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Persistence Is Hard

¢ Persistence is difficult to implement

e Subtle bugs persists even for mature systems

— LevelDB (Chrome, Ethereum) has had multiple® 2 3 4

* New apps rebuild persistence from scratch

— Developers must move data around the storage hierarchy

https://ethereum.stackexchange.com/questions/1159/corruption-on-data-block-while-synchronising
https://github.com/google/leveldb/issues/333
https://forum.syncthing.net/t/panic-leveldb-table-corruption-on-data-block/2526
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https://bugs.chromium.org/p/chromium/issues/detail ?id=261623
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Single Level Stores (SLSes)

¢ Eliminate semantic gap between file IO and in-memory

— No file 10, no data serialization

e SLS: Applications entirely in memory

¢ Applications oblivious to system crashes
— No error handling by the app itself
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Re-enabling the Single Level Store
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Figure 2-1. Linear-Address Translation Using 5-Level Paging
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Aurora’s Architecture
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Two Key Insights: POSIX Object Model
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Two Key Insights: System Shadowing
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Aurora for Developers

* Custom persistence schemes 10ms

— General primitives with explicit guarantees &
a
Q
. L . 3 Ims | | | lAddress
¢ Checkpoint an application, a region, a page... £ L_L | Space
apping
— Single page latency: 26 us %
5
¢ Custom restore handler for post crash fixups 26ps % Pages
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Manipulating Execution State

Mobility and HA
e Fault tolerance

¢ Application migration

........... E 9.49.!%{..........,

Active Standby

10/12



Manipulating Execution State
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Manipulating Execution State

Mobility and HA
e Fault tolerance

e Application migration
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Debugging
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* Optimizing record/replay

Speculative Execution
* Speculative Execution

* Rollbacks

e OS Transactions
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Applications: Serverless Computing

e Cold starts dominate execution time

* Images partially overlap

— High density in memory, on disk

e Shared data overlaps between images

— Improves startup times
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Conclusion

® The time has come for SLSes to make a comeback

— Modern hardware makes transparent persistence possible

¢ We can - and should - offer persistence at the OS level

¢ Persistent processes are a flexible and powerful abstraction
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