
CCFI: Cryptographically Enforced Control Flow Integrity

Ali José Mashtizadeh
Stanford University

mashti@cs.stanford.edu

Andrea Bittau
Stanford University

bittau@cs.stanford.edu

Dan Boneh
Stanford University

dabo@cs.stanford.edu
David Mazières
Stanford University

ABSTRACT
Control flow integrity (CFI) restricts jumps and branches within a
program to prevent attackers from executing arbitrary code in vul-
nerable programs. However, traditional CFI still offers attackers
too much freedom to chose between valid jump targets, as seen in
recent attacks [5, 9, 11].

We present a new approach to CFI based on cryptographic mes-
sage authentication codes (MACs). Our approach, called crypto-
graphic CFI (CCFI), uses MACs to protect control flow elements
such as return addresses, function pointers, and vtable pointers.
Through dynamic checks, CCFI enables much finer-grained clas-
sification of sensitive pointers than previous approaches, thwarting
all known attacks and resisting even attackers with arbitrary access
to program memory.

We implemented CCFI in Clang/LLVM, taking advantage of re-
cently available cryptographic CPU instructions (AES-NI). We
evaluate our system on several large software packages (including
nginx, Apache and memcache) as well as all their dependencies.
The cost of protection ranges from a 3–18% decrease in server re-
quest rate. We also expect this overhead to shrink as Intel improves
the performance AES-NI.

Categories and Subject Descriptors
D.3.4 [Programming Lnaguages]: Processors; D.4.6 [Operating
Systems]: Security and Protection

General Terms
Security, Languages

Keywords
Control Flow Integrity; Return Oriented Programming; Vulnerabil-
ities

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CCS’15, October 12–16, 2015, Denver, Colorado, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3832-5/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2810103.2813676 .

1. INTRODUCTION
In recent years, sophisticated attacks on software vulnerabili-

ties show that deployed protection mechanisms can be bypassed
(e.g., [3, 4, 14, 19] and many others). The weakness in many de-
ployed defenses is that they focus on patching specific attack tech-
niques rather than addressing the fundamental problem. For ex-
ample, stack canaries [8] assume a stack overflow; non-executable
memory [24] assumes code injection; and address space layout ran-
domization [18] assumes that information cannot be leaked. These
defenses can be circumvented, for example, by overflowing the
heap, executing a chain of existing code fragments using return-
oriented programming, and leaking a pointer. We need a more
principled approach to defense.

Exploits often work by hijacking the program’s control flow to
execute unintended code, for example, to start a shell. Indeed, all
the attacks mentioned above work by hijacking control flow and all
the defenses mentioned try to prevent specific approaches to control
flow hijacking.

Control Flow Integrity
A principled solution, called control flow integrity (CFI) [2], pre-
vents an attacker from arbitrarily modifying the target of indirect
jumps (e.g., return addresses and function pointers). Ensuring con-
trol flow integrity would prevent all attacks based on control flow
hijacking, which includes all the sophisticated attacks listed above.

However, practical implementations of CFI are insecure [5,9,11]
for two main reasons. First, CFI uses static analysis to determine
the target of a pointer, which is not always precise and leads overly
permissive checks. Second, implementations seek to minimize run-
time checks for performance reasons.

In practice, existing CFI systems are very coarse-grained; they
group function pointers and return addresses into just two differ-
ent classes, preventing swaps between the two. While a function
pointer cannot be replaced with a return address, these systems al-
low attackers to swap any two return addresses (or function point-
ers). Attacks against existing systems exploit the coarse granularity
of those systems to break CFI. The most advanced system today
groups function pointers based on the number of arguments (Ar-
ity) [21]. Existing systems do not provide fine-grained classifica-
tion because they are statically classifying pointers at compile time
based on language characteristics.

This paper introduces a dynamic approach to control flow in-
tegrity that allows our compiler to efficiently encode and modify
pointer classification at runtime. We associate metadata with all
control flow pointers that prevent attackers from arbitrarily swap-
ping or modifying pointers. Unlike previous approaches we can
naturally support language constructs such as type casting without
compatibility issues or overly permissive checks. We can also clas-

sify pointers based on purely runtime properties such as the address
they are stored at.

We show that on modern processors fine-grained control flow in-
tegrity can be efficiently achieved using cryptography. CCFI iden-
tifies all objects that would affect a program’s control flow (e.g.,
return addresses and function pointers) and computes a message au-
thentication code (MAC) of such objects each time they are stored
in memory. This MAC is stored along with the object and checked
every time the value is loaded from memory. The random secret
key used for computing these MACs is stored in dedicated reg-
isters so that it can never leak by a memory disclosure bug. By
checking the MAC of every control-flow element before using it,
the system prevents the attacker from writing arbitrary addresses to
hijack execution.

Cryptographic CFI
Cryptographic CFI is a general technique for building control flow
integrity systems. Existing systems can be implemented using our
technique by mapping pointer classes generated by their classifier
into an integer tag that is included in the MAC computation. All
existing systems can make use of our approach and could extend
themselves to benefit from Cryptographic CFI’s ability to reclas-
sify pointers at runtime. This allows classifiers to express program
behavior that cannot be determined statically. There are three or
fewer classes in most existing systems (except FECFI, which cate-
gorizes by number of arguments leading to an effective limit around
eight), while CCFI supports up to 280 as explained in Section 4.1.

Our approach enables new classifications of pointers that are not
possible with static approaches. First, the ability to reclassify func-
tion pointers at runtime to support type based classification. In ex-
isting systems, the static analysis is not sophisticated enough to
determine what pointers will be type casted; hence, a pointer can-
not be properly associated with the classes of all the types it may be
cast to. CCFI is able to explicitly verify and recompute the MAC
with a new class each time a pointer is casted.

Second, our classification additionally incorporates runtime char-
acteristics, notably the address at which a pointer resides, which
prevents swapping two valid pointers of the same type. Categoriz-
ing by address protects return pointers, which have no type signa-
ture. Static approaches have no equivalent to runtime characteris-
tics that they can use for return pointers. In particular, existing CFI
systems lump all return pointers into a single class, meaning they
are all interchangeable.

To argue security, we assume a very powerful adversary: that
has arbitrary read access to all of memory and write access to all
writable control-flow elements in memory (e.g., return addresses
and function pointers). CCFI binds a pointer to a set of criteria
such that a powerful adversary cannot hijack control flow and cause
unintended code to run. An attacker who overwrites a control flow
element will crash the program because of a MAC failure.

The use of MACs in CCFI gives us several useful advantages
over traditional CFI approaches using static tables with runtime
checks. First, attackers cannot generate MACs without the secret
key, which is unlike static approaches where attackers can call any
valid target. Second, we can group pointers based on runtime char-
acteristics, such as binding a return pointer to the address it is stored
at. Furthermore, these new approaches are compatible with static
and dynamic libraries. Third, MACs are flexible enough to allow
us to also group pointers based on compile time grouping, e.g.,
type information, or return address versus function pointers. Fi-
nally, AES-NI instructions on Intel x86 makes it possible to com-
pute cryptographic MACs with low overhead. Our MAC function

takes 92 cycles in the original implementation of AES-NI and has
decreased in cost with newer processors.

