guest and the actual number of interrupts received from
the device for that guest. A lower delivery rate implies
a higher degree of coalescing. We dynamically set our
interrupt delivery rate, R, in a way that will provide co-
alescing benefits for CPU and tightly control any extra
vIC-related latency. This is done using commands in
flight (CIF) as the main parameter and IOPS rate as a
secondary control.

At a high level, if the IOPS rate is high, we can
coalesce more interrupts within the same time period,
thereby improving CPU efficiency. However, we still
want to avoid and limit the increase in latency for cases
when the IOPS rate changes drastically or when the num-
ber of issued commands is very low. To control that we
use CIF as a guiding parameter, which determines the
overall impact that the coalescing can have on the work-
load. For example, coalescing 4 IO completions out of
32 outstanding might not be a problem since we are able
to keep the storage device busy with the remaining 28,
whereas even a slight delay caused by coalescing 2 IOs
out of 4 outstanding could result in the resources of the
storage device not getting fully utilized. Thus we want to
vary the delivery rate R in inverse proportion of the CIF
value. Using both CIF values and estimated IOPS rate
we are able to provide effective coalescing for a wide va-
riety of workloads.

There are three main parameters used in our algorithm:

• iopsThreshold: IOPS rate below which no interrupt
coalescing is done.

• cifThreshold: CIF value below which no interrupt
coalescing is done.

• epochPeriod: time interval after which we re-
evaluate the delivery rate, in order to react to the
change in the workload.

The algorithm operates in one of the three modes:
(1) vIC low-IOPS: We turn off vIC if the achieved
throughput of a workload ever drops below the iop-
sThreshold. Recall that we don’t have a high resolution
timer. If we did, whenever it would fire, it would allow
us to determine if we’ve held on to an IO completion too
long. A key insight for us is that instead of a timer, we
can actually rely on future IO completion events to give
our code a chance to control extra latency. For example,
an IOPS rate of 20,000 means that on average there

will be a completion returned every 50 µs. Our default
iopsThreshold is 2000 which implies a completion on
average every 500 µs. Therefore, at worst, we can
add that amount of latency. For higher IOPS, the extra
latency only decreases. In order to do this, we keep an
estimate of the current number of IOPS completed by
the VM.

(2) vIC low-CIF: We turn off vIC whenever the num-
ber of outstanding IOs (CIF) drops below a configurable
parameter cifThreshold. Our interrupt coalescing algo-
rithm tries to be very conservative so as to not increase
the application IO latency for trickle IO workloads. Such
workloads have very strong IO inter dependencies and
generally issue only a very small number of outstanding
IOs. A canonical example of an affected workload is
dd which issues one IO at a time. For dd, if we had
coalesced an interrupt, it would actually hang forever. In
fact, waiting is completely useless for such cases, has no
benefit and can only possibly add latency. When only a
small number of IOs (cifThreshold) remain outstanding
on an adapter, we stop coalescing. Otherwise, there may
be a throughput reduction because we are delaying a
large percentage of IOs.

(3) Variable R based on CIF: Setting the interrupt
coalescing rate (R) dynamically is challenging since we
have to balance the CPU efficiency gained by coalescing
against additional latency that may be added especially
since that may in turn lower achieved throughput. We
discuss our solution next.

3.2.1 Dynamic Adjustment of Delivery Rate R

Which rate is picked depends upon the number of
commands in flight (CIF) and the configuration option
“cifThreshold”. As CIF increases, we have more room to
coalesce. For workloads with multiple outstanding IOs,
the extra delay works well since they are able to amortize
the cost of the interrupt being delivered to process more
than one IO. For example, if the CIF value is 24, even if
we coalesce 3 IOs at a time, the application will have 21
other IOs pending at the storage device to keep it busy.

