
The Aurora OS: Revisiting the Single Level Store

Emil Tsalapatis, Ryan Hancock, Tavian Barnes, Ali José Mashtizadeh

RCS Group @ University of Waterloo

HotOS ’21 – June 4, 2021

1 / 12



Persistence Is Hard

• Persistence is difficult to implement

• Subtle bugs persists even for mature systems
– LevelDB (Chrome, Ethereum) has had multiple1 2 3 4

• New apps rebuild persistence from scratch
– Developers must move data around the storage hierarchy

1https://ethereum.stackexchange.com/questions/1159/corruption-on-data-block-while-synchronising
2https://github.com/google/leveldb/issues/333
3https://forum.syncthing.net/t/panic-leveldb-table-corruption-on-data-block/2526
4https://bugs.chromium.org/p/chromium/issues/detail?id=261623

2 / 12



Single Level Stores (SLSes)

• Eliminate semantic gap between file IO and in-memory
– No file IO, no data serialization

• SLS: Applications entirely in memory

• Applications oblivious to system crashes
– No error handling by the app itself

3 / 12



Re-enabling the Single Level Store

Fast Flash Devices

0.00

0.25

0.50

0.75

T
hr

ou
gh

pu
tR

at
io

Relative Throughput

1970 1980 1990 2000 2010 2020
Date

104

106

In
st

ru
ct

io
ns

Pe
rI

/O

Relative Latency

HDD
SSD

NVMe-r
NVMe-w

NVDIMM-r
NVDIMM-w

IO Bandwidth ≥ Memory Larger Address Spaces

4 / 12



Re-enabling the Single Level Store

Fast Flash Devices

0.00

0.25

0.50

0.75

T
hr

ou
gh

pu
tR

at
io

Relative Throughput

1970 1980 1990 2000 2010 2020
Date

104

106

In
st

ru
ct

io
ns

Pe
rI

/O

Relative Latency

HDD
SSD

NVMe-r
NVMe-w

NVDIMM-r
NVDIMM-w

IO Bandwidth ≥ Memory

Larger Address Spaces

4 / 12



Re-enabling the Single Level Store

Fast Flash Devices

0.00

0.25

0.50

0.75

T
hr

ou
gh

pu
tR

at
io

Relative Throughput

1970 1980 1990 2000 2010 2020
Date

104

106

In
st

ru
ct

io
ns

Pe
rI

/O

Relative Latency

HDD
SSD

NVMe-r
NVMe-w

NVDIMM-r
NVDIMM-w

IO Bandwidth ≥ Memory Larger Address Spaces

4 / 12



Demo

5 / 12



Aurora’s Architecture

• SLS orchestrator gathers state from subsystems

• Bundles persistent objects into checkpoints

• Checkpoints held in high frequency COW store
– Default frequency: 100 Hz

– No NVDIMMs necessary!

Application libsls sls

Userspace
Kernel

Virtual
Memory

SLS
Orchestrator

SLS
File System

ioctl

TCP/IP Object
Store

Kernel
Hardware

NIC NVMe

IPC Socket VFS Proc Thread

6 / 12



Two Key Insights: POSIX Object Model

Process A Process B

Userspace
Kernel

Shared
Memory

File

DataCode Shared
Memory

File

Data Code

vnode

IPCvnode vnode

7 / 12



Two Key Insights: System Shadowing

Shadow Shadow

Shadow

Shadow

Process A Process B

Userspace
Kernel

Shared
Memory

File

DataCode Shared
Memory

File

Data Code

vnode

IPCvnode vnode

8 / 12



Aurora for Developers

• Custom persistence schemes
– General primitives with explicit guarantees

• Checkpoint an application, a region, a page...
– Single page latency: 26 µs

• Custom restore handler for post crash fixups

9 / 12



Manipulating Execution State

Mobility and HA
• Fault tolerance
• Application migration

Debugging
• Time Travelling
Debugging

• Optimizing record/replay

Speculative Execution
• Speculative Execution
• Rollbacks
• OS Transactions

10 / 12



Manipulating Execution State

Mobility and HA
• Fault tolerance
• Application migration

Debugging
• Time Travelling
Debugging

• Optimizing record/replay

Speculative Execution
• Speculative Execution
• Rollbacks
• OS Transactions

10 / 12



Manipulating Execution State

Mobility and HA
• Fault tolerance
• Application migration

Debugging
• Time Travelling
Debugging

• Optimizing record/replay

Speculative Execution
• Speculative Execution
• Rollbacks
• OS Transactions

10 / 12



Applications: Serverless Computing

• Cold starts dominate execution time

• Images partially overlap
– High density in memory, on disk

• Shared data overlaps between images
– Improves startup times

11 / 12



Conclusion

• The time has come for SLSes to make a comeback
– Modern hardware makes transparent persistence possible

• We can - and should - offer persistence at the OS level

• Persistent processes are a flexible and powerful abstraction

12 / 12