Implementation
We implemented CCFI in LLVM [16] for x86-64 and recompiled
SPEC2006, three web servers (Apache, Nginx, Lighttpd), two cache
servers (memcached, redis) and all of their 21 dependencies. Only
three packages (Apache’s libapr, Nginx, and perlbench) required
code changes for compatibility, where manual MAC computations
had to be inserted, with at most a few lines of code changed. The
implementation is generalizable to any architecture that supports a
fast cryptographic MAC function. The web servers showed a re-
duced request throughput rate of only 3–18% when serving a static
file. There is a 38% overhead when running with SSL, which con-
tends for AES-NI register use. Results show that CCFI is practical
and provides better security than existing approaches.

2. BACKGROUND
Software vulnerabilities take all shapes and forms. The clas-

sic example is a stack buffer overflow, where the lack of bounds
checking lets an attacker corrupt a return address on the stack caus-
ing execution to jump to an arbitrary location. Another example is
sending data beyond the end of a buffer, possibly leaking sensitive
information. Yet another example is forgetting to include important
authentication steps in the program’s logic. We classify software
vulnerabilities and attacks as follows:

1. Control flow attacks result in the attacker being able to ex-
ecute arbitrary code. These are the most common exploits,
and they typically yield a remote shell.

2. Data flow attacks result in the attacker being able to read or
write program memory, not necessarily leading to arbitrary
code execution. OpenSSL’s heartbleed bug [17] is an ex-
ample, where the attacker may be able to read the server’s
private key from memory.

3. Logic errors result in the attacker being able to skip checks.
For example, Apple’s goto fail [15] bug did not properly
check SSL certificates allowing attackers to mount man-in-
the-middle attacks.

Our work focuses on the first class of attacks only. It is, however,
the most prevalent class of attack today and the most powerful,
because it allows the attacker to achieve everything that other attack
classes do. Running arbitrary code lets an attacker disclose memory
to leak SSL keys or jump past any checks. Conversely, a data flow
bug that merely discloses memory (though still catastrophic) cannot
be alone used to execute a remote shell on the system.

Control Flow Integrity.
CFI [2] is a technique where static analysis determines where an

indirect jump can land. Runtime checks are added to enforce that
the jump lands only to the valid locations determined by static anal-
ysis. For example, suppose that the pointer analysis determines that
a function pointer can only point to read or write. The program
will detect attempts to call a different function, e.g., execve, and
terminate just before calling the function. However, the attacker
can still swap a read for a write, which may be enough to con-
duct an attack.

In practice, static analysis has limits; there are cases where it can-
not determine all possible values of a function pointer. In this case,
the set of valid locations can be any function whose address has

been taken. Worse, practical CFI implementations split valid loca-
tions into only two sets: function pointers can jump to any function
whose address has been taken, and return instructions can return to
any return site. These loose implementations are not enough as an
attacker can swap return sites to eventually execute arbitrary code
and break out of CFI [5, 9, 11].

Our approach is tackling CFI dynamically at runtime with the
use of cryptographic primitives. Every control flow pointer has a
cryptographic MAC associated with it that enforces several runtime
and language properties. When first stored in memory a pointer
is secured via a MAC, and validated before use. This approach
does not require static analysis and so does not inherit any of its
limitations. Furthermore, this approach allows us to express much
richer CFI constructions where the classification of the pointer can
change at runtime.

3. THREAT MODEL
Many security systems today (e.g., stack canaries, ASLR) as-

sume the attacker cannot read memory. An attacker who can read
arbitrary memory can easily defeat these defenses as demonstrated
in several recent papers [3,14]. The BROP attack specifically shows
that a buffer overflow can be used as an information leak bug to de-
feat these systems.

In this paper we assume a powerful attacker who has the abil-
ity to read arbitrary areas of memory and overwrite all writable
control-flow elements in memory (e.g., return addresses and func-
tion pointers). However, the attacker is unable to write to exe-
cutable memory (marked read-only) or read the value of special
registers our compiler reserves. These are reasonable assumptions
that accurately model modern control hijacking attacks.

CCFI is focused on protecting user-level programs such as web
servers, and we do not address protecting the kernel in this paper.
We assume that the kernel does not save any user-level registers—
at least the ones that are used to store the key—during context
switches in user accessible memory. This is true of all major mod-
ern operating systems that we are aware of. Custom user-level
threading libraries may also require changes to ensure these reg-
isters are not saved.

4. DESIGN
Cryptographic CFI is a compiler enhancement that protects writable

memory that affect the program’s control flow. Specifically, it pro-
tects:

• Return addresses and frame pointers.

• Function pointers.

• vtable pointers. The vtable is a (read-only) function pointer
table used by C++ to invoke virtual methods of a class.

• Exception handlers.

CCFI protection is achieved using a MAC. Each time a control-
flow object is stored, its MAC is computed, and on each load, its
MAC is verified. The MAC is stored alongside the object. Attack-
ers cannot overwrite control objects because they do not posses the
MAC key needed to produce a valid MAC for the object. The MAC
key is randomly generated at program start, and stored in registers
the CCFI compiler reserves (in x86-64 we use XMM5–XMM15).

Security relies on two assumptions: (1) Code never leaks the
key into memory because the compiler enforces that no code ever
touches the reserved registers. (2) Attackers cannot execute (mis-
aligned) code that accesses these registers because they would have
to break control flow in the first place.

0x0000 (16-bits) user-space pointer (48-bits)Pointer:

pointer (48-bits) class (80-bits)MAC Input:

Figure 1: Shows the encoding of user-space pointers in the x86-64
architecture. Pointers are safely truncated to 48-bits and concate-
nated with the pointer class to form a 128-bit input to the MAC.

The remaining security concern is how attackers can reuse a
pointer/MAC in a form of replay attack. For example, an attacker
must not be able to swap two function pointers by reading a func-
tion pointer and its valid MAC to replace a different function point-
er/MAC. To combat replay attacks we must define what is included
in the MAC, which determines the security properties CCFI pro-
vides.

4.1 MAC Function
Our MAC is implemented as a single block of AES applied to

the input data. More precisely, the concatenation of the control
pointer and pointer class is encrypted with a secret key using AES-
128. A class is a group of pointers invoked at one or more indirect
branches. In the original CFI work, there were two classes: func-
tion pointers and return pointers. In our scheme this can easily
be represented by a one or zero. Any modern CFI system that we
know about can be implemented using MACs, but CCFI can extend
classes to include runtime properties.

Pointers in the x86-64 architecture have 48 bits of significance,
which is sign extended to 64 bits. Figure 1 shows an example of a
user-space pointer sign extended with zeros. We can safely truncate
pointers to 48 bits. As shown in the figure we concatenate a 48-bit
pointer with its 80-bit class to form a 128-bit AES block,
which is then encrypted using AES with a 128 bit key. Two bits
of the class define the type of pointer being protected to ensure
domain separation.

