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Persistence Is Hard

• Persistence is difficult to implement

• Subtle bugs persists even for mature systems
– LevelDB (Chrome, Ethereum) has had multiple1 2 3 4

• New apps rebuild persistence from scratch
– Developers must move data around the storage hierarchy

1https://ethereum.stackexchange.com/questions/1159/corruption-on-data-block-while-synchronising
2https://github.com/google/leveldb/issues/333
3https://forum.syncthing.net/t/panic-leveldb-table-corruption-on-data-block/2526
4https://bugs.chromium.org/p/chromium/issues/detail?id=261623
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Single Level Stores (SLSes)

• Eliminate semantic gap between file IO and in-memory
– No file IO, no data serialization

• SLS: Applications entirely in memory

• Applications oblivious to system crashes
– No error handling by the app itself
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Re-enabling the Single Level Store

Fast Flash Devices
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Demo
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Aurora’s Architecture

• SLS orchestrator gathers state from subsystems

• Bundles persistent objects into checkpoints

• Checkpoints held in high frequency COW store
– Default frequency: 100 Hz

– No NVDIMMs necessary!
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Two Key Insights: POSIX Object Model
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Two Key Insights: System Shadowing
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Aurora for Developers

• Custom persistence schemes
– General primitives with explicit guarantees

• Checkpoint an application, a region, a page...
– Single page latency: 26 µs

• Custom restore handler for post crash fixups
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Manipulating Execution State

Mobility and HA
• Fault tolerance
• Application migration

Debugging
• Time Travelling
Debugging

• Optimizing record/replay

Speculative Execution
• Speculative Execution
• Rollbacks
• OS Transactions
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Applications: Serverless Computing

• Cold starts dominate execution time

• Images partially overlap
– High density in memory, on disk

• Shared data overlaps between images
– Improves startup times
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Conclusion

• The time has come for SLSes to make a comeback
– Modern hardware makes transparent persistence possible

• We can - and should - offer persistence at the OS level

• Persistent processes are a flexible and powerful abstraction
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