XvMotion: Unified Virtual Machine Migration over Long Distance

Ali José Mashtizadeh, Min Cai, Gabriel Tarasuk-Levin, Ricardo Koller, Tal Garfinkel, Sreekanth Setty Stanford University – VMware, Inc.

Live Migration

Migration Benefits

- Test to production migrations
- Disaster Preparedness Testing
- Cross-Datacenter Load Balancing
- Shared-Nothing Architecture

Migration in Practice

This is not what we really want

Migrations are limited to machines that:
 With shared storage, fast networks, and same LAN

- Technological Changes:
 - Shared nothing application architectures
 - Network mobility possible: LISP, OTV, VXlan, OpenFlow (SDN)
 - Very large virtualized datacenters

- No reason for these limitations any longer
- Customers have new use cases

XvMotion

XvMotion: First commercially viable WAN migration

- Achieve Low Downtime AND Atomic Switchover
- Uses Asynchronous IO Mirroring

Principle:
 Flow control mechanisms for memory and disk

Customer Scenario

	LAN	WAN
Bandwidth	10 Gbps (sometimes 40 Gbps)	1 Gbps or less
Latency	<1 ms	~100 ms
Typical Network	Dedicated NIC(s)	Shared connection between sites

Example Workload

HA Timeouts several seconds TCP Timeouts 120 seconds

Downtime (Switchover Time)

Goal: Less than 1 Second of Downtime

Atomicity

Goal: Atomic switchover

XvMotion

- Unifies Memory Migration and Storage Migration
 - Tolerates wide area network bandwidth/latency and reliability
 - Tolerates heterogeneous storage performance
 - Downtimes and workload impact comparable to local migration
 - Atomic switchover
- Deployed in customer metro area networks
- Cross continent migration e.g. Palo Alto to India is practical

Overview

- Architecture Overview
- Wide Area Memory Migration
- Wide Area Storage Migration
- Evaluation

Unified Live Migration

XvMotion Architecture

Overview

- Architecture Overview
- Wide Area Memory Migration
- Wide Area Storage Migration
- Evaluation

XvMotion Architecture: Live Migration

- Iterative copy hopefully reduces the working set each iteration
- Depends on Network being faster than Dirty rate

Current Solution: Early Resume/Post-copy

 Problem: Applications can change memory faster than network bandwidth

- Solution:
 - Stop migration copy everything
 - Resume early if downtime is high

Destination remote page faults on missing pages

Stun During Page Send (SDPS)

- Problems with Early Resume:
 - Remote page faults very expensive for high latency networks
 - Not atomic: Unsafe for WANs where network hiccups are more likely

• Solution:

Throttle VM just enough to keep dirty rate < network rate

SDPS Downtime Results

Overview

- Architecture Overview
- Wide Area Memory Migration
- Wide Area Storage Migration
- Evaluation

XvMotion Architecture: IO Mirroring

Problem: *Synchronous* mirroring over the WAN slows guest workload

Goal: Hide network latency from VM

XvMotion Buffering: Asynchronous IO

XvMotion Buffering: Asynchronous IO

Problem: Workload may be too fast on source for the destination

Goal: Throttle copy process and workload as necessary

XvMotion Buffering: Congestion Control

Limit per-disk OIOs/buffer on destination

XvMotion Buffering: Congestion Control

Limit per-disk OIOs/buffer on destination

Overview

- Architecture Overview
- Wide Area Memory Migration
- Wide Area Storage Migration
- Evaluation

Evaluation

- Migration Time: Total end-to-end time
- Downtime: Time machine execution is suspended for final switchover
- Workload Penalty: Average percentage penalty to the VM workload

- OLTP IO Workload (data disk only)
- 10 GB system/12 GB data

XvMotion Downtimes

Take Away: ~1 second downtime independent of distance

XvMotion Migration Time

Take Away: small linear time increase with distance

California to India Migration

1 Gbps network with 214 ms RTT

- OLTP: 68 MB/s disk copy 89 MB/s memory copy
- ~11% Workload Penalty from Throttling

Summary

- XvMotion frees migration from the need for shared storage and fast local networks
 - Tolerates wide area network bandwidth/latency and reliability
 - Tolerates heterogeneous storage performance
 - Downtimes and workload penalty comparable to local migration
 - Atomic Switchover
- Enables new use cases e.g. disaster preparedness, cluster upgrade, shared nothing
- On the path to deployment:
 - Deployed in customer metro area networks
 - Cross continent migration e.g. Palo Alto to India is practical

Questions?