Our implementation defines the class as follows:

class :=

{0,hash of type, address} Function pointers
{1, frame address} Return addresses
{2,method ptr., address} Method pointers
{3,address} vtable pointers

Function Pointers
Function pointers use the address of the pointer, 30-bit hash
of type signature, and two bits for the class. The type signature’s
hash function is computed by the compiler and thus has no perfor-
mance impact at runtime. It is deterministic so that pointers can be
shared across dynamic libraries, and has few collisions to provide
fine-grained classification. The type hash is based on LLVM’s type
system and is coarser than C/C++ types.

Return Pointers
Return pointers use the old frame pointer as the class. In each func-
tion prologue we MAC both the saved return and frame pointers,
and in the epilogue we verify the MAC before returning. The MAC
is stored in a stack slot reserved by the compiler. For functions that
do not call any others, we have a leaf optimization that skips MAC
computation and instead stores a copy of the return address in a
register.

C++ Method Pointers
C++ method pointers consist of two 64-bit values. When the first
value is even, the second is the address of a static method. Other-
wise, the second value is an index into a vtable. The class is the
concatenation of the first field and the address where the pointer is
stored. The second field is used as the 48-bit pointer contained
in the MAC.

C++ vtable Pointers
C++ vtable pointers, which point to read-only memory containing
function pointers, are protected using the address they are stored
at as the class. The vtables themselves need no protection as they
are read-only. We similarly protect vtable tables (VTTs), which are
used to find virtual base classes.

Rationale
Domain separation between all these pointer types prevents point-
ers from accidentally aliasing to each other in ways useful to attack-
ers. For example attacks cannot use a function pointer as a return
address and vice versa.

Including the pointer address in the MAC data ensures that an
attacker cannot swap a pointer stored in one memory address with a
pointer stored in a different memory address. However, the attacker
can still replace a pointer stored at location x at time t with a pointer
stored at the same location x at time t ′ < t. We refer to this as a
replay attack and discuss defenses against it in Section 4.6.

Including the type signature ensures that pointers can only be
swapped if they contain the same signature. In C++ we protect
method pointers and vtable pointers, but often C programs place
function pointers in structures. As structure pointers are not pro-
tected in our current implementation, attackers could use structure
pointers to indirectly execute a given function pointer. The inclu-
sion of type signatures in the class limits them to executing function
pointers of the same type signature.

4.2 Runtime versus Static Classification
While any existing static CFI system can be implemented using

MACs, runtime classifications offer several benefits. Current CFI
systems must determine a fixed set of functions within a class and
these are stored as read-only tables, otherwise an attacker could
attack the tables used to verify control flow integrity. CCFI can be
based on runtime properties. For example, we include the address
where a pointer is stored in the MAC to prevent swapping function
pointers. This is not possible to determine at compile time.

Another benefit is that even within a particular class, an attacker
may only witness a subset of all possible values a function pointer
can take. The unobserved pointer/MAC values are either never gen-
erated by a particular run of a program, or an attacker could not
observe them. Even with full access to memory, the attacker can-
not call the remaining functions because the attacker does not have
valid MACs for them.

4.3 Architecture Compatibility
Our approach generalizes to any hardware supporting fast MACs.

In the Intel x86-64 architecture we use the AES-NI instructions [12]
to minimize performance impact of these computations. Hardware
support for AES, SHA-1, and SHA-256, which enables efficient
implementations of CCFI, is available on many architectures [23]
including ARM 64-bit, SPARC, and PowerPC. On other architec-
tures we may need to pack the inputs to the pointer class differently,
but otherwise the design need not change.

4.4 Other Control Flow Protections
There are other less obvious control flow structures that must be

protected for a complete solution. These are the the global offset ta-
ble (GOT) and global destructors (.dtors). The GOT is used for
dynamic linking and filled by the loader with the addresses of exter-
nal library functions. Global destructors (like global constructors)
are function pointers registered at program load time and executed
at program termination.

To protect these we use an existing mechanism, RELRO [6],
which computes relocations at program load time and marks the
GOT and .dtors read-only. This prevents the attacker from tam-
pering with these sensitive pointers.

4.5 Program Compatibility
We observed a few compatibility issues depending on the classi-

fication scheme. None of these compatibility issues were security
holes, but they cause MAC failures that terminate the program.

Address based classification binds function pointers to their stor-
age locations, which can interact poorly with memcpy. In several
C programs, structures containing function pointers were converted
to a void* and length, then copied with memcpy. In such cases,
our system cannot determine that MACs need to be verified and
recomputed without developer assistance, and hence the program
crashes upon use of a copied pointer. We observed this in Apache
and Nginx, both of which have a dynamic array implementation
that treats structures containing function pointers as opaque objects
(cast to void).

However, our system does properly handle memcpy of typed
structure pointers, as we know for any given structure whether it
contains function pointers that must be verified and reMACed. The
problem with Apache and Nginx is that structure pointers are cast
to void* before they are copied and subsequently used. A similar
problem can arise with realloc.

C++ templates do not suffer from these problems as type infor-
mation is available to our compiler pass. Language runtime point-
ers, such as return addresses and vtable pointers, do not have these
issues as they are not exposed to the programmer.

Our type based classification may also encounter compatibility
issues, but for several reasons this is not a common problem in
practice. First, we can recompute the type based class when there is
an explicit cast (not possible with static CFI approaches). Second,
we use the type system understood by LLVM that is coarser grained
than the C/C++ type system.

The C standard limits what function pointer casts are valid. Un-
fortunately in the newer standards it states that casting a function
pointer to a void* then back to function pointer before use is
valid. This obviously means we will not track the pointer when
it is not a function pointer. Rather than generate a MAC when the
pointer is cast back (a security problem), we do not support this
behavior to avoid this issue.

We wrote a simple static analyzer to help programmers find cases
where type information is lost for function pointers, in which case
either a code modification or manual MAC checks may be neces-
sary. Developers can use the checkptr and macptr primitives
to manually fix particular instances. The Nginx compatibility issue
was in fact found by our tool.

4.6 CCFI Limitations
In CCFI, we compute the MAC on a pointer and its class. The

class acts as a (naïve) nonce. However, it is still possible to re-
place the current pointer at location x with an old pointer previously
stored at location x and potentially disrupt control flow. This is a

form of replay attack, where the attacker reuses a signed message
at a later date because it lacks a unique nonce.

Replay attacks are a concern for heap and stack addresses be-
cause the address does not have a fixed meaning for the duration
of the program’s execution. A program may reuse a stack address
to store pointers that are never meant to be exchanged with one an-
other, but when both pointer’s classes are equivalent the attacker
can replace the pointer/MAC. This problem does not exist with
globals, because they exist at a unique address with a single mean-
ing to the program.

One approach to limit these attacks is to add randomness to our
nonce, which in this case is the address. Unlike ASLR that ran-
domizes base addresses of binaries and does not rerandomize fork-
ing services, we will inject entropy at a finer granularity. For every
stack frame we will randomly allocate stack space at runtime. For
every heap allocation we will randomize the objects location. To-
gether these techniques make it more difficult for the attacker to
control when two function pointers align, and can be substituted
for one another. This is a trade-off of memory overhead versus en-
tropy injected. We inject 4-bits of entropy per allocation, the same
value OpenBSD uses for heap randomization.

