
This paper is included in the Proceedings of the 
13th USENIX Symposium on Operating Systems Design 

and Implementation (OSDI ’18).
October 8–10, 2018 • Carlsbad, CA, USA

ISBN 978-1-939133-08-3

Open access to the Proceedings of the 
13th USENIX Symposium on Operating Systems 

Design and Implementation 
is sponsored by USENIX.

LegoOS: A Disseminated, Distributed OS for 
Hardware Resource Disaggregation

Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang, Purdue University

https://www.usenix.org/conference/osdi18/presentation/shan



LegoOS: A Disseminated, Distributed OS for Hardware Resource Disaggregation
Yizhou Shan, Yutong Huang, Yilun Chen, Yiying Zhang

Purdue University

Abstract
The monolithic server model where a server is the unit
of deployment, operation, and failure is meeting its lim-
its in the face of several recent hardware and application
trends. To improve resource utilization, elasticity, het-
erogeneity, and failure handling in datacenters, we be-
lieve that datacenters should break monolithic servers
into disaggregated, network-attached hardware compo-
nents. Despite the promising benefits of hardware re-
source disaggregation, no existing OSes or software sys-
tems can properly manage it.

We propose a new OS model called the splitkernel to
manage disaggregated systems. Splitkernel disseminates
traditional OS functionalities into loosely-coupled mon-
itors, each of which runs on and manages a hardware
component. A splitkernel also performs resource allo-
cation and failure handling of a distributed set of hard-
ware components. Using the splitkernel model, we built
LegoOS, a new OS designed for hardware resource dis-
aggregation. LegoOS appears to users as a set of dis-
tributed servers. Internally, a user application can span
multiple processor, memory, and storage hardware com-
ponents. We implemented LegoOS on x86-64 and evalu-
ated it by emulating hardware components using com-
modity servers. Our evaluation results show that Le-
goOS’ performance is comparable to monolithic Linux
servers, while largely improving resource packing and
reducing failure rate over monolithic clusters.

1 Introduction
For many years, the unit of deployment, operation, and
failure in datacenters has been a monolithic server, one
that contains all the hardware resources that are needed
to run a user program (typically a processor, some main
memory, and a disk or an SSD). This monolithic archi-
tecture is meeting its limitations in the face of several
issues and recent trends in datacenters.

First, datacenters face a difficult bin-packing problem
of fitting applications to physical machines. Since a pro-
cess can only use processor and memory in the same ma-
chine, it is hard to achieve full memory and CPU resource
utilization [18, 33, 65]. Second, after packaging hard-
ware devices in a server, it is difficult to add, remove, or
change hardware components in datacenters [39]. More-
over, when a hardware component like a memory con-
troller fails, the entire server is unusable. Finally, mod-
ern datacenters host increasingly heterogeneous hard-
ware [5, 55, 84, 94]. However, designing new hardware

that can fit into monolithic servers and deploying them in
datacenters is a painful and cost-ineffective process that
often limits the speed of new hardware adoption.

We believe that datacenters should break mono-
lithic servers and organize hardware devices like CPU,
DRAM, and disks as independent, failure-isolated,
network-attached components, each having its own con-
troller to manage its hardware. This hardware re-
source disaggregation architecture is enabled by recent
advances in network technologies [24, 42, 52, 66, 81, 88]
and the trend towards increasing processing power in
hardware controller [9, 23, 92]. Hardware resource dis-
aggregation greatly improves resource utilization, elas-
ticity, heterogeneity, and failure isolation, since each
hardware component can operate or fail on its own and
its resource allocation is independent from other com-
ponents. With these benefits, this new architecture has
already attracted early attention from academia and in-
dustry [1, 15, 48, 56, 63, 77].

Hardware resource disaggregation completely shifts
the paradigm of computing and presents a key challenge
to system builders: How to manage and virtualize the
distributed, disaggregated hardware components?

Unfortunately, existing kernel designs cannot address
the new challenges hardware resource disaggregation
brings, such as network communication overhead across
disaggregated hardware components, fault tolerance of
hardware components, and the resource management of
distributed components. Monolithic kernels, microker-
nels [36], and exokernels [37] run one OS on a mono-
lithic machine, and the OS assumes local accesses to
shared main memory, storage devices, network inter-
faces, and other hardware resources in the machine. Af-
ter disaggregating hardware resources, it may be viable
to run the OS at a processor and remotely manage all
other hardware components. However, remote man-
agement requires significant amount of network traffic,
and when processors fail, other components are unus-
able. Multi-kernel OSes [21, 26, 76, 106] run a kernel
at each processor (or core) in a monolithic computer and
these per-processor kernels communicate with each other
through message passing. Multi-kernels still assume lo-
cal accesses to hardware resources in a monolithic ma-
chine and their message passing is over local buses in-
stead of a general network. While existing OSes could
be retrofitted to support hardware resource disaggrega-
tion, such retrofitting will be invasive to the central sub-
systems of an OS, such as memory and I/O management.

We propose splitkernel, a new OS architecture for
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hardware resource disaggregation (Figure 3). The basic
idea is simple: When hardware is disaggregated, the OS
should be also. A splitkernel breaks traditional operat-
ing system functionalities into loosely-coupled monitors,
each running at and managing a hardware component.
Monitors in a splitkernel can be heterogeneous and can
be added, removed, and restarted dynamically without
affecting the rest of the system. Each splitkernel monitor
operates locally for its own functionality and only com-
municates with other monitors when there is a need to
access resources there. There are only two global tasks
in a splitkernel: orchestrating resource allocation across
components and handling component failure.

