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Abstract
Live virtual machine migration allows the movement of a
running VM from one physical host to another with negli-
gible disruption in service. This enables many compelling
features including zero downtime hardware upgrades, dy-
namic resource management, and test to production ser-
vice migration.

Historically, live migration worked only between ma-
chines that shared a common local subnet and storage sys-
tem. As network speed and flexibility has increased and
virtualization has become more pervasive, wide area mi-
gration is increasingly viable and compelling. Ad-hoc so-
lutions for wide area migration have been built, combin-
ing existing mechanisms for memory migration with tech-
niques for sharing storage including network file systems,
proprietary storage array replication or software repli-
cated block devices. Unfortunately, these solutions are
complex, inflexible, unreliable and perform poorly com-
pared to local migration, thus are rarely deployed.

We have built and deployed a live migration system
called XvMotion that overcomes these limitations. Xv-
Motion integrates support for memory and storage migra-
tion over the local and wide area. It is robust to the vari-
able storage and network performance encountered when
migrating long distances across heterogeneous systems,
while yielding reliability, migration times and downtimes
similar to local migration. Our system has been in active
use by customers for over a year within metro area net-
works.

1 Introduction
Live virtual machine (VM) migration moves a running
VM between two physical hosts with as much trans-
parency as possible: negligible downtime, minimal im-
pact on workload, and no disruption of network connec-
tivity.

Originally, VM migration only moved a VM’s mem-
ory and device state between two closely related physi-
cal hosts within a cluster i.e., hosts that shared a com-
mon storage device, usually a storage array accessed via
a dedicated SAN, and a common Ethernet subnet to en-
able network mobility. Assumptions about host locality
made sense given the limited scale of VM adoption, and
limitations of storage and network devices of the past.

Today, many of these assumptions no longer hold. Data
center networks are much faster with 10 Gbps Ether-
net being common, and 40/100 Gbps adoption on the
way. Tunneling and network virtualization technolo-
gies [14, 20, 22] are alleviating network mobility limita-

tions. Different workloads and high performance SSDs
have made local shared-nothing storage architectures in-
creasingly common. Finally, VM deployments at the scale
of tens of thousands of physical hosts across multiple sites
are being seen. Consequently, the ability to migrate across
clusters and data centers is increasingly viable and com-
pelling.

Some have attempted to build wide area live migration
by combining techniques to migrate storage e.g., copy-
ing across additional storage elements, proprietary storage
array capabilities, or software storage replication in con-
junction with existing technologies for migrating memory
and device state. These ad-hoc solutions are often com-
plex and fragile—incurring substantial penalties in terms
of performance, reliability, and configuration complexity
compared with doing migration locally. Consequently,
these systems are deployed at a very limited scale and only
by the most adventuresome users.

We present XvMotion, an integrated memory and stor-
age migration system that does end-to-end migration be-
tween two physical hosts over the local or wide area. Xv-
Motion is simpler, more resilient to variations in network
and storage performance, and more robust against failures
than current ad-hoc approaches combining different stor-
age replication and memory migration solutions, while
offering performance, i.e., workload impact and service
downtimes, comparable to that of a local migration.

XvMotion has been in use with customers for over a
year, and seen wide spread application at the data cen-
ter and metro-area scale, with link latencies in the tens of
milliseconds. Our results with moving VMs between Palo
Alto, California and Banglore, India demonstrate that mi-
grations on links with latencies in the hundreds of mil-
liseconds are practical.

We begin by examining how current local migration ar-
chitectures developed and survey ad-hoc approaches used
to support wide area migration. Next, we explore our de-
sign and implementation of XvMotion: our bulk transport
layer, our approach to asynchronous storage mirroring,
our integration of memory and storage movement, our
workload throttling mechanism to control page dirtying
rates—allowing migration across lower bandwidth links,
and our disk buffer congestion control mechanism to sup-
port migration across hosts with heterogeneous storage
performance. We then present optimizations to minimize
switch over time between the old (pre-migration) and new
(post-migration) VM instance, cope with high latency and
virtualized networks, and reduce virtual disk copy over-
head. Our evaluation explores our local and long distance



migration performance, and contrasts it with existing local
live storage migration technologies on shared storage. Af-
ter this, we discuss preventing split-brain situations, net-
work virtualization, and security. We close with related
work and conclusions.

2 The Path to Wide Area Migration
Wide area live migration enables a variety of compelling
new use cases including whole data center upgrades, clus-
ter level failure recovery (e.g. a hardware failure occurs,
VM’s are migrated to a secondary cluster and then mi-
grated back when the failure has been fixed), government
mandated disaster preparedness testing, disaster avoid-
ance, large scale distributed resource management, and
test to production data center migration. It also allows tra-
ditional mainstays of VM migration, like seamless hard-
ware upgrades and load balancing, to be applied in data
centers with shared-nothing storage architectures.

Unfortunately, deploying live migration beyond a sin-
gle cluster today is complex, tedious and fragile. To ap-
preciate why current systems suffer these limitations, we
begin by exploring why live migration has historically
been limited to a single cluster with a common subnet and
shared storage, and how others have tried to generalize
live migration to the wide area. This sets the stage for our
discussion of XvMotion in the next section.

Live memory and device state migration, introduced in
2003, assumed the presence of shared storage to provide a
VM access to its disks independent of what physical host
it ran on and a shared subnet to provide network mobility.
In 2007, live storage migration was introduced, allowing
live migration of virtual disks from one storage volume
to another assuming that both volumes were accessible
on a given host. This provided support for storage up-
grades and storage resource management. However, the
ability to move a VM between two arbitrary hosts without
shared storage has largely been limited to a few research
systems [9,28] or through ad-hoc solutions discussed later
in this section.

Why not migrate an entire VM, including memory and
storage, between two arbitrary hosts over the network?
Historically, hardware limitations and usage patterns ex-
plain why. Data centers of the previous decades used a
mix of 100 Mbps and gigabit Ethernet, with lower cross
sectional bandwidths in switches than today’s data cen-
ters. High performance SAN based storage was already
needed to meet the voracious IO demands induced by
consolidating multiple heavy enterprise workloads on a
single physical host. Network mobility was difficult and
complex, necessitating the use of a single shared subnet
for VM mobility. Finally, common customer installations
were of modest size, and live migration was used primar-
ily for hardware upgrades and load balancing, where lim-
iting mobility to a collection of hosts sharing storage was
an acceptable constraint.