5. IMPLEMENTATION
Our system is a C/C++ compiler built on the Clang/LLVM com-

piler framework and supports x86_64, tested on FreeBSD. Any
application wishing to be hardened with CCFI must be recompiled
along with all of its dependencies. We provide a command-line
compatible wrapper to clang/clang++ that adds our compiler passes
and links the runtime libraries.

Internally, the implementation consists of the following major
components:

• LLVM Target: ABI changes to reserve registers to ensure
the compiler never leaks the key. Implements stack protec-
tion into the target specific code.

• Compiler Intrinsics: macptr and checkptr compiler
intrinsics implemented as machine specific code and made
available to the C language.

• Pointer Protection: High-level LLVM pass that identifies
function pointers and vtable pointers and inserts the MAC
computation and verification code. A runtime library pro-
vides error reporting and handles initializing global function
pointers.

• Stack randomization: An LLVM function pass that ran-
domly offsets the stack pointer on each call to reduce replay
attacks.

• Modifications to libc: We modified malloc to randomize
heap layout. The sigaction system call was patched to
verify the pointer and MAC the pointer returned by the ker-
nel.

• Static analysis tool: Finds any possible code that casts func-
tion pointers to/from non-function pointers, which will break
CCFI.

5.1 ABI Changes
We implemented our MAC using the AES-NI instructions on

x86. These instructions take their arguments in XMM registers. A
128-bit AES key expands to 11 128-bit values, requiring 11 XMM
registers (each 128-bits wide) to hold the key.

Registers SysV ABI CCFI ABI
xmm0-xmm3 Arguments Arguments
xmm4 Arguments Temporary†

xmm5-xmm7 Arguments Expanded Key
xmm8-xmm15 Temporary Expanded Key
xmm16-xmm31 Temporary (Available in AVX-512)

Table 1: Shows XMM register usage in the AMD64 SysV ABI
and our modified ABI. The general purpose registers, float point
stack and MMX registers remain unchanged in the new ABI. The
changes only affect the XMM registers, which are used for floating
point and vector operations. †The leaf function optimization uses
XMM4 to store the return instruction pointer and frame pointer.

XMM registers are used for floating point and vector operations
in the AMD64 ABI specification. We must therefore reserve 11
of these registers to hold our expanded key. An additional scratch
XMM register is needed while computing the AES rounds. This
register must not be used for argument passing or it would be clob-
bered during our AES computation during the function’s prologue.
It can, however, be used in the function’s body as a temporary. Ta-
ble 1 summarizes the ABI modifications we made for CCFI.

These changes limit the compiler’s ability to keep more variables
in the registers and thus can have a substantial impact on perfor-
mance. Code that does not use floating point or vector math op-
erations should not notice a performance impact from this change.
Furthermore, the AVX-512 extensions to x86-64 architecture will
double the number of XMM registers to 32. Some programs use
the XMMs also for copying memory, zeroing memory, and similar
operations. These tasks typically require only one or two XMM
registers.

5.2 Memory Randomization
To prevent alignment of control pointers and MACs that make

replay attacks possible, each memory and stack frame allocation
is randomized. The basic idea is to add a random offset to each
malloc and stack frame. There is a trade-off between how much
virtual memory to waste and how much entropy to add. OpenBSD
already implements this for malloc and we use their same entropy
parameter of four bits.

We implemented randomized allocations in FreeBSD’s libc malloc
by adding a random offset to each allocated chunk. Unlike OpenBSD,
we are not allowed to store a randomness source in memory be-
cause the attacker can modify this as per our threat model. We
use Intel’s random instruction [1] to generate the random offsets.
The attacker would have to align memory layout between reading
a useful pointer/MAC and replaying it elsewhere in the program.
For, testing purposes on machines that lack this instruction we use
the low order bits of the cycle counter (similar cost to RDRAND).

Stack randomization is implemented similarly. On each func-
tion prologue, we alloca a random size which has the effect of
padding the stack frame by a random value.

5.3 Stack Protection
Our stack protection mechanism allocates a local variable to store

the MAC of return address and frame pointer. The prologue of a
function generates the MAC and stores it. The epilogue must re-
compute the MAC, and compare it, and crash the program if the
MAC does not match. In the event of a bad MAC, it crashes the
program by storing zeros in the return address and (if there is one)
frame pointer, which saves a few instructions and avoids a branch.

Our leaf optimization skips stack pointer MAC creation and check-

ing for functions that do not call other functions. Instead, we store
the instruction pointer and frame pointer in XMM4. The cost of
this is minimal on the order of a few cycles. Since leaf functions
do not make any calls we can safely rely on a register to store the
value.

5.4 Compiler Intrinsics
In the LLVM backend we expose two intrinsics checkptr and

macptr that compute or verify a MAC. While their implemen-
tation is machine specific depending on the availability of cryp-
tographic instructions, these are portable and reusable intrinsics.
Both programmers and our function pointer protection pass can
make use of these intrinsics. These primitives depend on our ABI
changes and never leak any part of the expanded key onto the stack.

Ideally, we would increase the size of function pointers to con-
tain both MACs and addresses for pointers stored in memory. (A
register can safely contain only a target address without a MAC.)
Such wide pointers are conceptually simple, but complicate mat-
ters by changing the size of structures. While not ideal, preserving
the size of function pointers significantly simplified incremental de-
ployment and testing, for instance allowing us to test code without
recompiling every single library.

Our implementation instead keeps function pointers unchanged
and relies on a large, in-memory hash table to associate MACs with
function pointers. The hash table causes additional performance
overhead due to the computation of the hash function and addi-
tional TLB and cache misses. We also occasionally have hash col-
lisions that require executing a slow path or resizing the table. The
pointer value, pointer’s address, type, and type signature are also
stored in the hash table for debugging and used by ccfi_memcpy
(described in Section 5.6).

5.5 Pointer Protection
Pointer protection is implemented as an LLVM module pass which

does two things. First, for each basic block it finds loads and stores
of function pointers, adding calls to checkptr and macptr. Care
must be taken to recursively walk every structure, array and vector
so that nested function pointers are found. When structures con-
taining function pointers are copied using assignment or memcpy
we must verify and recompute the MAC.

Second, the pass creates constructor functions that MAC all global
function pointers on startup. This ensures that loading a global
function pointer does not result in a MAC failure. Globally defined
C++ classes do not require this, because the C++ constructor will
be called, which computes the MAC.

Some system calls take or return function pointers. No special
handling is needed when these pointers reside in registers, as the
compiler already checks function pointers when they are loaded
into registers. However, some system calls, such as sigaction,
exchange structures containing function pointers. Instead of mod-
ifying the kernel, we modified libc to check pointers in argument
structures and MAC those in return structures.