We choose not to support coherence across different
components in a splitkernel. A splitkernel can use any
general network to connect its hardware components. All
monitors in a splitkernel communicate with each other
via network messaging only. With our targeted scale, ex-
plicit message passing is much more efficient in network
bandwidth consumption than the alternative of implicitly
maintaining cross-component coherence.

Following the splitkernel model, we built LegoOS, the
first OS designed for hardware resource disaggregation.
LegoOS is a distributed OS that appears to applications
as a set of virtual servers (called vNodes). A vNode can
run on multiple processor, memory, and storage compo-
nents and one component can host resources for multiple
vNodes. LegoOS cleanly separates OS functionalities
into three types of monitors, process monitor, memory
monitor, and storage monitor. LegoOS monitors share
no or minimal states and use a customized RDMA-based
network stack to communicate with each other.

The biggest challenge and our focus in building Le-
goOS is the separation of processor and memory and
their management. Modern processors and OSes assume
all hardware memory units including main memory, page
tables, and TLB are local. Simply moving all memory
hardware and memory management software to across
the network will not work.

Based on application properties and hardware trends,
we propose a hardware plus software solution that
cleanly separates processor and memory functionalities,
while meeting application performance requirements.
LegoOS moves all memory hardware units to the disag-
gregated memory components and organizes all levels of

processor caches as virtual caches that are accessed us-
ing virtual memory addresses. To improve performance,
LegoOS uses a small amount (e.g., 4 GB) of DRAM or-
ganized as a virtual cache below current last-level cache.

LegoOS process monitor manages application pro-
cesses and the extended DRAM-cache. Memory mon-
itor manages all virtual and physical memory space al-
location and address mappings. LegoOS uses a novel
two-level distributed virtual memory space management
mechanism, which ensures efficient foreground mem-
ory accesses and balances load and space utilization
at allocation time. Finally, LegoOS uses a space-
and performance-efficient memory replication scheme to
handle memory failure.

We implemented LegoOS on the x86-64 architecture.
LegoOS is fully backward compatible with Linux ABIs
by supporting common Linux system call APIs. To
evaluate LegoOS, we emulate disaggregated hardware
components using commodity servers. We evaluated
LegoOS with microbenchmarks, the PARSEC bench-
marks [22], and two unmodified datacenter applications,
Phoenix [85] and TensorFlow [4]. Our evaluation re-
sults show that compared to monolithic Linux servers
that can hold all the working sets of these applications,
LegoOS is only 1.3× to 1.7× slower with 25% of appli-
cation working set available as DRAM cache at proces-
sor components. Compared to monolithic Linux servers
whose main memory size is the same as LegoOS’ DRAM
cache size and which use local SSD/DRAM swapping
or network swapping, LegoOS’ performance is 0.8× to
3.2×. At the same time, LegoOS largely improves re-
source packing and reduces system mean time to failure.

Overall, this work makes the following contributions:

• We propose the concept of splitkernel, a new OS ar-
chitecture that fits the hardware resource disaggre-
gation architecture.

• We built LegoOS, the first OS that runs on and man-
ages a disaggregated hardware cluster.

• We propose a new hardware architecture to cleanly
separate processor and memory hardware function-
alities, while preserving most of the performance of
monolithic server architecture.

LegoOS is publicly available at http://LegoOS.io.
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Figure 4: Datacenter Resource Utilization.

2 Disaggregate Hardware Resource
This section motivates the hardware resource disaggre-
gation architecture and discusses the challenges in man-
aging disaggregated hardware.

2.1 Limitations of Monolithic Servers
A monolithic server has been the unit of deployment and
operation in datacenters for decades. This long-standing
server-centric architecture has several key limitations.
Inefficient resource utilization. With a server being the
physical boundary of resource allocation, it is difficult
to fully utilize all resources in a datacenter [18, 33, 65].
We analyzed two production cluster traces: a 29-day
Google one [45] and a 12-hour Alibaba one [10]. Fig-
ure 4 plots the aggregated CPU and memory utilization
in the two clusters. For both clusters, only around half of
the CPU and memory are utilized. Interestingly, a signif-
icant amount of jobs are being evicted at the same time
in these traces (e.g., evicting low-priority jobs to make
room for high-priority ones [102]). One of the main
reasons for resource underutilization in these production
clusters is the constraint that CPU and memory for a job
have to be allocated from the same physical machine.
Poor hardware elasticity. It is difficult to add, move,
remove, or reconfigure hardware components after they
have been installed in a monolithic server [39]. Because
of this rigidity, datacenter owners have to plan out server
configurations in advance. However, with today’s speed
of change in application requirements, such plans have
to be adjusted frequently, and when changes happen, it
often comes with waste in existing server hardware.
Coarse failure domain. The failure unit of monolithic
servers is coarse. When a hardware component within a
server fails, the whole server is often unusable and ap-
plications running on it can all crash. Previous analy-
sis [90] found that motherboard, memory, CPU, power
supply failures account for 50% to 82% of hardware fail-
ures in a server. Unfortunately, monolithic servers cannot
continue to operate when any of these devices fail.
Bad support for heterogeneity. Driven by application
needs, new hardware technologies are finding their ways
into modern datacenters [94]. Datacenters no longer
host only commodity servers with CPU, DRAM, and
hard disks. They include non-traditional and special-
ized hardware like GPGPU [11, 46], TPU [55], DPU [5],

FPGA [12, 84], non-volatile memory [49], and NVMe-
based SSDs [98]. The monolithic server model tightly
couples hardware devices with each other and with a
motherboard. As a result, making new hardware devices
work with existing servers is a painful and lengthy pro-
cess [84]. Mover, datacenters often need to purchase new
servers to host certain hardware. Other parts of the new
servers can go underutilized and old servers need to retire
to make room for new ones.