Many of these historical limitations no longer apply.
Data center networks are much faster with 10 Gbps Eth-
ernet being common, and 40/100 Gbps adoption on the
way, with a correspond growth in switch capacity. The
introduction of tunneling and network virtualization tech-
nologies, like Cisco OTV [14], VXLAN [20] and Open-
Flow [22], are alleviating the networking limitations that
previously prevented moving VMs across Ethernet seg-
ments. With changes in workloads and the increased
performance afforded by SSDs, the use of local shared-
nothing storage is increasingly common. Finally, with
users deploying larger scale installations of thousands or
tens of thousands of physical hosts across multiple sites,
the capacity to migrate across clusters and data centers
becomes increasingly compelling.

To operate in both the local and wide area, two pri-
mary challenges must be addressed. First, existing live
migration mechanisms for memory and device state must
be adapted to work in the wide area. To illustrate why,
consider our experience adapting this mechanism in ESX.

In local area networks, throughputs of 10 Gbps are
common, as our migration system evolved to support
heavier and larger workloads we designed optimizations
and tuned the system to fit local area networks. In con-
trast, metro area links are in the range of a few giga-
bits at most, and as distances increase in the wide area
throughputs typically drop below 1 Gbps with substantial
increases in latency. On initial runs on the wide area our
local live migration system didn’t fare well; we often saw
downtimes of 20 seconds or more causing service inter-
rupting failures in many workloads, migrations were fre-
quently unable to complete, and network bandwidth was
underutilized. To understand why, lets briefly recap how
live memory and device state migration work.

Production live migration architectures for memory and
device state all follow a similar iterative copy approach
first described by Nelson et al. [24]. We initially mark
all pages of the VM as dirty, and begin to iterate through
memory, copying pages from source to destination. Af-
ter a page is copied, we install a write trap and mark the
page as clean. If the write trap is triggered, we again
mark the page as dirty. We apply successive “iterative pre-
copy” passes, each pass copying remaining dirty pages.
When the remaining set of pages to be copied is small
enough to be copied without excessive downtime (called
convergence), we suspend VM execution, and the remain-
ing dirty pages are sent to the destination, along with the
device state. Finally, we resume our now fully consistent
VM on the destination and kill our source VM.

Unfortunately, naively applied, this approach does not
behave well over slower and higher latency networks.
Workloads can easily exceed the memory copy through-
put, preventing the migration from every converging and
causing large downtimes. To cope with this, we intro-
duced workload throttling (§ 3.5) to limit the downtime.



Compounding that issue our initial local migration sys-
tem used a single TCP connection as transport that suf-
fers from head-of-line blocking and underutilizes network
throughput. An improved transport mechanism(§ 3.2)
and TCP tuning(§ 4.3) were required to fully utilize high
bandwidth-delay links.

The other major challenge to long distance migration is
how to move storage. Today, users with the desire to mi-
grate VMs within or across data centers rely on three dif-
ferent classes of ad-hoc approaches: sharing storage using
a network file system as a temporary “scratch” space for
copying the VM, proprietary storage array based replica-
tion, and software based replication (e.g., DRBD) done
outside the virtualization stack. Each approaches exhibits
particular limitations, understanding these helps to moti-
vate our approach.

In the first approach, a user exploits a network file sys-
tem (e.g., NFS or iSCSI) to provide a temporary scratch
space between two hosts, first doing a storage migration to
this scratch space from the source host, then doing a sec-
ond storage migration from the scratch space to the desti-
nation host. A live memory migration is done in between
to move memory. This approach has several unfortunate
caveats.

Moving data twice doubles total migration time—the
performance impact is generally worse than this as the
storage migration is not coordinated with memory and de-
vice state movement. Running the VM temporarily over
the WAN while its disk is located on the scratch volume
further penalizes the workload. Finally, hop-by-hop ap-
proaches are not atomic, if network connectivity fails, the
VMs disk could end up on one side of the partition, and
its memory on the other—this state is unrecoverable and
the VM must be powered off.

Seeing the limitations of this approach, storage vendors
stepped in with proprietary solutions for long distance
storage migrations, such as EMC VPLEX [8]. These
solutions use synchronous and asynchronous replication
applied at a LUN level to replicate virtual disks across
data centers. These solutions typically switch from asyn-
chronous to synchronous replication during migration to
ensure an up to date copy of the VM’s storage is avail-
able in both data centers to eliminate the risk that a net-
work partition will crash the VM, unfortunately, this im-
poses a substantial penalty on workloads during migra-
tion. These approaches are not cross-host migration as
they do not support shared nothing storage configurations,
instead these migrations are between two compatible stor-
age arrays in different data centers.

The last approach relies on software replication, such as
DRBD [2], to create a replicated storage volume. DRBD
is a software replication solution, where typically each
disk is backed by a DRBD virtual volume. To migrate one
would back the VM by a DRBD volume, then replicate it
to the desired destination machine. Next, a live migration

would migrate the VM’s memory/execution to the desti-
nation. Once complete the DRBD master is switched to
the destination and the replication is terminated. A case
study of a DRBD deployment [25] uses asynchronous
replication during the bulk disk copy and synchronous
storage replication for the duration of the migration, as
noted above, this synchronous replication phase imposes
an additional overhead on the VM workload. Another is-
sue encountered with this approach is the lack of atomicity
of the migration, i.e., the storage replication and memory
migration system must simultaneously synchronize and
transfer ownership from source to destination. Otherwise,
this extends the window for a network partition causing
the VM to power-off or be damaged.

3 XvMotion
XvMotion provides live migration between two arbitrary
end hosts over the local or wide area. Many of limitations
of previous approaches are eliminated by being a purely
point-to-point solution, without the need for support from
a storage system or intermediate nodes.

Our primary goals are to provide unified live migra-
tion (memory and storage), with the critical characteristics
of local migration—atomic switch over, negligible down-
time, and minimal impact on the VM workload, that can
operate in the local and wide area.