Runtime
The runtime mostly provides common functions to limit binary size
bloat. We have a constructor function that is executed on program
launch to allocate a memory region for MAC storage (our hash ta-
ble). A global MAC helper function reduces the instantiations of
the macptr intrinsics inside constructors. Lastly, our MAC failure
reporting function helps with debugging and identifying whether it
might be a program issue (e.g., missing MAC on untyped function
pointer copy) or attack.

5.6 Static Analysis Tool
We wrote a static analysis pass for Clang’s static analyzer to

help developers find any code which may circumvent the automatic
MACing of function pointers and therefore cause bogus MAC fail-
ures. It detects and flags the following cases:

• A memcpy where both supplied arguments (before casting)
are of type void*. These could be pointers to data structures
containing function pointers cast to void* in another object
file. In our test applications, so far we found this to be the
only case where we miss function pointer copies.

• Any place where a function pointer is cast to a non-function
pointer type e.g., unsigned long, or void*.

• Any place where a non-function pointer type is cast back to
a function pointer.

We also provide users with a utility function, ccfi_memcpy,
for debugging MAC failures due to memcpying untyped function
pointers. This function iterates through the hash table to identify
existing pointers, and will verify and recompute the MAC for any
pointers in the region being copied. We used this in Nginx and
Apache’s libapr for example, where function pointers were being
memcpyied without type information and the MAC had to be re-
computed. The ccfi_memcpy function is intended only for de-
velopment and testing, because it may allow an attacker to move
a pointer and MAC between two addresses depending on how it is
used.

6. SECURITY DISCUSSION
Our security discussion begins with an analysis of a running

Lighttpd instance. Then we will focus on three security concerns
we have and possible future improvements.

6.1 Analysis of Lighttpd Run
As an example, we will consider a run of Lighttpd compiled with

CCFI. We found that the program used 47 unique function pointers.
CCFI uniquely classified all of them except for function pointers in-
tentionally interchanged by the programmer. By contrast, the state-
of-the-art compile-time CFI separates these into only 8 classes [21].
CCFI also uniquely classified half of all return addresses using the
address method; the remaining ones were aliased into small sets.
By contrast, existing systems classify all return pointers identically,
a coarse granularity that has allowed attacks blocked by CCFI.

6.2 Address Aliasing/Replay Attacks
The weakness of address-based classification is that it allows old

pointers to be replayed at the same address. For example, imagine
that a sensitive pointer is stored on the stack and the attacker uses
an information leak to observe both the pointer value and its MAC.
At a later time, the same stack location contains a different pointer.
The attacker can successfully substitute the old pointer for the new
one by overwriting both the pointer and the MAC. This attack is
not detected because of address aliasing.

Several design choices address this issue. First, domain separa-
tion between our different pointer categories—e.g. function pointer
vs. return address vs. vtable pointer—restricts aliasing to pointers
of the same category. Second, function pointer type signatures pre-
vent these sorts of attacks between function pointers with different
type signatures. Lastly, heap and stack randomization tries to keep
these alignments outside of the attacker’s control.

A future improvement is to use a slab allocation scheme, rather
than libc’s heap, to isolate fixed-length structures of known types.

This will prevent aliasing of function pointers contained with dif-
ferent structures. Similar benefits can be provided for sensitive
pointers stored on the stack through segmented stacks.

6.3 Indirectly Referenced Pointers
C programmers implement object oriented code by placing func-

tion pointers inside a structure. While this is a good design prac-
tice, unlike C++ where vtable pointers are easily identifiable, our
CCFI pass cannot always identify sensitive structure pointers. An
attacker may try to control a pointer to a structure containing func-
tion pointers, thus defeating address-based classification.

Our main defense against this attack in the current design is type-
based classification of function pointers. The attacker can only call
a function with a compatible type signature.

A future improvement is to protect all pointers using CCFI. Anal-
ysis could also be used to identify all sensitive structure pointers
that indirectly point to control flow pointers, and only protect this
subset of structure pointers. This approach has been implemented
by CPI [13].

6.4 Data Flow Attacks
Assuming an ideal CFI implementation, program data can still

modify control flow, such as an index to a switch statement. These
attacks are outside the scope of CFI. CCFI offers an interesting
option where future compiler passes could reuse the macptr and
checkptr intrinsics to protect indices into function tables and
critical conditional values.

Such a compiler pass could protect sensitive variables that are
annotated as such by developers. For example, to protect a global,
which specifies whether or not a connection has been authenticated,
the pass will call macptr when setting the value. When reading
the value it uses checkptr to verify it. Attackers can only set
the variable to values that have been previously observed. In this
example, attackers cannot overwrite the variable to skip authenti-
cation unless they have previously authenticated themselves. The
pass should also ensure domain separation with CCFI’s values.

7. EVALUATION
We evaluate two aspects:

1. Do applications break? When copying function pointers,
they must be reMACed. This will not occur automatically
if a function pointer is cast to a non-function pointer type.

2. What is the overhead of the MAC computations and checks?

All performance benchmarks were conducted on a computer run-
ning FreeBSD 10.1 powered by dual Intel Xeon E5620 processors
running at 2.4 GHz with four cores each. The machine had 48 GBs
of RAM and an Intel SSD. An identical machine running Ubuntu
Linux was connected via gigabit Ethernet to launch the network
benchmarks.

7.1 Application Compatibility
We compiled 21 libraries, 5 servers, and SPEC CINT2006 using

CCFI. Out of these, we only had to modify two lines in libapr, a sin-
gle line in nginx, and a few lines in perlbench (part of CINT2006),
all of which copied function pointers with memcpy, breaking our
MAC. In all cases, the programs crashed upon initialization due to
a null MAC.

We ran our static analysis on nginx and it pointed out three pos-
sibly incompatible calls to memcpy. Two were in a variable sized
array implementation which would memcpy its elements to a new
buffer when resizing. The third was in a resolver code. Sixteen calls

Operation Baseline Ptr Prot. CCFI
Func. call 7 - 70
Fptr. call 7 50 153
Mthd. call 8 53 156
Vptr. call 17 60 164

Table 2: Shows the round-trip function call and return for a noop
function in cycles. The baseline numbers include no protection us-
ing an unmodified compiler. CCFI without stack protection shows
the overhead when only function pointer protection is enabled. The
CCFI column shows the results with stack and function pointer pro-
tection enabled.

to function pointers being cast to void types were spotted. All of
these were calls to push function pointers into the array implemen-
tation containing the memcpy. This information directly pointed
us to the problematic memcpy. Interestingly, libapr had the same
exact problem. A custom array implementation was used to store
function pointers in non-function pointer typed memory.

OpenSSL makes extensive use of function pointers and we were
able to run it unmodified. We disabled the hand written optimized
assembly that used our reserved XMM registers. We could have
modified the assembly code to either not use the reserved registers,
or save and restore our key in the top half of the YMM registers.
Both solutions require a lot of engineering effort.

7.2 Microbenchmarks
Our system proposes to compute AES on every call, return and

indirect branch. This seems like a high price to pay but the key
to making this practical is the low latency offered by the AES-NI
instructions.