2.2 Hardware Resource Disaggregation
The server-centric architecture is a bad fit for the fast-
changing datacenter hardware, software, and cost needs.
There is an emerging interest in utilizing resources be-
yond a local machine [41], such as distributed mem-
ory [7, 34, 74, 79] and network swapping [47]. These so-
lutions improve resource utilization over traditional sys-
tems. However, they cannot solve all the issues of mono-
lithic servers (e.g., the last three issues in §2.1), since
their hardware model is still a monolithic one. To fully
support the growing heterogeneity in hardware and to
provide elasticity and flexibility at the hardware level, we
should break the monolithic server model.

We envision a hardware resource disaggregation
architecture where hardware resources in traditional
servers are disseminated into network-attached hardware
components. Each component has a controller and a net-
work interface, can operate on its own, and is an inde-
pendent, failure-isolated entity.

The disaggregated approach largely increases the flex-
ibility of a datacenter. Applications can freely use re-
sources from any hardware component, which makes re-
source allocation easy and efficient. Different types of
hardware resources can scale independently. It is easy to
add, remove, or reconfigure components. New types of
hardware components can easily be deployed in a data-
center — by simply enabling the hardware to talk to the
network and adding a new network link to connect it.
Finally, hardware resource disaggregation enables fine-
grain failure isolation, since one component failure will
not affect the rest of a cluster.

Three hardware trends are making resource disag-
gregation feasible in datacenters. First, network speed
has grown by more than an order of magnitude and
has become more scalable in the past decade with
new technologies like Remote Direct Memory Access
(RDMA) [69] and new topologies and switches [15, 30,
31], enabling fast accesses of hardware components that
are disaggregated across the network. InfiniBand will
soon reach 200Gbps and sub-600 nanosecond speed [66],
being only 2× to 4× slower than main memory bus in
bandwidth. With main memory bus facing a bandwidth
wall [87], future network bandwidth (at line rate) is even
projected to exceed local DRAM bandwidth [99].
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Second, network interfaces are moving closer to hard-
ware components, with technologies like Intel Omni-
Path [50], RDMA [69], and NVMe over Fabrics [29, 71].
As a result, hardware devices will be able to access net-
work directly without the need to attach any processors.

Finally, hardware devices are incorporating more pro-
cessing power [8, 9, 23, 67, 68, 75], allowing application
and OS logics to be offloaded to hardware [57, 92]. On-
device processing power will enable system software to
manage disaggregated hardware components locally.

With these hardware trends and the limitations of
monolithic servers, we believe that future datacenters
will be able to largely benefit from hardware resource
disaggregation. In fact, there have already been several
initial hardware proposals in resource disaggregation [1],
including disaggregated memory [63, 77, 78], disaggre-
gated flash [59, 60], Intel Rack-Scale System [51], HP
“The Machine” [40, 48], IBM Composable System [28],
and Berkeley Firebox [15].

2.3 OSes for Resource Disaggregation
Despite various benefits hardware resource disaggrega-
tion promises, it is still unclear how to manage or utilize
disaggregated hardware in a datacenter. Unfortunately,
existing OSes and distributed systems cannot work well
with this new architecture. Single-node OSes like Linux
view a server as the unit of management and assume all
hardware components are local (Figure 1). A potential
approach is to run these OSes on processors and access
memory, storage, and other hardware resources remotely.
Recent disaggregated systems like soNUMA [78] take
this approach. However, this approach incurs high net-
work latency and bandwidth consumption with remote
device management, misses the opportunity of exploit-
ing device-local computation power, and makes proces-
sors the single point of failure.

Multi-kernel solutions [21, 26, 76, 106, 107] (Figure 2)
view different cores, processors, or programmable de-
vices within a server separately by running a kernel on
each core/device and using message passing to commu-
nicate across kernels. These kernels still run in a single
server and all access some common hardware resources
in the server like memory and the network interface.
Moreover, they do not manage distributed resources or
handle failures in a disaggregated cluster.

There have been various distributed OS proposals,
most of which date decades back [16, 82, 97]. Most of
these distributed OSes manage a set of monolithic servers
instead of hardware components.

Hardware resource disaggregation is fundamentally
different from the traditional monolithic server model.
A complete disaggregation of processor, memory, and
storage means that when managing one of them, there
will be no local accesses to the other two. For example,

processors will have no local memory or storage to store
user or kernel data. An OS also needs to manage dis-
tributed hardware resource and handle hardware compo-
nent failure. We summarize the following key challenges
in building an OS for resource disaggregation, some of
which have previously been identified [40].

• How to deliver good performance when appli-
cation execution involves the access of network-
partitioned disaggregated hardware and current net-
work is still slower than local buses?

• How to locally manage individual hardware compo-
nents with limited hardware resources?

• How to manage distributed hardware resources?

