


•

•

•

•

•

•

•

•



n1 n2 n3head

Free(n2)

T1: Find (n3)

T2: Delete(n2)

SleepAwake! Crash!

Use-after-
free error





Safe memory reclamation: 
problem of deciding when it is safe to free a record in 

concurrent data structure using dynamic memory so that use-

after-free error do not occur.



unallocated

uninitialized

ReachableRetired

safe

Allocate

Insert
SMR 

free
DS 
Synchronization

Remove:
shelved in thread local 

buffer



• Performance

• Bounded Garbage

• Usable

• Applicable



Reference 

counting 
based

Epoch based Hazard 

pointer 
based

Performance low high medium

Bound on 

garbage

conditional unbounded bounded

Usability medium high low

Applicability * high low



HHLMSS05 Lazy linked list

EFRB10 External binary search tree

HJ12

S13

NM14

DVY14

EFRB14

BER14

RM15

BPA20 External interpolation search tree



Read-phase:

write-phase

reservation-phase:

Operations consist of (or 

can be presented in) two phases:

1. Read-phase: threads only read the 

underlying data structure.

2. Write-phase: threads modify the 
underlying data structure.

Many concurrent data structures have a 

pattern where long searches are followed 

by short (optional) updates.



T1: Read-phase
T2: Write-phase

Neutralize T1 

(send posix

signal)

posix signal

Discarding pointers

reserved pointers

Free pointers that are 

not reserved

T3: reclaimer

Reader-

reclaimer 

handshake

writer-reclaimer

handshake

Enough garbage! 

I wanna recycle



Cost of signals: Every time a thread reclaims it sends POSIX signals to neutralize all 

other threads.

More wasted work for threads in read phase due to restarts.

Can we do better?



Signal broadcast by a thread is enough for all threads to 

reclaim their buffers.

t2: end 

signaling
t1: start 

signaling

threads either discard 

pointers and restart or 

do not restart but have 

reserved pointers.

Records retired before t1 are safe to 

free

ADVANTAGE:
• Less number of signals

• Lower amount of wasted work for 

readers.

• FASTER NBR

Enforced 

quiescence



All threads maintain two thresholds C1 & C2 in its buffer. (C1< C2)

At C2, a thread TJ enforces quiescence and reclaims its buffer as in NBR.

Additionally, maintains a SWMR timestamp which it increments once at t1 and at t2.

After reaching C1, a thread TI passively monitors for some TJ that could be sending 

signals so that it could piggyback on signals sent by TJ to reclaim its own buffer.

t2: end 

signaling
t1: start 

signaling

Records retired before t1 are safe to free
TJ



BINARY SEARCH TREE [DGT15]

(A,B) TREE [BROWN17]

LAZYLIST (IN PAPER*)

HARRIS MICHAEL LIST (IN PAPER*)

• 4x Intel Xeon Platinum 8160

• 192 hardware threads

• Ubuntu 18.04, g++ 7.4, -O3

• 5 second timed trials

• DEBRA

• HP

• IBR

• QSBR

• RCU



Data Structure:
• External Binary search Tree (DGT15)

• Size: 2M keys

oversubscriptionCrosses Debra

Workload types

50% inserts – 50% deletes 25% inserts – 25% deletes 5% inserts – 5% deletes



50% inserts – 50% deletes 25% inserts – 25% deletes 5% inserts – 5% deletes

Data Structure:
• Brown's (a,b)-Tree

• Size: 2M keys

Workload types



Data structure HP EBR NBR

Lazy list [Heller et al 2005]

Harris list [Harris 2001]

EFRB BST [Ellen et al 2010]

External (a,b) tree [Brown et al, 2017]

Howey-Joney internal BST [2017]

External chromatic tree [Brown et al, 

2014]

External AVL tree [Brown et al, 2017]

Fast

Bounded Garbage 

Usable

Applicable