In deciding the value of R, we have two main issues
to resolve. First we can’t choose an arbitrary fractional
value of R and implement that because of the lack of
floating point calculations in the VMM code. Second, a
simple ratio of the form 1/x based on a counter x would
imply that the only delivery rate options available to the
algorithm would be (100%, 50%, 25%, 12.5%, ...). The
jump from 100% down to 50% is actually too drastic.
Instead, we have found that to be able to handle a multi-
tude of situations where we deliver anywhere from 100%
down to 6.25% of the incoming IO completions as in-



Figure 2: Virtual Interrupt Delivery Steps. In addition to Figure 1, vIC adds a new shared area object tracking the last
time that the VMM fired an interrupt. Before sending the IPI, vSCSI checks to ensure that time since the last VMM-
induced virtual interrupt is less than a configurable threshold. If not so, an IPI is still fired, otherwise, it is deferred.
In the VMM, an interrupt coalescing scheme is introduced. Note that we didn’t introduce a high-resolution timer and
instead rely on the subsequent IO completions themselves to drive the vIC logic and to regulate the vIC related delay.

terrupts. In order to do this we chose to set two fields,
countUp and skipUp, dynamically to express the deliv-
ery ratios. Intuitively, we deliver (countUp) out of every
(skipUp) interrupts, i.e. R = countU p/skipU p. As illus-
tration, to deliver 80% of the interrupts, countUp = 4 and
skipUp = 5 whereas for 6.25% countUp = 1 and skipUp =
16. Table 1 shows the full range of values as encoded in
Algorithm 1. By allowing rates between 100% and 50%,
we can dial down to a negligible level the throughput loss
at smaller CIF.

The exact values of R are determined both based on
experimentation and also to support the efficient imple-
mentation in a VMM. Figure 2 shows the additional new
subsystem in the LSI Logic emulation code in the VMM.
See Algorithm 1 for how the coalescing rate is deter-
mined. Next we will discuss the exact interrupt delivery
mechanism and some optimizations in implementing this
computation.

3.2.2 Delivering Interrupts

On any given IO completion, the VMM needs to decide
whether to post an interrupt to the guest or to coalesce
it with a future one. This decision logic is captured
in pseudocode in Algorithm 2. First, every “epoch pe-
riod”, which defaults to 200 ms, we reevaluate the vIC

rate so we can react to changes in workloads. This is
done in function IntrCoalesceRecalc() the pseudocode
for which is found in Algorithm 1.

Next we check to see if the new CIF is below the
cifThreshold. If such a condition happens, we immedi-
ately deliver the interrupt. The VMM is designed as a
very high performance software system where we worry
about code size (in terms of both LoC and bytes of .text).
Ultimately, we have to calculate for each IO completion
whether or not to deliver a virtual interrupt given the ra-
tio R = countU p/skipU p. Since this decision is on the
critical path of IO completion, we have designed a sim-
ple but very condensed logic to do so with the minimum
number of LoC which needs careful explanation.

In Algorithm 2, counter is an abstract number which
counts up from 1 till countU p− 1 delivering an in-
terrupt each time. It then continues to count up till
skipU p− 1 while skipping each time. Finally, once
counter reaches skipU p, it is reset back to 1 along with
an interrupt delivery. Let’s look at two examples of a se-
ries of counter values as more IOs come in, along with
whether the algorithm delivers an interrupt as tuples of
〈counter, deliver?〉. For countU p/skipU p ratio of 3/4,
a series of IOs looks like:
〈1, yes〉, 〈2, yes〉, 〈3, no〉, 〈4, yes〉.



Algorithm 1: Delivery Rate Determination
currIOPS : Current throughput in IOs per sec;
ci f : Current # of commands in flight (CIF);
ci f T hreshold : Configurable min CIF (default=4);
if currIOPS < iopsT hreshold∨ ci f < ci f T hreshold
then

/* R = 1 */
countU p←− 1;
skipU p←− 1;

else if ci f < 2∗ ci f T hreshold then
/* R = 0.8 */
countU p←− 4;
skipU p←− 5;

else if ci f < 3∗ ci f T hreshold then
/* R = 0.75 */
countU p←− 3;
skipU p←− 4;

else if ci f < 4∗ ci f T hreshold then
/* R = 0.66 */
countU p←− 2;
skipU p←− 3;

else
/* R = 8/CIF */
countU p←− 1;
skipU p←− ci f /(2∗ ci f T hreshold);

Algorithm 2: VMM—IO Completion Handler
ci f : Current # of commands in flight (CIF);
ci f T hreshold : Configurable min CIF (default=4);
epochStart : Time at start of current epoch (global);
epochPeriod : Duration of each epoch (global);
di f f ←− currTime()− epochStart;
if di f f > epochPeriod then

IntrCoalesceRecalc(ci f );
if ci f < ci f T hreshold then

counter←− 1;
deliverIntr();

else if counter < countU p then
counter ++;
deliverIntr();

else if counter >= skipU p then
counter←− 1;
deliverIntr();

else
counter ++;
/* don’t deliver */

if Interrupt Was Delivered then
SharedArea.timeStamp←− currTime();

CIF Intr Delivery Rate R
1-3 100%
4-7 80%
8-11 75%

12-15 66%
CIF >= 16 8/CIF

e.g. CIF == 64 12%

Table 1: Interrupt Deliver Rate (R) as a function of CIF.
cifThreshold is set to 4.