We present XvMotion as follows. We begin with an
overview of the XvMotion architecture in § 3.1. Next, we
examine our bulk transport layer Streams in § 3.2. In § 3.3
we explore our implementation of asynchronous storage
mirroring and storage deduplication. The coordination
of memory and storage copying is described in § 3.4.
§ 3.5 presents SDPS, a throttling mechanism used to limit
a VM’s page dirtying rate to adapt to available network
bandwidth and ensure that a migration converges. § 3.6
describes disk buffer congestion control, which allows
XvMotion to adapt to performance differences between
disks on the source and destination hosts.

3.1 Architecture Overview
XvMotion builds on the live migration [24] and IO Mir-
roring [21] mechanisms in ESX. Live memory migra-
tion is implemented using an iterative copy approach de-
scribed in the previous section. ESX uses synchronous
mirroring to migrate virtual disks from one volume to an-
other on the same physical host. We augment this with
asynchronous IO mirroring for migrating virtual disks
across hosts while hiding latency.

Figure 1 depicts the XvMotion architecture. The
Streams transport handles bulk data transfers between the
two hosts. The Live Migration module is responsible for
the many well-known tasks of VM live memory migra-
tion, such as locating VM memory pages for transmis-
sion, and appropriate handling of the VM’s virtual device
state. It enqueues its pages and relevant device state for
transmission by Streams.
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Figure 1: Architecture Overview: shows the main components involved in cross host migration for both the source and
destination. IO Mirroring pushes data synchronously into the disk buffer through the migration IO Writer interface.
The streams transport is responsible for bulk transfer of data between the hosts. Finally, on the destination the data is
written to the disk.

The IO Mirroring module interposes on all virtual disk
writes and mirrors these to the XvMotion IO Writer mod-
ule. The IO Mirroring module is also responsible for
the bulk reading of storage blocks during the initial copy
i.e., synchronizing the mirror. The IO Writer module on
the destination is responsible for dequeuing and writing
blocks to the destination virtual disk.

The IO Writer then enqueues its data for the Disk
Buffer. Disk buffering enables for asynchronous IO mir-
roring by storing a copy in RAM until it reaches the desti-
nation. While buffer space is available disk mirroring will
acknowledge all mirror writes immediately, which elimi-
nates the performance impact of network latency.

3.2 Streams Transport Framework
Streams is a bulk transport protocol we built on top
of TCP for transferring memory pages and disk blocks.
Streams creates multiple TCP connections between the
hosts, including support for multipathing across NICs,
IP addresses, and routes. Additional discussion of how
Streams uses TCP is given in § 4.1 and § 4.3.

Using multiple connections mitigates head of line
blocking issues that occur with TCP, leading to better uti-
lization of lossy connections in the wide area [16, 17]. In
the local area, the multiple independent connections are
used to spread the workload across cores to saturate up to
40 Gbps links.

Streams dynamically load-balances outgoing buffers
over the TCP connections, servicing each connection in
round-robin order as long as the socket has free space.
This allows us to saturate any number of network con-
nections, up to PCI bus limitations. As a consequence of
this approach, data is delivered out-of-order. However,
there are no ordering requirements within an iteration of
a memory copy: we just need to copy all pages once in
any order. Any ordering requirement is expressed using
a write barrier. For example, we require write barriers
between memory pre-copy iterations.

Write barriers are implemented in the following way.
Upon encountering a barrier request, the source host
transmits a barrier message over all communication chan-
nels to the destination host. The destination host will read
data on each channel up to the barrier message, then pause
until all channels have reached the barrier message. Barri-
ers are an abstraction provided to memory migration and
storage migration, but do not necessarily prevent Streams
from saturating the network while waiting for all connec-
tions to reach the barrier.

The general lack of ordering in Streams impacts our
storage migration design. As we see in the next section,
barriers are important as ordering is sometimes necessary
for correctness.

3.3 Asynchronous IO Mirroring
Storage migration works by performing a single pass, bulk
copy of the disk, called the clone process, from the source
host to the destination host. Concurrently, IO mirroring
reflects any additional changes to the source disk that oc-
cur during the clone process to the destination. When
the clone process completes, the source and destination
disks are identical [21]. Both clone and mirroring IOs
are made asynchronously by using the Disk Buffer and
Streams framework. This minimizes the performance im-
pact on our source VM, despite higher and unpredictable
latencies in long distance migrations.

Our clone process is implemented using a kernel thread
that reads from the source disk and issues writes to the
destination. This clone thread proceeds linearly across the
disk, copying one disk region at a time. As usual, the re-
mote write IOs are first enqueued to disk transmit buffer,
then transferred to the destination host by the Streams
framework, and then written to disk on the destination.

The clone process operates independently of the IO
Mirror. This introduces a potential complication. A VM
could issue a write while a read operation in the clone pro-
cess is in progress, thus, the clone process could read an



outdated version of the disk block. To avoid this, the IO
Mirror module implements a synchronization mechanism
to prevent clone process IOs and VM IOs from conflict-
ing.

Synchronization works by classifying all VM writes
into three types relative to our clone process: (1) writes to
a region that has been copied (2) writes to a region being
copied (3) writes to a region that has not yet been copied.
No such synchronization is required for reads, which are
always passed directly to the source disk.

For case (1), where we are writing to an already-copied
region, any write must be mirrored to the destination to
keep the disks in lock-step. Conversely, in case (3), where
we are writing to a region that is still scheduled to be
copied, the write does not need to be mirrored. The clone
process will eventually copy the updated content when it
reaches the write’s target disk region.

More complex is case (2), where we receive a write to
the region currently being copied by the clone process. In
the case of local storage migration, where writes are syn-
chronously mirrored, we defer the conflicting writes from
the VM and place them into a queue. Once the clone pro-
cess completes for that region, we issue the queued writes
and unlock the region. Finally, we wait for in-flight IOs as
we lock the next region, guaranteeing there are no active
writes to our next locked region [21]. However, for long
distance migration, network latency makes it prohibitively
expensive to defer the conflicting VM IOs until the bulk
copy IOs are complete. Instead, we introduce the concept
of a transmit snapshot, a sequence of disk IOs captured
with a sliding window in the transmit buffer.