• How to handle a component failure without affect-
ing other components or running applications?

• What abstraction should be exposed to users and
how to support existing datacenter applications?

Instead of retrofitting existing OSes to confront these
challenges, we take the approach of designing a new OS
architecture from the ground up for hardware resource
disaggregation.

3 The Splitkernel OS Architecture
We propose splitkernel, a new OS architecture for re-
source disaggregation. Figure 3 illustrates splitkernel’s
overall architecture. The splitkernel disseminates an OS
into pieces of different functionalities, each running at
and managing a hardware component. All components
communicate by message passing over a common net-
work, and splitkernel globally manages resources and
component failures. Splitkernel is a general OS architec-
ture we propose for hardware resource disaggregation.
There can be many types of implementation of splitk-
ernel. Further, we make no assumption on the specific
hardware or network type in a disaggregated cluster a
splitkernel runs on. Below, we describe four key con-
cepts of the splitkernel architecture.
Split OS functionalities. Splitkernel breaks traditional
OS functionalities into monitors. Each monitor man-
ages a hardware component, virtualizes and protects its
physical resources. Monitors in a splitkernel are loosely-
coupled and they communicate with other monitors to
access remote resources. For each monitor to operate on
its own with minimal dependence on other monitors, we
use a stateless design by sharing no or minimal states, or
metadata, across monitors.
Run monitors at hardware components. We expect each
non-processor hardware component in a disaggregated
cluster to have a controller that can run a monitor. A
hardware controller can be a low-power general-purpose
core, an ASIC, or an FPGA. Each monitor in a splitkernel
can use its own implementation to manage the hardware
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component it runs on. This design makes it easy to in-
tegrate heterogeneous hardware in datacenters — to de-
ploy a new hardware device, its developers only need to
build the device, implement a monitor to manage it, and
attach the device to the network. Similarly, it is easy to
reconfigure, restart, and remove hardware components.
Message passing across non-coherent components. Un-
like other proposals of disaggregated systems [48] that
rely on coherent interconnects [24, 42, 81], a splitker-
nel runs on general-purpose network layer like Ether-
net and neither underlying hardware nor the splitkernel
provides cache coherence across components. We made
this design choice mainly because maintaining coher-
ence for our targeted cluster scale would cause high net-
work bandwidth consumption. Instead, all communica-
tion across components in a splitkernel is through net-
work messaging. A splitkernel still retains the coherence
guarantee that hardware already provides within a com-
ponent (e.g., cache coherence across cores in a CPU),
and applications running on top of a splitkernel can use
message passing to implement their desired level of co-
herence for their data across components.
Global resource management and failure handling. One
hardware component can host resources for multiple ap-
plications and its failure can affect all these applica-
tions. In addition to managing individual components,
the splitkernel also needs to globally manage resources
and failure. To minimize performance and scalability
bottleneck, the splitkernel only involves global resource
management occasionally for coarse-grained decisions,
while individual monitors make their own fine-grained
decisions. The splitkernel handles component failure by
adding redundancy for recovery.

4 LegoOS Design
Based on the splitkernel architecture, we built LegoOS,
the first OS designed for hardware resource disaggrega-
tion. LegoOS is a research prototype that demonstrates
the feasibility of the splitkernel design, but it is not the
only way to build a splitkernel. LegoOS’ design targets
three types of hardware components: processor, mem-
ory, and storage, and we call them pComponent, mCom-
ponent, and sComponent.

This section first introduces the abstraction LegoOS
exposes to users and then describes the hardware archi-
tecture of components LegoOS runs on. Next, we ex-
plain the design of LegoOS’ process, memory, and stor-
age monitors. Finally, we discuss LegoOS’ global re-
source management and failure handling mechanisms.

Overall, LegoOS achieves the following design goals:

• Clean separation of process, memory, and storage
functionalities.
• Monitors run at hardware components and fit device

constraints.

• Comparable performance to monolithic Linux
servers.
• Efficient resource management and memory failure

handling, both in space and in performance.
• Easy-to-use, backward compatible user interface.
• Supports common Linux system call interfaces.

4.1 Abstraction and Usage Model
LegoOS exposes a distributed set of virtual nodes, or vN-
ode, to users. From users’ point of view, a vNode is like
a virtual machine. Multiple users can run in a vNode
and each user can run multiple processes. Each vNode
has a unique ID, a unique virtual IP address, and its own
storage mount point. LegoOS protects and isolates the
resources given to each vNode from others. Internally,
one vNode can run on multiple pComponents, multiple
mComponents, and multiple sComponents. At the same
time, each hardware component can host resources for
more than one vNode. The internal execution status is
transparent to LegoOS users; they do not know which
physical components their applications run on.

With splitkernel’s design principle of components not
being coherent, LegoOS does not support writable shared
memory across processors. LegoOS assumes that threads
within the same process access shared memory and
threads belonging to different processes do not share
writable memory, and LegoOS makes scheduling deci-
sion based on this assumption (§4.3.1). Applications that
use shared writable memory across processes (e.g., with
MAP SHARED) will need to be adapted to use message
passing across processes. We made this decision be-
cause writable shared memory across processes is rare
(we have not seen a single instance in the datacenter
applications we studied), and supporting it makes both
hardware and software more complex (in fact, we have
implemented this support but later decided not to include
it because of its complexity).