Whereas for countU p/skipU p of 1/5:
〈1, no〉, 〈2, no〉, 〈3, no〉, 〈4, no〉, 〈5, yes〉.
Algorithm 2 shows pseudo code for this per-IO de-

cision. Finally, we update a time-stamp corresponding
to the delivery time in a memory area shared between
VMM and ESX VMKernel. Figure 2 shows this addi-
tional new operation (7) used to optimize the number of
IPIs that are sent, as discussed in the next section.

3.3 Reducing IPIs

So far, we have described the mechanism for virtual in-
terrupt coalescing inside the VMM. As mentioned in
Section 2 and illustrated in Figure 1, another component
involved in IO delivery is the ESX VMKernel. Recall
that IO completions from hardware controllers are han-
dled by this component and sent to the VMM, an opera-
tion that can require an IPI in case the guest is currently
running on the remote processor. Since IPIs are expen-
sive, we would like to avoid them or at the very least
minimize their occurrence. Note that the IPI is a mecha-
nism to force the VMM to wrest execution control away
from the guest to process a completion. As such it is
purely a latency optimization and correctness guarantees
don’t hinge on it since the VMM frequently gets control
anyway and always checks for completions.

Figure 2 shows the additional data flow and compu-
tation in the system to accomplish our goal of reduc-
ing IPIs. The primary concern is that a guest OS might
have scheduled a compute heavy task which may not re-
sult in the VMM getting execution control till the next
timer interrupt which might be several milliseconds away
on average. So, our goal is to avoid delivering IPIs as
much as possible while also bounding the extra latency
increase. We introduce as part of the shared area be-
tween the VMM and the VMKernel where completion
queues are managed, a new time-stamp of the last time
the VMM posted an IO completion virtual interrupt to
the guest (see last line of Algorithm 2). We introduce a
new step (3.5) in the VMKernel where before firing an
IPI, we check the current time against what the VMM
has posted to the shared area. If the time difference is
greater than a certain threshold, 100 µs by default, we



OIO R̂ IOPS CPU
cost
cycles/ IO

Int/sec
Guest

Baseline
IOPS

Baseline
CPU
Cost

Baseline
Int/sec
Guest

16 2/3 38.9K 74.8K 58K 38.4K 77.0K 60K
32 1/3 48.3K 68.0K 69K 46.4K 70.5K 74K
64 1/6 53.1K 64.0K 34K 52.9K 78.4K 113K

Table 2: Iometer 4KB reads with one worker thread and
a cached Logical Unit (LUN). R̂ is the average delivery
rate set dynamically by the algorithm in this experiment.
OIO is the number of outstanding IOs setting in Iometer.
At runtime, CIF is lower than OIO as confirmed by R̂
being lower than R(OIO) from Table 1.

post the IPI. Otherwise, we give the VMM an opportu-
nity to notice IO completions in due course on its own.

4 Preliminary Evaluation

To evaluate our vIC approach, we have examined sev-
eral micro-benchmark and macro-benchmark workloads
and compared against the existing case with no inter-
rupt coalescing. In each case we have seen a reduction
in CPU overhead, often associated with an increase in
throughput (IOPS). A more comprehensive evaluation is
being done as part of future work. For all of the exper-
iments, the parameters are set as follows: ci f T hreshold
= 4, iopsT hreshold = 2000 and epochPeriod = 200 ms.