As we receive IO, either clone or mirror IO, we fill the
disk’s active transmit snapshot. When the active transmit
snapshot reaches capacity (1 MB by default), the snap-
shot is promoted to a finalized snapshot. This promotion
process pushes the transmit snapshot window forward to
cover the next region of the disk’s transmit buffer, the new
empty transmit snapshot. As soon as all of our clone pro-
cess’s IOs for a given region have been queued in a trans-
mit snapshot, we unlock the copy region and move on to
the next region.

The Streams framework searches for finalized snap-
shots, transmitting them in the order they are finalized.
A write barrier is imposed between the transmission of
each finalized snapshot, ensuring that snapshot content
is not interleaved. Between these write barriers, source-
side snapshot sector deduplication, and destination-side
IO conflict chains, we ensure that all IOs are written to
the destination in the correct order. See § 3.6 for more
discussion of snapshot handling and IO conflict chains.

We perform source-side deduplication by coalescing
repeated writes to the same disk block. This ensures cor-
rectness as blocks within a transmit snapshot may be re-
ordered by Streams, and reduces bandwidth consumption.
Upon receipt of new IO, we search our transmit snapshot

for any IO to the same target disk sector. If there was a
previous write, we coalesce the two into a single write of
the most recent data. This is safe, as we know clone pro-
cess IO and mirror IO will never conflict, as explained in
our discussion of synchronization.

Scanning our transmit snapshot for duplicate disk IO
can be expensive, as each disk’s active snapshot could
contain 1 MB worth of disk IO. We avoid such lookups
with a bloom filter that tracks the disk offsets associated
with each sector present in each disk’s active snapshot.
With 8 KB of memory dedicated to each disk’s bloom
filter, the disk sector as the key, and 8 hashes per key,
we achieve a false positive rate of less than 6 per million
blocks.

Our data showed that the use of the bloom filter and this
optimization halved migration time and cut CPU usage
by a factor of eight in some cases. This result is highly
workload dependent, and the CPU utilization benefits of
the bloom filter offer a large portion of the gains.

3.4 Memory and Disk Copy Coordination
There are several copying tasks for us to coordinate: copy-
ing our disk, IO mirroring, copying of the initial memory
image, and iterative copying of memory data.

When we start and how we interleave these processes
can have a significant impact. If we have insufficient
bandwidth available to keep up with page dirtying, we
may be forced to throttle the workload. If we do not
efficiently use available bandwidth, we increase over-
all migration time. While low intensity workloads with
relatively low dirty rates do not create significant con-
tention for bandwidth, contention can become an issue
with higher intensity workloads.

We begin our disk copy first as this is usually the bulk
of our data, while enabling IO mirroring. For a while this
“fills-the-pipe.” After our clone process completes, we
begin our initial memory copy, then begin our iterative
memory copy process with IO Mirroring still enabled.

Our rationale for this is that storage mirroring generally
requires lower bandwidth than memory copying, so over-
lapping these is less likely to lead to contention than if we
try to perform our disk copy process while memory is be-
ing copied. Also, our disk copy generally takes longer to
complete, thus, we prefer to start it first, to minimize the
overall migration time.

Our intuition around memory tending to show an equal
or higher dirtying rate, i.e., rate at which pages or disk
blocks change, leading to a higher cost for our iterative
copy than for IO mirroring, comes from our observation
of databases workloads and other enterprise applications.
Locks, metadata and other non-persistent structures ap-
pear to be a significant source of dirtying.

During the switchover time, where we switch from
source to destination, we pause the VM for a short pe-
riod to copy any remaining dirty memory pages and drain
the storage buffers to disk. Draining time is a downside
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Figure 2: Shows downtime for two intensities of our DVD
Store 2 workloads with and without SDPS. We show less
downtime variation with SDPS than without.

of asynchronous mirroring as it impacts switchover time,
which is not an issue for local synchronous mirroring.

While our heuristic approach seems to work well it may
not be ideal. In an ideal implementation we would like to
start the memory copy just before the disk copy has com-
pleted and only use unutilized bandwidth. Unfortunately,
without predictable bandwidth it is hard to decide when
we should begin the memory copy as bandwidth may sud-
denly become scarce, we could be forced to throttle our
workload. We imagine using underlying network QoS
mechanisms or better techniques for bandwidth estima-
tion could be helpful.

3.5 Stun During Page Send (SDPS)
Transferring the VM’s memory state is done using iter-
ative pre-copy, as discussed in § 3.1. Iterative pre-copy
converges when a VM’s workload is changing page con-
tent (dirtying pages) more slowly than our transmission
rate. Convergence means that the migration can trade-
off longer migration time for ever smaller downtimes, and
thus the migration can be completed without noticeable
downtime. Unfortunately, this is not always the case, es-
pecially in long distance migrations.

Historically, live migration implementations have
solved the problem of low bandwidth by stopping pre-
copy, halting VM execution, and transmitting all remain-
ing page content during VM downtime. This is not de-
sirable, as the VM could remain halted for a long time if
there are many dirty pages, or if the network is slow.

To solve this problem, we introduce Stun During Page
Send (SDPS). SDPS monitors the VM’s dirty rate, as
well as the network transmit rate. If it detects that the
VM’s dirty rate has exceeded our network transmit rate,
such that pre-copy will not converge, SDPS will inject
microsecond delays into the execution of the VM’s VC-
PUs. We impose delays in response to page writes, di-
rectly throttling the page dirty rate of any VCPU without
disrupting the ability of the VCPU to service critical op-
erations like interrupts. This allows XvMotion to throttle
the page dirtying rate to a desired level, thus guaranteeing
pre-copy convergence.

Figure 2 shows the downtime for our DVD Store 2
workload that is described in Section 5. We see less down-
time variability when SDPS is turned on than without.

This technique is critical to allowing live migration to sup-
port slower networks and handle intense workloads.

3.6 Disk Buffering Congestion Control

XvMotion supports migrating a VM with multiple vir-
tual disks located on different source volumes to different
destination volumes with potentially differing IO perfor-
mance. For example, one virtual disk could be on a fast
Fibre Channel volume destined for a slower NFS volume,
and another on a slower local disk destined for a faster
local SSD.

Disparities in performance introduce several chal-
lenges. For example, if we are moving a virtual disk from
a faster source volume to a slower destination volume, and
we have a single transmit queue shared with other virtual
disks, the outgoing traffic for our slower destination can
tie up our transmit queue, starving other destinations.