The intrinsic functions that perform MAC computation and ver-
ification have a latency of approximately 92 cycles. Averaged over
many iterations both operations cost approximately 40 cycles be-
cause of pipelining. Our experiments used an Intel Westmere pro-
cessor, the first microarchitecture with AES-NI support, on which
the latency is 8 cycles per round. Latency decreases to 7 cycles on
Haswell and is expected to improve further in the Skylake microar-
chitecture.

Table 2 examines how the MAC computation time affects func-
tion call and return times in cycles. This is our worst case perfor-
mance because the function does not do any work. This is measured
in a loop to represent the cycles added to a program execution rather
than end-to-end latency.

Stack protection adds approximately 63 cycles to the function.
This value is less than the MAC computation time because proces-
sor pipelining allows both MAC creation and verification to occur
simultaneously until the epilogue must compare the results. Any
function performing a significant amount of computation will mask
our fixed overhead of 70 cycles.

The function pointer call latency is listed in the second row. We
see that function pointer protection costs an additional 43 cycles.
With both pointer and stack protection enabled, we measured 153
cycles.

Finally, two C++ call benchmarks: a non-virtual method pointer
call and a virtual method pointer call are shown. Calling method
pointers is more expensive in C++ as the compiler lowers the call
into a conditional that either calls the vtable entry if it is virtual
otherwise calls the pointer directly. Virtual calls are the most ex-
pensive because of the extra vtable access.

CCFI adds a fixed overhead ranging from 70–164 cycles to func-
tion calls. Any function doing significant work will amortize this

1

1.5

2

2.5

3

3.5

perlbench bzip2 gcc mcf gobmk hmmer sjeng libquantum h264ref astar xalancbmk

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

 (
lo

w
e

r
is

 b
e

tt
e

r)

Stack Protection Unoptimized CCFI Unoptimized Stack Protection CCFI

Figure 2: Shows the SPEC2006 results. The left bar is unoptimized CCFI and the right bar is optimized. Results are normalized to baseline
execution (of 1x). The bars are stacked to show the overhead breakdown between stack protection and function pointer protection.

fixed latency. As a reference point, a single cache miss is 300 cy-
cles on modern machines. Larger functions enable the processor to
take advantage of instruction reordering and speculative execution
to hide some of this latency. The instruction reordering optimiza-
tion explains the non-linearity visible in this table. We evaluate
application benchmarks next to measure the overall effect.

7.3 SPEC2006 Benchmarks
Figure 2 shows the normalized execution time relative to a run

with an unmodified Clang 3.3 compiler for the SPEC CPU2006
integer benchmarks. All benchmarks worked both with Clang and
CCFI, with no changes to the benchmark source code. We also
measured the overhead of the ABI changes alone to measure the
impact of register pressure, but the results were negligible so we
did not plot it. All the overhead comes from stack and function
pointer protection.

We show the results of SPEC for full protection with and without
the leaf optimization for stack frames. The stack protection over-
head appears as the lower half of the bar in each of the two cases.
We measured an average of 52% overhead for all benchmarks, and
23% overhead for the benchmarks written in C.

Function pointer protection overhead becomes more apparent in
the C++ benchmarks that we have measured. This is because in-
heritance depends on vtable pointers that must be protected. The C
code has few hot paths containing function pointers thus we see a
smaller performance difference between stack protection alone and
full protection.

The omnetpp benchmark broke when porting our system from
Clang/LLVM 3.2 to 3.3 and FreeBSD 10.0 to 10.1. It originally
did not require any modification, but in our current build environ-
ment it crashes even without CCFI. In the original implementation,
omnetpp had a 5x overhead that was reduced to 3.5x with the leaf
optimization enabled.

7.4 Stack Leaf Optimization Gains
Our stack protection cost dominates in small functions. The ef-

fect worsens when such functions are called frequently. To better
understand this behavior, we examined our worst and best cases
from SPEC (omnetpp and bzip). Figures 3 and 4 show the approxi-
mate total cost per function (instruction_count× number_of_calls)
for omnetpp and bzip2, when using different compilers. Each curve
is sorted by function cost. The gap between the top curve (stack
protection) and the bottom curve (vanilla compiler) shows the over-
head of stack protection. The middle curve approximates the cost
graph with the leaf optimization.

In the omnetpp case, there are many frequent calls to smaller
functions (typical in C++) leading to higher overhead. This is indi-
cated by the middle curve that hugs the unoptimized curve on the
left side of the graph (costly functions). On the remainder of the
graph however the optimization pays back as it sits between the
baseline and unoptimized curve. Our leaf optimization reduces a
5x overhead to 3.5x.

C code represented by bzip2 calls larger functions, which is in-
dicated in the graph by all three lines nearly overlapping. The opti-
mization has a smaller impact on overall performance as stack pro-
tection contributes to a smaller percentage of a functions execution
time.

7.5 Applications
We compiled a number of high performance servers and their de-

pendencies with CCFI. Table 3 shows the request rate when com-
paring a vanilla build of the system compared to CCFI. We used
default settings for all servers and the ApacheBench benchmarking
tool. In the HTTP case, there is a 3–18% overhead depending on
the server used.

In the HTTPS case, performance drops by 38% for two reasons.

10^4

10^5

10^6

10^7

10^8

10^9

 0 50 100 150 200

A
p

p
ro

x
im

a
te

 C
o

s
t

Functions (Sorted by Cost)

Stack Protection
Stack Protection Unoptimized.

Baseline

Figure 3: Shows the approximate performance cost of the top 220
functions for omnetpp, a C++ benchmark, with vanilla Clang, and
stack protection with and without the leaf optimization. We have
many very high frequency smaller sized functions that appear in
the graph as the large gap between the vanilla and unoptimized
lines. Our optimization reduces almost half the cost as shown by
optimized line which is bounded by the other two.

First, we disabled the optimized assembly code in OpenSSL which
used XMM registers 5–15. Second, all the intensive vector code
felt the XMM register pressure. Although we disabled OpenSSL’s
AES-NI implementation, we used FreeBSD’s cryptodev kernel AES-
NI implementation for high speed AES. Using FreeBSD’s cryp-
todev device adds well over 1000 cycles of overhead (system call
cost) that is amortized for large messages (anything over 128 bytes
will break even).

We did not pursue the task of modifying the large hand written
assembly code base of OpenSSL. For evaluation purposes however,
we did evaluate two integration strategies that can be used on AES-
NI code. We did this as a proof of concept, outside of OpenSSL,
using FreeBSD’s C implementation of AES-NI that is compatible
with our CCFI compiler without modification. The first integration
strategy is to avoid using the reserved registers, which is automat-
ically done when compiling the C implementation with our com-
piler. The other one is to save and restore the key schedule into the
top half of the YMM registers that are not used by OpenSSL’s hand
written assembly. This can reduce the cost to about 8 cycles for
saving and restoring CCFI’s keys.

Table 4 shows the performance cost of encrypting a 4 KiB block
of plaintext using AES-NI in CBC or XTS modes. The CCFI unop-
timized and optimized columns show cost of using AES-NI while
avoiding the reserved registers, which we expect to decrease when
Intel doubles the number of total XMM registers with the AVX-512
extension. The CCFI swap column demonstrates that by saving and
restoring the key into the top half of the YMMs we can encrypt at
virtually zero overhead. This is a microbenchmark so it does not
include the costs associated with function pointer protection that
exists in OpenSSL, and not in FreeBSD’s code. Most of those costs
are small constant overheads per call.