4.1 Iometer Workload

We evaluated two Iometer [1] workloads running on a
Microsoft Windows 2003 VM on top of an internal build
of VMware ESX Server. The first test is a 4KB sequen-
tial IO reads with one worker thread running on a fully
cached Logical Unit (LUN). In other words, IOs are hit-
ting in the array cache instead of going to the disk. We
varied the number of outstanding IOs to see the improve-
ment over baseline. Table 2 shows the full matrix of our
test results whereas Table 3 summarizes the percentage
differences with and without coalescing. The column la-
beled R is the average rate chosen by algorithm based
on varying CIF over the course of the experiment; as ex-
pected, our algorithm coalesces more rigorously as the
number of outstanding IOs is increased. Looking closely
at the 64 CIF case, we can see that the dynamic interrupt
coalescing rate, R, was found to be 1/6 on average. This
means that one interrupt was delivered for every six IOs.
The guest operating system reported a drop from 113K
interrupts per second to 34K. The result of this is that
the CPU cycles per IO have also dropped from 78.4K to
64.0K, which is an efficiency gain of 18%.

Our second workload is the same as the previous ex-
cept we now used 8KB sequential IOs. In Tables 4 and 5

OIO IOPS
%diff

CPU cost
%diff

Int/sec Guest
%diff

16 1.3% -2.8% -3.3%
32 4.1% -3.5% -6.8%
64 0.4% -18.4% -66.4%

Table 3: Summary of Improvements in Key Metrics with
vIC. The experiments is the same as in Table 2.

OIO R̂ IOPS CPU
cost
cycles/ IO

Int/sec
Guest

Baseline
IOPS

Baseline
CPU
Cost

Baseline
Int/sec
Guest

8 4/5 31.2K 83.6K 48K 29.9K 88.2K 49K
16 2/3 39.3K 77.6K 61K 38.5K 81.3K 63K
32 1/3 41.5K 76.0K 60K 41.1K 77.1K 69K
64 1/6 41.5K 71.0K 11K 41.1K 75.7K 30K

Table 4: Iometer 8KB reads with one worker thread and
a cached Logical Unit (LUN). Caption as in Table 2.

we see for the 64 CIF case the same interrupt coalescing
rate of 1/6 with now a 7% efficiency improvement. The
interrupt per second in the guest dropped from 30K to
11K.

In both Table 2 and 4 we see a noticeable reduction in
CPU cycles per IO whenever vIC has been enabled. We
also would like to note that throughput never decreased
and in many cases actually increased significantly.

4.2 Iometer CPU Usage Breakdown
For our 8KB sequential read Iometer workload with 64
outstanding IOs we examined the breakdown between
the VMM and guest OS CPU usage. In Table 6 we see
our monitor’s abridged kstats. The VMK VCPU HALT
statistics is the percent of time that the guest was idle.
We see the guest idle time has increased which im-
plies that the guest OS spent less time processing IO for
the same effective throughput. The guest kernel run-
time is measured by the amount of time we spent in
the TC64 IDENT. Here we see a noticeable decrease
in kernel mode execution time from 9.0% to 7.4%.
The LSI Logic virtual SCSI adapter IO issuing time is
measured by device Priv Lsilogic IO measure-
ment has decreased from 5.0% to 4.3%. The IO com-

OIO IOPS
%diff

CPU cost
%diff

Int/sec Guest
%diff

8 4.3% -5.2% -2.0%
16 2.1% -4.5% -3.2%
32 1.0% -1.5% -13.0%
64 1.0% -6.2% -63.3%

Table 5: Summary of Improvements in Key Metrics with
vIC. The experiments is the same as in Table 4.



With vIC Without vIC
VMK VCPU HALT 71.4% 65.0%
TC64 IDENT 7.4% 9.0%
device Priv Lsilogic IO 4.3% 5.0%
DrainMonitorActions 0.7% 0.5%

Table 6: VMM profile for 8KB sequential read Iometer
workload. Each row represents time spent in the related
activity relative to a single core. The list is filtered down
for space reasons to only the profile entries that changed.

pletion work done in the VMM is part of a generic
message delivery handler function and is measured by
DrainMonitorActions in the profile. We see a
slight increase from 0.5% to 0.7% of CPU consumption
due to the management of the interrupt coalescing rate.
The net savings gained by enabling virtual interrupt coa-
lescing can be measured by looking at the guest idle time
which is a significant 6.4% of a core. In a real workload
which performs both IO and CPU-bound operations, this
would result in an extra 6+% of available time for com-
putation. We expect that some part of this gain also in-
cludes the reduction of the virtualization overhead as a
result of vIC mostly consisting of second order effects
related to virtual device emulation.