We address such cross-disk dependencies with queue
fairness constraints. Each disk is allowed to queue a max-
imum of 16 MB worth of disk IO in the shared transmit
queue. Attempts to queue additional IO are refused, and
the IO is scheduled to be retried once the disk drops be-
low the threshold. In effect, each virtual disk has its own
virtual transmit queue.

Tracking per-disk queue length also allows us to solve
the problem of the sender overrunning the receiver. To
avoid sending too many concurrent IOs to the destination
volume, we have a soft limit of 32 outstanding IOs (OIOs)
per volume. If the number of OIOs on the destination ex-
ceeds this, the destination host can apply back pressure by
requesting that the source host slow a given virtual disk’s
network transmit rate.

There is a final challenge the destination host must at-
tend to. Since the source deduplicates the transmit snap-
shots by block number, we know that IOs within a given
snapshot will never overlap, and can thus be issued in any
order. However, there may be IO conflicts i.e., IOs to
overlapping regions across snapshots. In such cases, it
is important for correctness that IOs issue in the order that
the snapshots are received. However, we don’t want to
limit performance by forcing all snapshots to be written
in lockstep. Instead, we make the destination keep track
of all in-flight IOs, at most 32 IOs for each disk. Any
conflicting new IOs are queued until the in-flight IO is
completed. This is implemented with a queue, called a
conflict chain, that is associated with a given in-flight IO.

Fairness between clone and mirror IOs: We imple-
ment fairness between clone and mirror IOs in a similar
way. Each disk’s virtual queue is split into two, with one
portion for the clone and the other for mirror IOs. These
queues are drained in a weighted round-robin schedule.
Without this, the guest workload and clone can severely
impact one another when one is more intense than the
other, possibly leading to migration failures.



4 Optimizations
4.1 Minimizing Switchover Time
The switchover time is the effective downtime experi-
enced by the VM as we pause its execution context to
move it between hosts. It is the phase we use to transfer
the remaining dirty pages and the state of the guest’s vir-
tual devices (i.e., SVGA, keyboard, etc.). Today’s appli-
cations can handle downtimes over 5 seconds, but an in-
creasing number of high availability and media streaming
applications can make sub-second downtimes noticeable.
For these reasons, we implemented some optimizations to
battle the following problems:
Large virtual device states: Some of the virtual devices
can be very large, for example the SVGA (the video card
buffer) can be hundreds of megabytes. The problem is
that this state is not sent iteratively, so it has to be sent
completely during downtime. Because of limited band-
width at high latency, we implemented a solution where
the state of the larger devices is stored as guest memory.
Now, the state is sent iteratively, is subject to guest slow-
down (i.e., SDPS), and, most importantly, is not sent in
full during downtime.
TCP slow start: There are several TCP sockets used dur-
ing downtime: some to transfer the state of the virtual de-
vices, and some for the Streams transmission. The prob-
lem is that each time a TCP connection is used for the first
time or after a delay, TCP is in slow start mode where it
needs time to slowly open the windows before achieving
full throughput (i.e., several hundreds of milliseconds).
We implemented some TCP extensions where we set all
the sockets windows to the last value seen before becom-
ing idle. This change reduces many seconds of downtime
at 100 ms of latency.
Synchronous RPCs: We found that our hot migration
protocol had a total of 11 synchronous RPCs. At 100 ms
round-trip time (RTT), this adds up to 1.1 seconds of
downtime. After careful analysis, we concluded that most
of these RPCs do not need to be synchronous. In fact,
there are only 3 synchronization points needed during
switchover: before and after sending the final set of dirty
pages, and the final handshake that decides if the VM
should run on the destination or the source (e.g., there was
a failure).

We modified the hot migration protocol to only require
these three round-trips. The idea was to make the RPCs
asynchronous with the use of TCP’s ordering and relia-
bility guarantees. Specifically, we used the following 2
guarantees. (1) If the source sends a set of messages and
the destination receives the last one, TCP ensures that it
also received all the previous messages. (2) Moreover,
if the source receives a reply to the last message, TCP
ensures that the destination received all the previous mes-
sages. We added the three required synchronization points
such that the source sends messages, but only waits for the
reply of those three points.

4.2 Network Virtualization Challenges
To saturate a high latency TCP connection we must avoid
inducing packet loss and reordering within the virtualized
network stack. Due to network virtualization, a hypervi-
sor’s networking stack is complex, with multiple layers,
memory heaps, and asynchronous contexts: all of them
with their own queuing mechanisms and behavior when
queues are full. When queue limits are exceeded, packet
loss and reordering can occur, disrupting TCP streams.

We found that Virtual Network Switches on the source
host were the main source of packet loss. Multiple XvMo-
tion sockets with large buffers were constantly overflow-
ing the virtual switches’ queues, resulting in packet loss,
which substantially impacted TCP performance. We tried
adding Random Early Detection (RED [13]) to the Vir-
tual Network Switch, which drops packets from the head
of queues rather than the tail so the sender could detect
packet loss sooner. However, we found that the result-
ing packet losses still significantly reduced throughput.
The solution we settle upon was to allow virtual switches
to generate back pressure when their queues were nearly
full by sending an explicit notification to the sending
socket(s). This allowed our sockets to check for possi-
ble overflows, stop growing the transmit windows, and
ultimately avoid the drops.

A second problem is the reordering of packets. Pack-
ets are moved from a virtual switch queue into a NIC
ring, and whenever the NIC is full, packets are re-queued
into the virtual switch. We found this to be a common
source of packet reordering. We noticed that a single
packet reorder caused a performance hit from 113 Mbps
to 76 Mbps for a 1 GB data transfer over a 100 ms RTT
link. After fixing these problems, we can get full through-
put at 1 Gbps and up to 250 ms of round-trip time. Tests
also showed that we were able to achieve 45% of band-
width utilization at a loss rate of 0.01%.

4.3 Tuning for Higher Latency
High latency networks require provisioning larger TCP
send socket buffers. One restriction on our platform, how-
ever, is the strictness of resource management and the de-
sire to minimize memory usage for any given VM migra-
tion. We satisfy both goals by detecting the round-trip-
time between the source and destination host in the ini-
tial migration handshake, dynamically resizing our socket
buffers to the bandwidth-delay-product.

