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ABSTRACT

Network appliances or middleboxes such as firewalls, intru-
sion detection and prevention systems (IDPS), load bal-
ancers, and VPNs form an integral part of datacenters and
enterprise networks. Realizing their importance and short-
comings, the research community has proposed software im-
plementations, policy-aware switching, consolidation appli-
ances, moving middlebox processing to VMs, end hosts, and
even offloading it to the cloud. While such efforts can use
middlebox failure characteristics to improve their reliability,
management, and cost-effectiveness, little has been reported
on these failures in the field.
In this paper, we make one of the first attempts to perform

a large-scale empirical study of middlebox failures over two
years in a service provider network comprising thousands of
middleboxes across tens of datacenters. We find that mid-
dlebox failures are prevalent and they can significantly im-
pact hosted services. Several of our findings differ in key as-
pects from commonly held views: (1) Most failures are grey
dominated by connectivity errors and link flaps that exhibit
intermittent connectivity, (2) Hardware faults and overload
problems are present but they are not in majority, (3) Mid-
dleboxes experience a variety of misconfigurations such as
incorrect rules, VLAN misallocation and mismatched keys,
and (4) Middlebox failover is ineffective in about 33% of the
cases for load balancers and firewalls due to configuration
bugs, faulty failovers and software version mismatch. Fi-
nally, we analyze current middlebox proposals based on our
study and discuss directions for future research.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Network]: Network
Operations—network management

General Terms
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Figure 1: Middleboxes contribute to 43% of high-
severity incidents despite being 11% of the popula-
tion (top). The top-5 categories of service impact in
these incidents caused by middleboxes (bottom).

1. INTRODUCTION
Today’s datacenters and enterprises deploy a variety of

intermediary network devices or middleboxes to distribute
load (e.g., load balancers), enable remote connectivity (e.g.,
VPNs), improve performance (e.g., proxies) and security
(e.g., firewalls, IDPS), as well as to support new traffic
classes and applications [1–4]. Given these valuable benefits,
the market for middleboxes is estimated to exceed $10B by
2016 [5], and their number is becoming comparable to that
of routers in enterprise networks [1, 6].

These benefits, however, come at a high cost: middle-
boxes constitute a significant fraction of the network capital
and operational expenses [1]; they are complex to manage
and expensive to troubleshoot [6]; and their outages can
greatly impact service performance and availability [7]. For
instance, in December 2012, a load balancing misconfigura-
tion affected multiple Google services including Chrome and
Gmail [8]. In a 2011 survey of 1,000 organizations [9], 36%
and 42% of the respondents indicated failure of a firewall
due to DDoS attacks at the application layer and network
layer, respectively; the very attack firewalls are deployed to
protect against.
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Previous Approaches
EXTERNALIZED STATE

StatelessNF, NSDI 2017

CHC, NSDI 2019

SNAPSHOT BASED

Pico Replication, SoCC 2013

FTMB, SIGCOMM 2015

REINFORCE, CoNEXT 2018
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Externalized State Approach
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Snapshot Based Approaches
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Snapshot Based Approaches for a Chain
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Our Approach
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Goals

Consistent state replication to tolerate ! middlebox failures

Minimizing performance overhead during normal operation

Minimizing disruption during middlebox failures
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Fault Tolerant Chaining (FTC)
In-chain replication
◦ Replicates a chain’s state instead of the state of individual middleboxes
◦ Each middlebox’s state replicated to subsequent ! middlebox servers

Transactional packet processing 
◦ Simplifies the development of multi-threaded middleboxes
◦ Improves scalability and performance

Data dependency vectors
◦ Enables concurrent state replication
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Failure Recovery
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Transactional Packet Processing
Existing approaches
◦ Single thread or batched packet processing
◦ FTMB: multi threaded packet processing

◦ Tracking state changes in granularity of each state variable read/write
◦ Frequent periodic state snapshots

Our approach
◦ Packet transaction model for concurrent packet processing
◦ Using isolation property to tracking state changes in granularity of packet transactions
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Data Dependency Vectors
Tracking data changes instead of thread operations

Enabling different number of threads at the middlebox and replicas
◦ Fail over to smaller machine
◦ Scale up to a larger machine
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Middlebox Product Throughput CPU Core

IPSec
HP VSR1001 268 Mbps 1
HP VSR1008 926 Mbps 8

WAN 
Optimizer

STEELHEAD CCX770M 10 Mbps 2
STEELHEAD CCX1555M 50 Mbps 4

WAF
Barracuda Level 1 100 Mbps 1
Barracuda Level 5 200 Mbps 2



Data Dependency Vectors Example

19

1

2

3

4

5

M
iddlebox

Replica hold

W(1)

R(1), W(3)

⟨0,x,x⟩

⟨1,x,4⟩

⟨0,3,4⟩ ⟨1,x,4⟩≥ ⟨1,3,4⟩ ⟨1,x,4⟩≥

⟨0,3,4⟩ ⟨0,x,x⟩≥

⟨0,3,4⟩ ⟨1,3,4⟩ ⟨2,3,5 ⟩

Middlebox’s dependency vector:

Replica’s dependency vector:

1 2

⟨0,3,4⟩ ⟨1,3,4⟩ ⟨2,3,5 ⟩4 5

? ✓

✓ ⟨0,x,x⟩ ⟨1,x,4⟩

⟨0,3,4⟩⟨0,3,4⟩ ⟨1,3,4⟩

⟨1,x,4⟩



Evaluation
METHOD

Comparing FTC with:

NF, Non-Fault tolerant system
◦ Ideal performance

FTMB (SIGCOMM 2015)
◦ State logging + Snapshots

FTMB + Snapshot (SIGCOMM 2015)
◦ State logging + Snapshots

ENVIRONMENTS

A cluster of 12 servers
◦ 40 Gbps network

SAVI Cloud environment
◦ A virtual network of OVS switches

MoonGen and pktGen traffic generators
◦ UDP traffic

◦ Packet size: 256 B
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Fault Tolerant NATs
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Fault Tolerant Chains – Throughput
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Fault Tolerant Chains – Latency
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Conclusion

Keep operation of a chain of middleboxes online after ! middleboxes fail

◦ In-chain replication

◦ Transactional packet processing

◦ Data dependency vectors
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