4.3 SQLIOSim and GSBlaster

We also examined the results from SQLIOSim [5] and
GSBlaster. Both of these macro-benchmark workloads
are designed to mimic the IO behavior of Microsoft SQL
Server.

SQLIOSim is designed to target an “ideal” IO latency
to tune for. That means that if the benchmark sees a
higher IO latency it assumes that there are too many out-
standing IOs and reduces that number. The reverse case
is also true allowing the benchmark to tune for this pre-
set optimal latency value. The user chooses this value to
maximize their throughput and minimize their latency. In
SQLIOSim we used the default value of 100ms.

GSBlaster is our own internal performance testing tool
which behaves similar to SQLIOSim. It was designed
as a simpler alternative to SQLIOSim which we could
understand and analyze in an easier manner. As opposed
to SQLIOSim, when using GSBlaster we choose a fixed
value for the number of outstanding IOs. It will then run
the workload based on this configuration.

Table 7 shows the results of our optimization on both
the target macro-benchmark workloads. We can see that
the IOPS increased as a result of vIC by more than 17%.
As in previous benchmarks we also found that the CPU
cost per IO decreased by 17.4% in the case of SQLIOSim
and 16.6% in the case of GSBlaster.

IOPS CPU
Cost

Baseline
IOPS

Baseline
CPU
Cost

IOPS
%diff

CPU
Cost
%diff

SQLIOSim 6282 339K 5327 410K +17.9% -17.4%
GSBlaster 24651 126K 20755 151K +18.8% -16.6%

Table 7: Performance improvements in SQLIOSim and
GSBlaster. Improvements are seen both in IOPS and
CPU efficiency.

5 Related Work

Smotherman [9] provides an interesting history of the
evolution of interrupts and their usage in various com-
puter systems starting from UNIVAC (1951). With in-
creasing bandwidth of both network and storage devices,
the rate of interrupts and thus CPU overhead to handle
them has been increasing pretty much since the interrupt
model was first developed. Although processor speeds
have been increasing to keep up with these devices, the
motivation to reduce overall overhead of interrupt han-
dling is still strong. Interrupt coalescing has been very
successfully deployed in various hardware controllers to
mitigate the CPU overhead. There is a lot of prior work
both in terms of patents and publications with proposed
mechanisms to perform interrupt coalescing both for net-
work and storage hardware controllers.

Patent [7] provides a method for dynamic adjustment
of maximum frame count and maximum wait time pa-
rameters for sending the interrupts from a communica-
tion interface to a host processor. The packet count pa-
rameter is increased when the rate of arrivals is high and
decreased when the interrupt arrival rate gets low. Max-
imum wait time parameter ensures a bounded delay on
the latency of the packet delivery. Another patent [4]
uses a single counter to keep track of number of initiated
tasks. The counter is decremented on the task completion
event and it is incremented when the task is initiated. A
delay timer is set using the counter value. An interrupt
is generated either when the delay timer is fired or the
counter value is less than a certain threshold. In contrast,
our mechanism adjusts the delivery rate itself based on
CIF and does not rely on any delay timers. It should be
noted, however, that our approach is complementary to
interrupt coalescing optimizations done in the hardware
controllers since they can benefit in lowering the load on
the hypervisor host, in our case the ESX VMKernel.

Marco et al. [10] study the impact of generic inter-
rupt coalescing implementation in 4.4BSD on the steady
state TCP throughput. They modified the fxp driver in
FreeBSD and controlled only the delay parameter Td ,
which specifies the time duration between the arrival of
first packet and the time at which hardware interrupt is
sent to the OS. They provided and analyzed the relation-



ship between Td and steady state TCP throughput.
Salah et al. [8] did an analysis of various interrupt