In the course of experimenting with socket buffer resiz-
ing, we discovered some performance issues surrounding
our congestion control algorithms. We switched to the
CUBIC congestion control algorithm, which is designed
for high bandwidth-delay product networks [15]. Experi-
mentation showed that we should enable congestion con-
trol with Accurate Byte Counting [7]. This improved per-
formance when leveraging various offload and packet co-
alescing algorithms. It helps grow the congestion window



faster and handles delayed acknowledgments better.

4.4 Virtual Disk Copy Optimizations
XvMotion implements several storage optimizations to re-
main on par with live storage migration between locally
accessible volumes. Local live storage migration makes
heavy use of a kernel storage offload engine called the
Data Mover (DM) [21].

The DM is tightly coupled with the virtual disk format,
file system, and storage array drivers to perform optimiza-
tions on data movement operations. The DM’s primary
value is its ability to offload copy operations directly to
the storage array. However, it also implements a number
of file system specific optimizations that are important for
storage migration. Because the DM only works with local
storage we cannot use the DM, instead, we reimplemented
these optimizations in XvMotion.
Metadata Transaction Batching: In VMFS, metadata
operations are very expensive as they take both in-
memory and on-disk locks. To avoid per-block metadata
transactions, we query the source file system to discover
the state of the next 64 FS blocks, then use that data to
batch requests to the destination file system for all meta-
data operations.
Skipping Zero Block Reads: Each file in VMFS is com-
posed of file system blocks, by default 1MB each. A
file’s metadata tracks the allocation and zero state of those
blocks. Blocks may not be allocated, may be known to
be zero-filled, or allocated but still to-be-zeroed (TBZ)
blocks. By querying the FS metadata, we can skip blocks
that are in one of these zero states.
Skip-Zero Writes: On the destination, if we know we
will write over the entire contents of a file system block,
we can have the file system skip performing its typical
zeroing upon the first IO to any FS block. We bias writing
to entire FS blocks when possible to leverage such skip-
zero opportunities.

5 Evaluation
Downtime: All live migration technologies strive to
achieve minimal downtime i.e., no perceptible service dis-
ruption. Our results show that XvMotion delivers con-
sistent downtimes of ≈ 1 second—what the convergence
logic targets—in the face of variable round trip latency (0-
200 ms) and workload intensity (1-16 OIOs), as depicted
in Figures 3 and 4.
Migration time: Our results show that our migration
times are stable with respect to latency up to 200 ms—
demonstrating that wide area migration need not be any
more expensive than local area migration. XvMotion
shows only a small increase in migration time beyond the
sum of local memory and storage migration time.
Guest Penalty: Guest penalty as a percentage of the re-
duction of guest performance (IOPS or Operations/sec.)
during migration should be minimized. Our results show
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Figure 3: Shows the migration time and downtime for a
VM running the OLTP workload at varying latency.

that guest penalty is nearly constant with respect to la-
tency, and only varies based on workload intensity.

Our XvMotion tests were run on a pair of Dell R610
server running our modified version of ESX. Each had
dual-socket six-core 2.67 GHz Intel Xeon X5650 pro-
cessors, 48 GB of RAM, and 4 Broadcom 1 GbE net-
work adapters. Both servers were connected to two EMC
VNX5500 SAN arrays using an 8 Gb Fibre Channel (FC)
switch. We created a 200 GB VMFS version 5 file system
on a 15-disk RAID-5 volume on each array.

We used the Maxwell Pro network emulator to inject
latency between the hosts. Our long distance XvMotions
were performed on a dedicated link between Palo Alto,
California and Banglore, India with a bottleneck band-
width of 1 Gbps.

We used three workloads, an idle VM, OLTP Simula-
tion using Iometer [5], and the DVD Store version 2 [3]
benchmark. The Idle and Iometer VMs were configured
with two vCPUs, 2 GB memory of RAM, and two virtual
disks. The first disk was a 10 GB system disk running
Linux SUSE 11 x64, the second was a 12 GB data disk.

During the migration both virtual disks were migrated.
Our synthetic workload used Iometer to generate an IO
pattern that simulates an OLTP workload with a 30%
write, 70% read of 8 KB IO commands to the 12 GB data
disk. In addition, we varied outstanding IOs (OIOs) to
simulate workloads of differing intensities.

DVD Store Version 2.1 (DS2) is an open source on-
line e-commerce test application, with a backend database
component, and a web application layer. Our DVD Store
VM running MS Windows Server 2012 (x64) was config-
ured with 4 VCPUs, 8 GB memory, a 40 GB system/db
disk, and a 5 GB log disk. Microsoft SQL Server 2012
was deployed in the VM with a database size of 5 GB and
10,000,000 simulated customers. Load was generated by
three DS2 client threads with no think time.

5.1 Downtime (Switchover Time)
Figure 3 shows the downtimes for our OLTP workload
with network round-trip latencies varying from 0-200 ms.
All XvMotions show a bounded downtime of roughly one
second.
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Figure 4: Migration time and downtime for varying OIO
on the OLTP workload at 200 ms of round-trip latency.

The XvMotion protocol iteratively sends memory
pages: at every iteration it sends the pages written by the
guest in the previous iteration. It converges when the re-
maining data can be sent in half a second, which is the
value used in these experiments. Thanks to our SDPS op-
timization, even if the network bandwidth is low and the
guest is aggressively writing pages, the remaining data is
bounded to be sent in half a second.

When we measured downtime versus storage workload
intensity (varying OIO) we discovered that the switchover
time remained nearly constant. Figure 4 shows an aver-
age downtime of 0.97 seconds, with a standard deviation
of 0.03. This shows we have achieved downtime indepen-
dent of storage workload.

5.2 Migration Time
We compared an XvMotion between two hosts over
10 Gbps Ethernet, to local live storage migration in Fig-
ure 5, to approximate a comparison between XvMotion
and local live migration.

Local live storage migration copies a virtual disk be-
tween two storage devices on the same host. While this is
a bit of an apples to oranges comparison, we choose it for
a few reasons. First, storage migration overhead generally
dominates memory migration overhead. Second, storage
migration is quite heavily optimized, so it provides a good
baseline. Third, initiating a simultaneous local memory
and storage migration would still not provide an apples
to apple comparison as there would be no contention be-
tween memory and storage migration on the network, and
the copy operations are uncoordinated.