We measured the performance of two additional servers, mem-
cached and redis, shown in Table 5. We used the mutilate tool to
benchmark memcached, and redis’s own benchmark tool for redis.
The performance degradation is between 3–18%.

These results are promising for securing network servers where
most of the overhead comes from IO or complex application code.

10^1

10^2

10^3

10^4

10^5

10^6

10^7

10^8

10^9

10^10

10^11

 0 10 20 30 40 50 60

A
p

p
ro

x
im

a
te

 C
o

s
t

Functions (Sorted by Cost)

Stack Protection
Stack Protection Unoptimized

Baseline

Figure 4: Shows the approximate performance cost of the top 60
functions for bzip2, a C benchmark, with vanilla Clang, and stack
protection with and without the leaf optimization. The lines almost
completely overlap except for the lowest cost functions (far right).
The low cost functions are executed few times and are not very long
thus showing more dramatically the cost of stack protection.

Configuration Baseline CCFI
Nginx (https) 207 128
Nginx 16482 14103
Lighttpd 22714 18516
Apache 25305 24537

Table 3: Webserver request throughput.

Mode Baseline CCFI CCFI CCFI
unopt. opt. swap

CBC 17968 26709 18038 18030
XTS 27673 59810 30294 27729

Table 4: AES-128 CBC and XTS Encryption time in cycles for
a 4 KiB block microbenchmark based on FreeBSD’s AES-NI code
that is written in C. This is intended to demonstrate the performance
costs associated with using AES-NI inside user-level once we patch
OpenSSL to avoid the reserved XMM registers. The CCFI swap
column using the YMM register swapping trick to save and restore
the key securely.

Configuration Baseline CCFI
memcached 283403 276006
redis 107527 88496

Table 5: Cache server request throughput.

8. RELATED WORK
Modern operating systems in conjunction with compilers imple-

ment several security features. Address space layout randomization
(ASLR) [20] randomizes the in memory location of code to make
attacks against known binaries difficult. In addition, most compil-
ers including support for stack cookies that attempt to detect stack
smashing attacks [8]. These systems both require recompilation of
software and have been circumvented by attackers for years in 32-
bit systems. The BROP attack [3] showed that a generalized attack
was practical even on 64-bit systems without knowledge of the bi-
nary. While these solutions raise the attack’s complexity, they offer
no principled security.

After the initial CFI implementation [2] was introduced by Abadi
et al. there are now many CFI systems built on static analysis tech-
niques to achieve security. All these systems classify pointers into
several categories such as call-sites and function pointers. Arguably
the most secure of these is CCFIR [25] that only classifies pointers
into three categories. This along with the difficulty of achieving
compatibility within the limits of static analysis has lead to practi-
cal attacks on all known CFI systems [9, 11]. Cryptographic CFI
offers the first new approach to CFI since the original paper, be-
cause all previous approaches depend on generating static tables at
compile and/or load time. CCFI is the only approach that can se-
curely build tables based on runtime parameters such as addresses
where pointers are stored and function type information (casting
makes this incompatible with static approaches). Unlike existing
CFI systems, CCFI requires binaries and libraries to be recompiled,
as existing libraries may leak our key or destroy it.

Forward Edge CFI [21] classifies pointers by the number of ar-
guments for C code (Arity) or into a single class (Single). Not only
is Arity mode insufficient, it can be incompatible with runtime cast-
ing of functions into function pointers with fewer arguments. The
FECFI paper states while they support using function type signa-
ture based classification they found real code was not compatible.
The main reason for this is C/C++ programmers often cast function
pointers to tweak types or eliminate unused arguments. Unfortu-
nately FECFI offers no protection for return pointers and falls back
to existing mechanisms that are known to be weak. As with pre-
vious CFI systems, FECFI does not have the runtime benefits that
CCFI does.

Another very related work is PointGuard [7]. The PointGuard
system exclusive-or’s all function pointers with a random value
chosen at startup. In a way this can be thought of like pointer en-
cryption except it assumes that attackers will only read or modify a
single pointer. Once an attacker has read several pointers the secret
exclusive-or value can be computed. Cryptographically secure en-
cryption (or MAC’ing) by itself provides little security as functions
can be swapped. CCFI’s improvement over PointGuard is real-
izing the connection between inputs to a MAC and CFI. Another
problem is that modifying pointers in-place meant that a lot more
program/library changes are required. Pointers had to be manually
decrypted/encrypted when issuing system calls.

Several systems use memory protection hardware to protect the
return stack such as shadow stack. The StackGhost system relied
on register windows and OS support on the SPARC architecture to
provide stack smashing protection [10]. StackShield implemented
a shadow stack using the data segment so that it would not be sus-
ceptible to stack smashing attacks [22]. These systems do not pro-
tect local function pointers stored on the stack. Some shadow stack
implementations on x86 use segmentation to isolate the shadow
stack, such that an attacker could not overwrite it without the use
of a special instruction prefix. This CPU feature is not supported

by any popular architecture today including x86-64 and thus an at-
tacker with a stronger threat model could attack the shadow stack.

CPI [13] is a system that provides strong protection through the
use of segmentation. On x86-32 they use segmentation to pre-
vent normal code from reading or writing to a special segment that
stores sensitive pointers. To support x86-64 they use segment base
addresses that still remain from x86-32, and rely on address ran-
domization to hide the location. If an attacker determines the base
address of the region then all sensitive pointers are vulnerable. This
is because x86-64 does not offer segmentation protection. Without
segmentation we cannot see how any security guarantees can be
made with the CPI approach.

kBouncer uses hardware performance counters on x86 to record
the last 16 return addresses, and has the operating system verify the
stack within the system call handler. Attacks on kBouncer show
one can prevent detection of ROP attacks by producing 16 valid
calls before executing a system call [5].

9. CONCLUSION
We showed that cryptographic control flow integrity is a viable

approach to protecting program control flow on modern proces-
sors. We provide the finest-grained classification of existing CFI
systems. Our system ensures that an attacker who has arbitrary
read/write access to memory cannot arbitrarily modify control flow
data, such as return addresses and function pointers, without be-
ing detected. While attackers can cause the program to crash, they
cannot alter control flow to execute code of their choice.

CCFI can classify pointers based on dynamic runtime character-
istics such as address and type, both of which are not possible with
previous approaches. The approach is general enough to support
any compile time classification as well. Ensuring that CCFI can
always provide finer-grained classification than any static approach
to CFI.

We experimented with our CCFI system on a number of large
software packages. In all cases the packages compiled with no
problems after changing at most a few lines of code in each pack-
age.

Clearly a cryptographic system that provides strong control flow
protection must incur some performance cost. Through optimiza-
tion and by using hardware AES available in modern processors
we achieved between 3–18% slowdown over the unprotected sys-
tem. In many environments this is a worthwhile trade off given
the strong protection it provides. This work shows how to protect
control flow structures, but does not protect other data in memory.
By implementing checkptr/macptr in hardware using asyn-
chronous exceptions a processor vendor could help nearly hide all
of this cost.