One of the initial decisions we made when building
LegoOS is to support the Linux system call interface
and unmodified Linux ABI, because doing so can greatly
ease the adoption of LegoOS. Distributed applications
that run on Linux can seamlessly run on a LegoOS clus-
ter by running on a set of vNodes.

4.2 Hardware Architecture
LegoOS pComponent, mComponent, and sComponent
are independent devices, each having their own hard-
ware controller and network interface (for pComponent,
the hardware controller is the processor itself). Our cur-
rent hardware model uses CPU in pComponent, DRAM
in mComponent, and SSD or HDD in sComponent. We
leave exploring other hardware devices for future work.

To demonstrate the feasibility of hardware resource
disaggregation, we propose a pComponent and an
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mComponent architecture designed within today’s net-
work, processor, and memory performance and hardware
constraints (Figure 5).
Separating process and memory functionalities. LegoOS
moves all hardware memory functionalities to mCompo-
nents (e.g., page tables, TLBs) and leaves only caches at
the pComponent side. With a clean separation of process
and memory hardware units, the allocation and manage-
ment of memory can be completely transparent to pCom-
ponents. Each mComponent can choose its own memory
allocation technique and virtual to physical memory ad-
dress mappings (e.g., segmentation).
Processor virtual caches. After moving all memory
functionalities to mComponents, pComponents will only
see virtual addresses and have to use virtual memory ad-
dresses to access its caches. Because of this, LegoOS
organizes all levels of pComponent caches as virtual
caches [44, 104], i.e., virtually-indexed and virtually-
tagged caches.

A virtual cache has two potential problems, commonly
known as synonyms and homonyms [95]. Synonyms
happens when a physical address maps to multiple virtual
addresses (and thus multiple virtual cache lines) as a re-
sult of memory sharing across processes, and the update
of one virtual cache line will not reflect to other lines that
share the data. Since LegoOS does not allow writable
inter-process memory sharing, it will not have the syn-
onym problem. The homonym problem happens when
two address spaces use the same virtual address for their
own different data. Similar to previous solutions [20], we
solve homonyms by storing an address space ID (ASID)
with each cache line, and differentiate a virtual address
in different address spaces using ASIDs.
Separating memory for performance and for capacity.
Previous studies [41, 47] and our own show that today’s
network speed cannot meet application performance re-
quirements if all memory accesses are across the net-
work. Fortunately, many modern datacenter applications
exhibit strong memory access temporal locality. For ex-
ample, we found 90% of memory accesses in Power-
Graph [43] go to just 0.06% of total memory and 95% go
to 3.1% of memory (22% and 36% for TensorFlow [4]
respectively, 5.1% and 6.6% for Phoenix [85]).

With good memory-access locality, we propose to

leave a small amount of memory (e.g., 4 GB) at each
pComponent and move most memory across the network
(e.g., few TBs per mComponent). pComponents’ local
memory can be regular DRAM or the on-die HBM [53,
72], and mComponents use DRAM or NVM.

Different from previous proposals [63], we propose
to organize pComponents’ DRAM/HBM as cache rather
than main memory for a clean separation of process and
memory functionalities. We place this cache under the
current processor Last-Level Cache (LLC) and call it an
extended cache, or ExCache. ExCache serves as another
layer in the memory hierarchy between LLC and mem-
ory across the network. With this design, ExCache can
serve hot memory accesses fast, while mComponents can
provide the capacity applications desire.

ExCache is a virtual, inclusive cache, and we use a
combination of hardware and software to manage Ex-
Cache. Each ExCache line has a (virtual-address) tag and
two access permission bits (one for read/write and one
for valid). These bits are set by software when a line is
inserted to ExCache and checked by hardware at access
time. For best hit performance, the hit path of ExCache is
handled purely by hardware — the hardware cache con-
troller maps a virtual address to an ExCache set, fetches
and compares tags in the set, and on a hit, fetches the hit
ExCache line. Handling misses of ExCache is more com-
plex than with traditional CPU caches, and thus we use
LegoOS to handle the miss path of ExCache (see §4.3.2).

Finally, we use a small amount of DRAM/HBM at
pComponent for LegoOS’ own kernel data usages, ac-
cessed directly with physical memory addresses and
managed by LegoOS. LegoOS ensures that all its own
data fits in this space to avoid going to mComponents.

With our design, pComponents do not need any ad-
dress mappings: LegoOS accesses all pComponent-
side DRAM/HBM using physical memory addresses and
does simple calculations to locate the ExCache set for a
memory access. Another benefit of not handling address
mapping at pComponents and moving TLBs to mCom-
ponents is that pComponents do not need to access TLB
or suffer from TLB misses, potentially making pCompo-
nent cache accesses faster [58].

4.3 Process Management
The LegoOS process monitor runs in the kernel space
of a pComponent and manages the pComponent’s CPU
cores and ExCache. pComponents run user programs in
the user space.