handling schemes such as polling, regular interrupts, in-
terrupt coalescing, and disabling and enabling of inter-
rupts. Their study concludes that no single scheme is
good under all traffic conditions. This further motivates
the need for a adaptive mechanism that can adjust to the
current interrupt arrival rate and other workload param-
eters. Mogul and Ramakrishnan [6] studied the prob-
lem of receive livelock, where the system is busy pro-
cessing interrupts all the time and other necessary tasks
are starved to the most part. To avoid this problem they
suggested polling under high load and using regular in-
terrupts for lighter loads. Polling can increase the la-
tency for IO completions, thereby affecting the overall
application behavior. They optimized their system by
using various techniques to initiate polling and enable
interrupts under specific conditions. They also proposed
round robin polling to fairly allocate resources among
various sources. Our approach, instead of switching to
polling adjusts the overall interrupt delivery rate during
high load. We believe this is more flexible and adapts
well to drastic changes in guest workload. We also use
CIF which is available only in context of storage con-
trollers but allows us to solve this problem more effi-
ciently. Furthermore, we don’t have the luxury to change
the guest behavior in terms of interrupts vs polling be-
cause the guest OS is like a black box to VMM.

6 Conclusions

In this paper, we studied the problem of doing efficient
virtual interrupt coalescing in context of virtual hardware
controllers implemented by a hypervisor. We proposed
the novel techniques of using the number of commands
in flight to dynamically adjust the coalescing rate in fine-
grained steps and to use future IO events to avoid the
need of high-resolution. We also designed a technique to
reduce the number of inter-process interrupts while keep-
ing the latency bounded. Our prototype implementation
in ESX server hypervisor showed that we are able to im-
prove application throughput (IOPS) by up to 19% and
improve CPU efficiency up to 17% (for the GSBlaster
and SQLIOSim workloads respectively). As part of fu-
ture work, we are looking into adapting our techniques
to other devices such as NIC controllers and evaluating it
for a more diverse set of workloads.

7 Some Open Issues

In addition to a more thorough evaluation, including
against workloads with highly variable IO rates, there are
several some open issues that we’d like to explore. Cur-

rently, we have hard-coded the best CIF-to-R mappings
based on experimentation. We would like to explore dy-
namic adaptation of that mapping. We believe that OLTP
workloads like TPC-C would benefit immensely from
our optimization and would like to run and tune for some
real benchmarks.

At first blush, networking controllers do not lend
themselves to a CIF-based approach since the protocol
layering in the stack means that the lower layers (where
interrupt posting decisions are made) don’t know the se-
mantics of higher layers. Still, there may be some in-
ference techniques that can be applied to do aggressive
coalescing without loss of throughput in context of high-
bandwidth TCP connections.

Acknowledgements
We would like to thank Davide Bergamasco, Vincent Lin
and Reza Taheri for help with experimental validation of
our work. Many thanks to Ole Agesen, Mallik Mahaling-
ham, Tim Mann, Glen McCready and Carl Waldspurger
for reviews, valuable discussions and feedback.

References

[1] Iometer. http://www.iometer.org.
[2] I. Ahmad. Easy and Efficient Disk I/O Workload Char-

acterization in VMware ESX Server. Workload Charac-
terization, 2007. IISWC 2007. IEEE 10th International
Symposium on, pages 149–158, Sept. 2007.

[3] X. Chang, J. Muppala, Z. Han, and J. Liu. Analysis of
interrupt coalescing schemes for receive-livelock problem
in gigabit ethernet network hosts. pages 1835–1839, May
2008.

[4] R. Hickerson and C. C. Mccombs. Method and appara-
tus for coalescing i/o interrupts that efficiently balances
performance and latency. (US PTO 6065089), May 2000.

[5] Microsoft. How to use the sqliosim utility to simulate
sql server activity on a disk subsystem, 2009. http:
//support.microsoft.com/kb/231619.

[6] J. C. Mogul and K. K. Ramakrishnan. Eliminating re-
ceive livelock in an interrupt-driven kernel. ACM Trans.
Comput. Syst., 15(3):217–252, 1997.

[7] C. Musumeci, Gian-paolo D. (San Francisco. System and
method for dynamically tuning interrupt coalescing pa-
rameters. (US PTO 6889277), May 2005.

[8] K. Salah, K. El-Badawi, and F. Haidari. Performance
analysis and comparison of interrupt-handling schemes in
gigabit networks. Comput. Commun., 30(17):3425–3441,
2007.

[9] M. Smotherman. Interrupts, 2008. http://www.cs.
clemson.edu/˜mark/interrupts.html.

[10] M. Zec, M. Mikuc, and M. agar. Estimating the impact of
interrupt coalescing delays on steady state tcp throughput.
Tenth SoftCOM 2002 conference, 2002.