As expected, live storage migration is the fastest. The
data shows about 20 to 23 seconds difference between
local live storage migration and XvMotion. Part of that
overhead is from memory and device state migration that
required about 2 seconds to migrate memory state in the
Idle and OLTP scenarios, and 8 seconds in DVD Store
scenario. Additional reasons that these differences exist
are contention between memory migration and IO mir-
roring traffic, and greater efficiencies in the data mover.
However, the encouraging result here is that local migra-
tion between hosts is not appreciably more expensive than
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Figure 6: Guest workload penalty as workload intensity
(OIO) increases. As workload intensity increases, the
average guest penalty decreases, as our transmit queue
scheduler gives increased priority to Guest IOs over clone
process IOs. workload IOs over clone process IOs.

migrating storage from one volume to another on the same
host.

A last point illustrated by Figure 5 is the importance of
our storage optimizations described in § 4.4. Migration
time nearly doubles in all the scenarios without our disk
copy optimizations.

In Figure 4 we measured migration time as we vary
workload intensity. We see that migration time increases
with guest OIO. This occurs because clone IO throughput
decreases as guest IOs take up a larger fraction of the total
throughput.

Figure 3 presents how the migration time of the OLTP
workload changes as we vary round-trip time. We see that
migration time increases by just 10% when increasing la-
tency from 0 to 200 ms. We observed that most of the
overhead came from the memory copy phase. In this case,
TCP was not able to optimally share the 1 Gbps available
bandwidth to both the memory and the disk mirror copy
sockets. Additionally, TCP slow start at the beginning of
every phase of the migration also add several seconds to
the migration time.
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Figure 7: Illustrates the various phases of the migration
against a plot of DVD Store Orders/sec for XvMotion.

5.3 Guest Penalty
Figure 6 shows average guest penalty decreases as work-
load intensity increases. This ensures that the impact of
migration on guest performance is minimized.

The average guest penalty drops from 32% for 2 OIOs
to 10% for 32 OIOs. This is because both clone process
and mirror IOs compete for transmit queue space on the
source as discussed in § 3.6. The clone process has at
most 16 OIOs on the source to read disk blocks for the
bulk copy. As the guest workload has more OIOs it will
take a larger share of transmit queue.

Our transmit queue schedules bandwidth between clone
process and mirror IOs. Without such a scheduler, we
measured a 90% average guest penalty for the 8 OIO sce-
nario. To further investigate, we measured the effect of
varying latency for a fixed intensity workload. We ob-
served the penalty for the OLTP workload with 16 OIO
is fixed at approximately 10% for RTT latencies of 0 ms,
100 ms and 200 ms.

Figure 7 shows a dissection of DVD Store’s reported
workload throughput during an XvMotion on a 1 GbE
network link with 200 ms round-trip latency. The graph
shows the impact on the SQL server throughput during
disk and memory copy, and shows a quick dip for one
data point as the VM is suspended for switchover. This is
an example of a successful migration onto a slower desti-
nation volume, where the workload is gradually throttled
to the speed of the destination.

5.4 XvMotion on the Wide Area
We explored XvMotion’s behavior on the wide area by
migrating a VM from Palo Alto, CA to Bangalore, India.
These two sites, about halfway across the globe, are sep-
arated by a distance of roughly 8200 miles. The WAN
infrastructure between these two sites was supported by
a Silverpeak WAN accelerator NX 8700 appliance. The
measured ping latency between the sites was 214 ms over
a dedicated 1 Gbps link.

Our source host in Palo Alto was a Dell PowerEdge
R610 with a high performance SAN storage array. Our
destination in Bangalore was a Dell PowerEdge R710
with local storage. To virtualize the network, we stretched

the layer-2 LAN across these two sites using an OpenVPN
bridge. This enabled the VM migrate with no disruption
in network connectivity.

We successfully ran two workloads, Iometer and DS2,
with minimal service disruption.

In the Iometer test, before the migration, the ping la-
tency between the client and the OLTP VM was less than
0.5 ms since both were running on the same local site.
After the migration the ping latency between the client
and the OLTP VM jumped to 214 ms. The ping client
observed just a single ping packet loss during the entire
migration.

The OLTP workload continued to run without any dis-
ruption, although the guest IOPS dropped from about 650
IOPS before migration to about 470 IOPS after migration
as the destination host was using low performance local
storage.

The total duration of the migration was 374.16 sec-
onds with a downtime of 1.395 seconds. We observed
68.224 MB/s network bandwidth usage during disk copy,
and about 89.081 MB/s during memory pre-copy.

In the DS2 test, the DS2 clients ran on two client ma-
chines, one client machine located in Palo Alto and the
other in Bangalore. The DS2 clients generated a substan-
tial CPU and memory load on the VM. The migration was
initiated during the steady-state period of the benchmark,
when the CPU utilization of the virtual machine was little
over 50%.

The DS2 workload continued to run without any dis-
ruption after the migration. However, the throughput
dropped from about 240 ops before migration to about 135
ops after migration as the destination host was using low
performance local storage.

The total duration of the migration was 1009.10 sec-
onds with a downtime of 1.393 seconds. We observed
49.019 MB/s network bandwidth usage during disk copy,
and about 73.578 MB/s during memory pre-copy. Some
variation in network bandwidth was expected between the
tests as the WAN link between sites is a shared link.

5.5 Summary
Our results show that XvMotion exhibits consistent be-
havior i.e., migration time, downtime, and guest penalty,
with varying workload intensity and latency. We saw for
all experiments, maximum downtime is around one sec-
ond, even for latencies as high as 200 ms and data loss
up to 0.5%. One of the nice features of our system is that
for long distance migrations the VM migration was bot-
tlenecked by the network bandwidth, and thus our storage
throttling mechanism slowed the VM down gradually.

6 Discussion
We discuss potential split-brain issues when handing off
execution from the source VM to the destination VM, then
briefly survey networking and security considerations for
wide area migration.



6.1 Split-Brain Issues

A live migration ends with the exchange of several mes-
sages between the source and destination hosts called the
resume handshake. In the normal case, if the source re-
ceives the resume handshake, it can mark the migration
successful, and power off. Upon sending the resume
handshake, the destination can resume and mark the mi-
gration complete. With migration using shared storage,
file system locking ensures only one VM can start during
a network partition. Each host will race to grab locks on
the virtual disks and metadata file, with only one winner.