4.3.1 Process Management and Scheduling

At every pComponent, LegoOS uses a simple local
thread scheduling model that targets datacenter applica-
tions (we will discuss global scheduling in § 4.6). Le-
goOS dedicates a small amount of cores for kernel back-
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ground threads (currently two to four) and uses the rest
of the cores for application threads. When a new process
starts, LegoOS uses a global policy to choose a pCom-
ponent for it (§ 4.6). Afterwards, LegoOS schedules new
threads the process spawns on the same pComponent by
choosing the cores that host fewest threads. After assign-
ing a thread to a core, we let it run to the end with no
scheduling or kernel preemption under common scenar-
ios. For example, we do not use any network interrupts
and let threads busy wait on the completion of outstand-
ing network requests, since a network request in LegoOS
is fast (e.g., fetching an ExCache line from an mCompo-
nent takes around 6.5µs). LegoOS improves the overall
processor utilization in a disaggregated cluster, since it
can freely schedule processes on any pComponents with-
out considering memory allocation. Thus, we do not
push for perfect core utilization when scheduling indi-
vidual threads and instead aim to minimize scheduling
and context switch performance overheads. Only when a
pComponent has to schedule more threads than its cores
will LegoOS start preempting threads on a core.

4.3.2 ExCache Management

LegoOS process monitor configures and manages Ex-
Cache. During the pComponent’s boot time, LegoOS
configures the set associativity of ExCache and its cache
replacement policy. While ExCache hit is handled com-
pletely in hardware, LegoOS handles misses in software.
When an ExCache miss happens, the process monitor
fetches the corresponding line from an mComponent and
inserts it to ExCache. If the ExCache set is full, the
process monitor first evicts a line in the set. It throws
away the evicted line if it is clean and writes it back to
an mComponent if it is dirty. LegoOS currently supports
two eviction policies: FIFO and LRU. For each ExCache
set, LegoOS maintains a FIFO queue (or an approximate
LRU list) and chooses ExCache lines to evict based on
the corresponding policy (see §5.3 for details).

4.3.3 Supporting Linux Syscall Interface

One of our early decisions is to support Linux ABIs for
backward compatibility and easy adoption of LegoOS. A
challenge in supporting the Linux system call interface
is that many Linux syscalls are associated with states, in-
formation about different Linux subsystems that is stored
with each process and can be accessed by user programs
across syscalls. For example, Linux records the states
of a running process’ open files, socket connections, and
several other entities, and it associates these states with
file descriptors (fds) that are exposed to users. In contrast,
LegoOS aims at the clean separation of OS functionali-
ties. With LegoOS’ stateless design principle, each com-
ponent only stores information about its own resource
and each request across components contains all the in-

formation that the destination component needs to handle
the request. To solve this discrepancy between the Linux
syscall interface and LegoOS’ design, we add a layer on
top of LegoOS’ core process monitor at each pCompo-
nent to store Linux states and translate these states and
the Linux syscall interface to LegoOS’ internal interface.

4.4 Memory Management
We use mComponents for three types of data: anony-
mous memory (i.e., heaps, stacks), memory-mapped
files, and storage buffer caches. The LegoOS memory
monitor manages both the virtual and physical memory
address spaces, their allocation, deallocation, and mem-
ory address mappings. It also performs the actual mem-
ory read and write. No user processes run on mCompo-
nents and they run completely in the kernel mode (same
is true for sComponents).

LegoOS lets a process address space span multiple
mComponents to achieve efficient memory space uti-
lization and high parallelism. Each application process
uses one or more mComponents to host its data and a
home mComponent, an mComponent that initially loads
the process, accepts and oversees all system calls related
to virtual memory space management (e.g., brk, mmap,
munmap, and mremap). LegoOS uses a global memory
resource manager (GMM) to assign a home mCompo-
nent to each new process at its creation time. A home
mComponent can also host process data.

4.4.1 Memory Space Management

Virtual memory space management. We propose a two-
level approach to manage distributed virtual memory
spaces, where the home mComponent of a process makes
coarse-grained, high-level virtual memory allocation de-
cisions and other mComponents perform fine-grained
virtual memory allocation. This approach minimizes net-
work communication during both normal memory ac-
cesses and virtual memory operations, while ensuring
good load balancing and memory utilization. Figure 6
demonstrates the data structures used.

At the higher level, we split each virtual memory ad-
dress space into coarse-grained, fix-sized virtual regions,
or vRegions (e.g., of 1 GB). Each vRegion that contains
allocated virtual memory addresses (an active vRegion)
is owned by an mComponent. The owner of a vRe-
gion handles all memory accesses and virtual memory
requests within the vRegion.

The lower level stores user process virtual memory
area (vma) information, such as virtual address ranges
and permissions, in vma trees. The owner of an active
vRegion stores a vma tree for the vRegion, with each
node in the tree being one vma. A user-perceived virtual
memory range can split across multiple mComponents,
but only one mComponent owns a vRegion.
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Figure 6: Distributed Memory Management.

vRegion owners perform the actual virtual memory al-
location and vma tree set up. A home mComponent can
also be the owner of vRegions, but the home mCom-
ponent does not maintain any information about mem-
ory that belongs to vRegions owned by other mCompo-
nents. It only keeps the information of which mCompo-
nent owns a vRegion (in a vRegion array) and how much
free virtual memory space is left in each vRegion. These
metadata can be easily reconstructed if a home mCom-
ponent fails.

When an application process wants to allocate a virtual
memory space, the pComponent forwards the allocation
request to its home mComponent ( 1 in Figure 6). The
home mComponent uses its stored information of avail-
able virtual memory space in vRegions to find one or
more vRegions that best fit the requested amount of vir-
tual memory space. If no active vRegion can fit the allo-
cation request, the home mComponent makes a new vRe-
gion active and contacts the GMM ( 2 and 3 ) to find a
candidate mComponent to own the new vRegion. GMM
makes this decision based on available physical memory
space and access load on different mComponents (§ 4.6).
If the candidate mComponent is not the home mCompo-
nent, the home mComponent next forwards the request
to that mComponent ( 4 ), which then performs local vir-
tual memory area allocation and sets up the proper vma
tree. Afterwards, the pComponent directly sends mem-
ory access requests to the owner of the vRegion where
the memory access falls into (e.g., a and c in Figure 6).

