The Aurora OS: Revisiting the Single Level Store

Emil Tsalapatis, Ryan Hancock, Tavian Barnes, Ali José Mashtizadeh
RCS Group @ University of Waterloo

HotOS 21 — June 4, 2021

1/12

Persistence Is Hard

¢ Persistence is difficult to implement

e Subtle bugs persists even for mature systems

— LevelDB (Chrome, Ethereum) has had multiple® 2 3 4

* New apps rebuild persistence from scratch

— Developers must move data around the storage hierarchy

https://ethereum.stackexchange.com/questions/1159/corruption-on-data-block-while-synchronising
https://github.com/google/leveldb/issues/333
https://forum.syncthing.net/t/panic-leveldb-table-corruption-on-data-block/2526

H WO N =

https://bugs.chromium.org/p/chromium/issues/detail ?id=261623
2/12

Single Level Stores (SLSes)

¢ Eliminate semantic gap between file IO and in-memory

— No file 10, no data serialization

e SLS: Applications entirely in memory

¢ Applications oblivious to system crashes
— No error handling by the app itself

3/12

Re-enabling the Single Level Store

Fast Flash Devices

Throughput Ratio

0.00

Instructions Per /0

0.75 4

0.50 1

0.25

=)
>

Q
>

Relative Throughput
A
+
+
¥ L 4% Q—g
Relative Latency
#* 5
* "
+
4 %
+
+
+
T T T T —A
1970 1980 1990 2000 2010 2020

Date

+ HDD @® NVMer A NVDIMM-r

SSD @ NVMew A

NVDIMM-w

4/12

Re-enabling the Single Level Store

Fast Flash Devices

Throughput Ratio

Instructions Per /0

=)
>

Q
>

Relative Throughput
A
+
+
¥ L 4% Q—g
Relative Latency
#* 5
* "
+
4 %
+
+
+
A

1970 1980 1990 2000 2010 2020

Date

+ HDD @® NVMer A NVDIMM-r

SSD @ NVMew A

NVDIMM-w

Bandwidth (GB/s)

10 Bandwidth > Memory

R

Z1/0 BANDEWIRTH DOUBLES
very 3 Years

4/12

Re-enabling the Single Level Store

Fast Flash Devices

Throughput Ratio

Instructions Per /0

=)
>

=}
>

Relative Throughput
A
+
+
¥ L 4% Q—g
Relative Latency
#* 5
* "
+
4 %
+
+
+
A

1970 1980 1990 2000 2010 2020

Date

+ HDD @® NVMer A NVDIMM-r

SSD @ NVMew A

NVDIMM-w

Bandwidth (GB/s)

10 Bandwidth > Memory

R

Z1/0 BANDEWIRTH DOUBLES
very 3 Years

Larger Address Spaces

Linear Address

56 47 3938 3029 2120 121
PML5 | PML4 | DirecloryPir | Direcory | Table

/s

[POPTE

Page-Directory
‘40 Pointer Table

Page Table

Figure 2-1. Linear-Address Translation Using 5-Level Paging

4/12

5/12

Aurora’s Architecture

‘ Application libsls H sls ‘
Userspace T —
e SLS orchestrator gathers state from subsystems Kernel
BEOOE
¢ Bundles persistent objects into checkpoints ioct!
Virtual | | SLS SLS
. . . Memory Orchestrator | | File System
¢ Checkpoints held in high frequency COW store . ‘ ‘
i 1 7
— . Object
Default frequency. 100 Hz TCP/IP ‘ ‘ Store ‘
— No NVDIMMSs necessary! Kemel | |
Hardware
=
NIC NVMe

6/12

Two Key Insights: POSIX Object Model

Process A : Process B

| Shared Shared |

Memory Memory Data Code

Userspace

Kernel

7/12

Two Key Insights: System Shadowing

Process A : Process B

| Shared Shared |

Memory Memory Data Code

Userspace

Kernel

8/12

Aurora for Developers

* Custom persistence schemes 10ms

— General primitives with explicit guarantees &
a
Q
. L . 3 Ims | | | lAddress
¢ Checkpoint an application, a region, a page... £ L_L | Space
apping
— Single page latency: 26 us %
5
¢ Custom restore handler for post crash fixups 26ps % Pages

9/12

Manipulating Execution State

Mobility and HA
e Fault tolerance

¢ Application migration

........... E 9.49.!%{..........,

Active Standby

10/12

Manipulating Execution State

Mobility and HA Debugging
¢ Fault tolerance ¢ Time Travelling
e Application migration Debugging

* Optimizing record/replay

Fail
............ allover ...y

Active Standby

A,

10/12

Manipulating Execution State

Mobility and HA
e Fault tolerance

e Application migration

> >
........... F 92!9.2%{..........,

Active Standby

Debugging
¢ Time Travelling
Debugging

* Optimizing record/replay

Speculative Execution
* Speculative Execution

* Rollbacks

e OS Transactions

[Crween]

10/12

Applications: Serverless Computing

e Cold starts dominate execution time

* Images partially overlap

— High density in memory, on disk

e Shared data overlaps between images

— Improves startup times

11/12

Conclusion

® The time has come for SLSes to make a comeback

— Modern hardware makes transparent persistence possible

¢ We can - and should - offer persistence at the OS level

¢ Persistent processes are a flexible and powerful abstraction

12/12