Source code is available at http://ccfi.scs.stanford.
edu.

Acknowledgements
We would like to thank the CCS program committee. We thank
Tal Garfinkel, Amit Levy, and Edward Yang for their helpful com-
ments. This work was funded by the NSF, DARPA CRASH, DARPA
PROCEED, and a grant from ONR.

http://ccfi.scs.stanford.edu
http://ccfi.scs.stanford.edu

10. REFERENCES
[1] Intel Digital Random Generator (DRNG), August 2012.

http://software.intel.com/sites/default/
files/m/d/4/1/d/8/441_Intel_R__DRNG_
Software_Implementation_Guide_final_
Aug7.pdf.

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.
Control-Flow Integrity: Principles, Implementations, and
Applications. ACM Trans. Inf. Syst. Secur., 13(1):4:1–4:40,
Nov. 2009.

[3] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and
D. Boneh. BROP: Blind Return Oriented Programming. In
Proc of IEEE Security Privacy 2014, Jun 2014.

[4] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When
good instructions go bad: Generalizing return-oriented
programming to RISC. In Proceedings of CCS 2008, pages
27–38. ACM Press, Oct. 2008.

[5] N. Carlini and D. Wagner. ROP is Still Dangerous: Breaking
Modern Defenses. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 385–399, San Diego, CA,
2014. USENIX Association.

[6] K. Cook. hardening-check - check binaries for security
hardening features.
http://manpages.ubuntu.com/manpages/
lucid/man1/hardening-check.1.html.

[7] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. PointGuard:
Protecting Pointers From Buffer Overflow Vulnerabilities. In
Proc. of the 12th Usenix Security Symposium, 2003.

[8] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang. StackGuard: Automatic
Adaptive Detection and Prevention of Buffer-Overflow
Attacks. In Proc. of Usenix Security, 1998.

[9] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose.
Stitching the Gadgets: On the Ineffectiveness of
Coarse-Grained Control-Flow Integrity Protection. In 23rd
USENIX Security Symposium, San Diego, CA, 2014.
USENIX Association.

[10] M. Frantzen and M. Shuey. StackGhost: Hardware
Facilitated Stack Protection. In In Proceedings of the 10th
USENIX Security Symposium, pages 55–66, 2001.

[11] E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis.
Out Of Control: Overcoming Control-Flow Integrity. In Proc
of IEEE Security Privacy 2014, Jun 2014.

[12] S. Gueron. Intel Advanced Encryption Standard (AES) New
Instructions Set. Number 323641-001. Intel Corporation,
May 2010.

[13] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar,
and D. Song. Code-pointer integrity. In 11th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 147–163, Broomfield, CO,
2014. USENIX Association.

[14] M. Labes. MWR Labs Pwn2Own 2013 Write-up - Webkit
Exploit. https://labs.mwrinfosecurity.com/
blog/2013/04/19/mwr-labs-pwn2own-2013-
write-up---webkit-exploit/.

[15] A. Langley. Apple’s SSL/TLS bug, 2014.
www.imperialviolet.org/2014/02/22/
applebug.html.

[16] C. Latner. The LLVM Compiler Infrastructure.
http://llvm.org/.

[17] N. Mehta. The Heartbleed Bug, 2014. heartbleed.com.
[18] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and

D. Boneh. On the Effectiveness of Address-Space
Randomization. In Proc. of the 11’th ACM conference on
Computer and Communications Security (CCS), pages
298–307, 2004.

[19] A. Sotirov. Heap Feng Shui in Javascript. Blackhat Europe
2007, 2007.

[20] P. Team. PaX address space layout randomization (ASLR),
2014.
http://pax.grsecurity.net/docs/aslr.txt.

[21] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway,
U. Erlingsson, L. Lozano, and G. Pike. Enforcing
Forward-Edge Control Flow Integrity in GCC & LLVM. In
23rd USENIX Security Symposium. USENIX Association,
2014.

[22] Vendicator. StackShield.
http://www.angelfire.com/sk/stackshield/.

[23] Wikipedia Foundation, Inc. AES instruction set.
http://en.wikipedia.org/wiki/AES_
instruction_set, Apr. 2014.

[24] Wikipedia Foundation, Inc. NX bit.
http://en.wikipedia.org/wiki/NX_bit, Apr.
2014.

[25] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres,
S. McCamant, D. Song, and W. Zou. Practical Control Flow
Integrity and Randomization for Binary Executables. In
Proceedings of the 2013 IEEE Symposium on Security and
Privacy, pages 559–573, 2013.

http://software.intel.com/sites/default/files/m/d/4/1/d/8/441_Intel_R__DRNG_Software_Implementation_Guide_final_Aug7.pdf
http://software.intel.com/sites/default/files/m/d/4/1/d/8/441_Intel_R__DRNG_Software_Implementation_Guide_final_Aug7.pdf
http://software.intel.com/sites/default/files/m/d/4/1/d/8/441_Intel_R__DRNG_Software_Implementation_Guide_final_Aug7.pdf
http://software.intel.com/sites/default/files/m/d/4/1/d/8/441_Intel_R__DRNG_Software_Implementation_Guide_final_Aug7.pdf
http://manpages.ubuntu.com/manpages/lucid/man1/hardening-check.1.html
http://manpages.ubuntu.com/manpages/lucid/man1/hardening-check.1.html
https://labs.mwrinfosecurity.com/blog/2013/04/19/mwr-labs-pwn2own-2013-write-up---webkit-exploit/
https://labs.mwrinfosecurity.com/blog/2013/04/19/mwr-labs-pwn2own-2013-write-up---webkit-exploit/
https://labs.mwrinfosecurity.com/blog/2013/04/19/mwr-labs-pwn2own-2013-write-up---webkit-exploit/
www.imperialviolet.org/2014/02/22/applebug.html
www.imperialviolet.org/2014/02/22/applebug.html
http://llvm.org/
heartbleed.com
http://pax.grsecurity.net/docs/aslr.txt
http://www.angelfire.com/sk/stackshield/
http://en.wikipedia.org/wiki/AES_instruction_set
http://en.wikipedia.org/wiki/AES_instruction_set
http://en.wikipedia.org/wiki/NX_bit

	Introduction
	Background
	Threat Model
	Design
	MAC Function
	Runtime versus Static Classification
	Architecture Compatibility
	Other Control Flow Protections
	Program Compatibility
	CCFI Limitations

	Implementation
	ABI Changes
	Memory Randomization
	Stack Protection
	Compiler Intrinsics
	Pointer Protection
	Static Analysis Tool

	Security Discussion
	Analysis of Lighttpd Run
	Address Aliasing/Replay Attacks
	Indirectly Referenced Pointers
	Data Flow Attacks

	Evaluation
	Application Compatibility
	Microbenchmarks
	SPEC2006 Benchmarks
	Stack Leaf Optimization Gains
	Applications

	Related Work
	Conclusion
	References