LegoOS’ mechanism of distributed virtual memory
management is efficient and it cleanly separates mem-
ory operations from pComponents. pComponents hand
over all memory-related system call requests to mCom-
ponents and only cache a copy of the vRegion array for
fast memory accesses. To fill a cache miss or to flush a
dirty cache line, a pComponent looks up the cached vRe-
gion array to find its owner mComponent and sends the
request to it.
Physical memory space management. Each mCompo-
nent manages the physical memory allocation for data
that falls into the vRegion that it owns. Each mCompo-
nent can choose their own way of physical memory allo-
cation and own mechanism of virtual-to-physical mem-
ory address mapping.

4.4.2 Optimization on Memory Accesses

With our strawman memory management design, all
ExCache misses will go to mComponents. We soon
found that a large performance overhead in running real
applications is caused by filling empty ExCache, i.e.,
cold misses. To reduce the performance overhead of
cold misses, we propose a technique to avoid accessing
mComponent on first memory accesses.

The basic idea is simple: since the initial content of
anonymous memory (non-file-backed memory) is zero,
LegoOS can directly allocate a cache line with empty
content in ExCache for the first access to anonymous
memory instead of going to mComponent (we call such
cache lines p-local lines). When an application creates
a new anonymous memory region, the process monitor
records its address range and permission. The applica-
tion’s first access to this region will be an ExCache miss
and it will trap to LegoOS. LegoOS process monitor then
allocates an ExCache line, fills it with zeros, and sets its
R/W bit according to the recorded memory region’s per-
mission. Before this p-local line is evicted, it only lives
in the ExCache. No mComponents are aware of it or will
allocate physical memory or a virtual-to-physical mem-
ory mapping for it. When a p-local cache line becomes
dirty and needs to be flushed, the process monitor sends
it to its owner mComponent, which then allocates phys-
ical memory space and establishes a virtual-to-physical
memory mapping. Essentially, LegoOS delays physi-
cal memory allocation until write time. Notice that it is
safe to only maintain p-local lines at a pComponent Ex-
Cache without any other pComponents knowing them,
since pComponents in LegoOS do not share any memory
and other pComponents will not access this data.

4.5 Storage Management
LegoOS supports a hierarchical file interface that is back-
ward compatible with POSIX through its vNode abstrac-
tion. Users can store their directories and files under their
vNodes’ mount points and perform normal read, write,
and other accesses to them.

LegoOS implements core storage functionalities at
sComponents. To cleanly separate storage functionali-
ties, LegoOS uses a stateless storage server design, where
each I/O request to the storage server contains all the
information needed to fulfill this request, e.g., full path
name, absolute file offset, similar to the server design in
NFS v2 [89].

While LegoOS supports a hierarchical file use inter-
face, internally, LegoOS storage monitor treats (full) di-
rectory and file paths just as unique names of a file and
place all files of a vNode under one internal directory at
the sComponent. To locate a file, LegoOS storage moni-
tor maintains a simple hash table with the full paths of
files (and directories) as keys. From our observation,
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most datacenter applications only have a few hundred
files or less. Thus, a simple hash table for a whole vNode
is sufficient to achieve good lookup performance. Using
a non-hierarchical file system implementation largely re-
duces the complexity of LegoOS’ file system, making it
possible for a storage monitor to fit in storage devices
controllers that have limited processing power [92].

LegoOS places the storage buffer cache at mCompo-
nents rather than at sComponents, because sComponents
can only host a limited amount of internal memory. Le-
goOS memory monitor manages the storage buffer cache
by simply performing insertion, lookup, and deletion of
buffer cache entries. For simplicity and to avoid coher-
ence traffic, we currently place the buffer cache of one
file under one mComponent. When receiving a file read
system call, the LegoOS process monitor first uses its
extended Linux state layer to look up the full path name,
then passes it with the requested offset and size to the
mComponent that holds the file’s buffer cache. This
mComponent will look up the buffer cache and returns
the data to pComponent on a hit. On a miss, mCom-
ponent will forward the request to the sComponent that
stores the file, which will fetch the data from storage de-
vice and return it to the mComponent. The mComponent
will then insert it into the buffer cache and returns it to the
pComponent. Write and fsync requests work in a similar
fashion.

4.6 Global Resource Management
LegoOS uses a two-level resource management mecha-
nism. At the higher level, LegoOS uses three global re-
source managers for process, memory, and storage re-
sources, GPM, GMM, and GSM. These global managers
perform coarse-grained global resource allocation and
load balancing, and they can run on one normal Linux
machine. Global managers only maintain approximate
resource usage and load information. They update their
information either when they make allocation decisions
or by periodically asking monitors in the cluster. At the
lower level, each monitor can employ its own policies
and mechanisms to manage its local resources.

For example, process monitors allocate new threads
locally and only ask GPM when they need to create a
new process. GPM chooses the pComponent that has the
least amount of threads based on its maintained approxi-
mate information. Memory monitors allocate virtual and
physical memory space on their own. Only home mCom-
ponent asks GMM when it needs to allocate a new vRe-
gion. GMM maintains approximate physical memory
space usages and memory access load by periodically
asking mComponents and chooses the memory with least
load among all the ones that have at least vRegion size of
free physical memory.