With XvMotion there is no good solution and yet
we must prevent both hosts from resuming concurrently.
Both the source and destination wait for the completion
of the resume handshake. The source will power on if it
never sees a resume request. A network partition after the
resume request message causes both hosts to power-off.
If the destination receives approval to resume, it will from
that point on. Finally, when the source receives the re-
sume completed message it will power-off and cleanup.
Anytime the hosts cannot resolve the issue, a human or
the management software must power on the correct VM
and delete the other VM.

6.2 VM Networking

Long distance migration presents a challenge for the
VM’s network connectivity. A VM may be migrated
away from its home subnet and require a form of net-
work tunneling or routing. Several classes of solutions
are available to enable long distance network migrations.
First, there are layer two networking solutions that tun-
nel traffic using hardware or software solutions such as
Cisco Overlay Transport Virtualization (OTV) [14] and
VXLAN [20]. For modern applications that do not depend
on layer two connectivity there are several layer 3 solu-
tions such as Locator/ID Separation Protocol (LISP) [12]
that enable IP mobility across the Internet. Another
emerging standard being deployed at data centers is Open-
Flow [22], which enables generic programming and con-
figuration of switching hardware. Using OpenFlow, sev-
eral prototypes have been constructed that enable long dis-
tance VM migration.

6.3 Security Considerations

Any live migration technology introduces a security risk
as a VM’s memory and disk are transmitted over the net-
work. Typically, customers use physically or logically
isolated networks for live memory migration, but this is
not sufficient for migrations that may be over the WAN.
Today customers address this through the use of hardware
VPN solutions or IPSec. While some customers may de-
sire other forms of over the wire encryption support, we
regarded this as outside the scope of our current work.

7 Related Work
Live Migration: Live VM memory migration has been
implemented in all major hypervisors including Xen [10],
Microsoft Hyper-V [1], and VMware ESX [24]. All three
systems use a pre-copy approach to iteratively copy mem-
ory pages from source host to destination host.

Hines et al. [18] proposed a post-copy approach for live
VM memory migration. Their approach essentially flips
the steps of an iterative copy approach, instead of send-
ing the working set at the end of the migration, it is sent
at the beginning. This allows execution to immediate re-
sume on the destination, while memory pages are still be-
ing pushed, and missing pages are demand paged in over
the network. Memory ballooning is used to reduce the
size of the working set prior to migration. Post-copying
offers lower migration times and downtimes, but often in-
duces a higher guest penalty and gives up atomic switch
over. Luo er al. [19] used a combination of post-copy and
pre-copy approaches to lower downtime downtime and
guest penalty, but also gives up atomicity. Both of these
approaches are unacceptable for wide area migration be-
cause of increased risk to losing the VM. Our SDPS tech-
nique offers a safer approach, reducing downtime without
the loss of atomicity.
Storage Migration: ESX live storage migration has
evolved through three different architectures, i.e., snap-
shotting, dirty-block tracking and IO mirroring [21]. Live
storage migration of VMs using IO mirroring is explored
in Meyer et al. [23]. The latest storage migration imple-
mentation in Microsoft Hyper-V [4], VMware ESX, and
Xen with DRBD [6], are all based on IO mirroring.
WAN Migration: Bradford et al. extends the live mi-
gration in Xen to support the migration of a VM with
memory and storage across the WAN [9]. When a VM
is being migrated, its local disks are transferred to desti-
nation volume using a disk block level iterative pre-copy.
The write IO workload from the guest OS is also throttled
to reduce the dirty block rate. Further optimizations for
pre-copy based storage migration over WAN are explored
by Zheng et al. [28].

While the iterative pre-copy approach is well suited for
memory migration, it suffers from several performance
and reliability limitations for storage migration as shown
in our prior work [21]. In contrast, we propose to seam-
lessly integrate memory pre-copy with storage IO mirror-
ing for long distance live VM migration.

CloudNet addresses many of the shortcomings of Brad-
ford’s work by using DRBD and Xen to implement wide
area migration along with a series of optimizations [27].
The system used synchronous disk replication rather than
asynchronous replication used by XvMotion. Their Smart
Stop and Copy algorithm tuned the number of iterations
for memory copy, thus trading off downtime versus mi-
gration time. ESX used a similar algorithm internally, but
downtimes were still sufficiently high even with this mea-



sure that we introduced SDPS. SDPS and asynchronous
disk buffering allows XvMotion to target a specific down-
time at the cost of increased guest penalty.

SecondSite is the first solution to use software fault tol-
erance to implement seamless failover of a group of VMs
over a WAN [26]. This solution is built on Remus [11] a
fault tolerance solution built on Xen’s live migration in-
frastructure. SecondSite and Remus provide the destina-
tion periodically with consistent images of the VMs mem-
ory and disk. This is done while the VM is running on the
source and the migration only completes when the source
host dies.

8 Conclusion
We have presented XvMotion, a system for memory and
storage migration over local and wide area networks. By
integrating memory and storage movement we were able
to achieve an atomic switchover with low downtime. Our
use of asynchronous storage replication provides good
storage performance in the presence of high latency links.
We also introduced mechanisms to increase memory mi-
gration tolerance to high latency links, and make storage
migration robust to diverse storage speeds.

Our OLTP tests show that an XvMotion between two
separate hosts over 10 Gbps Ethernet, performed only
10% slower than a storage migration on a single host be-
tween two locally attached disks, demonstrating live mi-
gration on a shared-nothing architecture is comparable to
live migration with shared storage. We also showed that
while increasing the latency of the network to 200 ms we
saw downtimes lower than one second, which are unno-
ticeable to most applications, demonstrating the live mi-
gration is viable over the wide area. We also showed that
our system is well behaved under heavy load, as increases
in guest workload do not effect downtime.

Higher bandwidth networks, network virtualization,
large scale virtualization deployments, geographically
separated data centers and diverse storage architectures
are all increasingly important parts of data centers. Given
these trends, we believe the ability to simply, reliably, and
efficiently move a VM between two hosts afforded by Xv-
Motion will enable new use cases, and help simplify ex-
isting situations where VM mobility is demanded.
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