LegoOS decouples the allocation of different re-

sources and can freely allocate each type of resource
from a pool of components. Doing so largely improves
resource packing compared to a monolithic server cluster
that packs all type of resources a job requires within one
physical machine. Also note that LegoOS allocates hard-
ware resources only on demand, i.e., when applications
actually create threads or access physical memory. This
on-demand allocation strategy further improves LegoOS’
resource packing efficiency and allows more aggressive
over-subscription in a cluster.

4.7 Reliability and Failure Handling
After disaggregation, pComponents, mComponents, and
sComponents can all fail independently. Our goal is to
build a reliable disaggregated cluster that has the same
or lower application failure rate than a monolithic clus-
ter. As a first (and important) step towards achieving
this goal, we focus on providing memory reliability by
handling mComponent failure in the current version of
LegoOS because of three observations. First, when dis-
tributing an application’s memory to multiple mCompo-
nents, the probability of memory failure increases and
not handling mComponent failure will cause applications
to fail more often on a disaggregated cluster than on
monolithic servers. Second, since most modern datacen-
ter applications already provide reliability to their dis-
tributed storage data and the current version of LegoOS
does not split a file across sComponent, we leave provid-
ing storage reliability to applications. Finally, since Le-
goOS does not split a process across pComponents, the
chance of a running application process being affected by
the failure of a pComponent is similar to one affected by
the failure of a processor in a monolithic server. Thus,
we currently do not deal with pComponent failure and
leave it for future work.

A naive approach to handle memory failure is to per-
form a full replication of memory content over two or
more mComponents. This method would require at least
2×memory space, making the monetary and energy cost
of providing reliability prohibitively high (the same rea-
son why RAMCloud [80] does not replicate in memory).
Instead, we propose a space- and performance-efficient
approach to provide in-memory data reliability in a best-
effort way. Further, since losing in-memory data will not
affect user persistent data, we propose to provide mem-
ory reliability in a best-effort manner.

We use one primary mComponent, one secondary
mComponent, and a backup file in sComponent for each
vma. A mComponent can serve as the primary for some
vma and the secondary for others. The primary stores
all memory data and metadata. LegoOS maintains a
small append-only log at the secondary mComponent
and also replicates the vma tree there. When pCompo-
nent flushes a dirty ExCache line, LegoOS sends the data
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to both primary and secondary in parallel (step a and
b in Figure 6) and waits for both to reply ( c and d ).

In the background, the secondary mComponent flushes
the backup log to a sComponent, which writes it to an
append-only file.

If the flushing of a backup log to sComponent is slow
and the log is full, we will skip replicating application
memory. If the primary fails during this time, LegoOS
simply reports an error to application. Otherwise when a
primary mComponent fails, we can recover memory con-
tent by replaying the backup logs on sComponent and in
the secondary mComponent. When a secondary mCom-
ponent fails, we do not reconstruct anything and start
replicating to a new backup log on another mComponent.

5 LegoOS Implementation
We implemented LegoOS in C on the x86-64 architec-
ture. LegoOS can run on commodity, off-the-shelf ma-
chines and support most commonly-used Linux system
call APIs. Apart from being a proof-of-concept of the
splitkernel OS architecture, our current LegoOS imple-
mentation can also be used on existing datacenter servers
to reduce the energy cost, with the help of techniques
like Zombieland [77]. Currently, LegoOS has 206K
SLOC, with 56K SLOC for drivers. LegoOS supports
113 syscalls, 15 pseudo-files, and 10 vectored syscall op-
codes. Similar to the findings in [100], we found that
implementing these Linux interfaces are sufficient to run
many unmodified datacenter applications.

5.1 Hardware Emulation
Since there is no real resource disaggregation hardware,
we emulate disaggregated hardware components using
commodity servers by limiting their internal hardware
usages. For example, to emulate controllers for mCom-
ponents and sComponents, we limit the usable cores of
a server to two. To emulate pComponents, we limit the
amount of usable main memory of a server and configure
it as LegoOS software-managed ExCache.

5.2 Network Stack
We implemented three network stacks in LegoOS. The
first is a customized RDMA-based RPC framework we
implemented based on LITE [101] on top of the Mel-
lanox mlx4 InfiniBand driver we ported from Linux. Our
RDMA RPC implementation registers physical memory
addresses with RDMA NICs and thus eliminates the need
for NICs to cache physical-to-virtual memory address
mappings [101]. The resulting smaller NIC SRAM can
largely reduce the monetary cost of NICs, further saving
the total cost of a LegoOS cluster. All LegoOS internal
communications use this RPC framework. For best la-
tency, we use one dedicated polling thread at RPC server
side to keep polling incoming requests. Other thread(s)

(which we call worker threads) execute the actual RPC
functions. For each pair of components, we use one
physically consecutive memory region at a component
to serve as the receive buffer for RPC requests. The
RPC client component uses RDMA write with immedi-
ate value to directly write into the memory region and
the polling thread polls for the immediate value to get the
metadata information about the RPC request (e.g., where
the request is written to in the memory region). Immedi-
ately after getting an incoming request, the polling thread
passes it along to a work queue and continues to poll for
the next incoming request. Each worker thread checks
if the work queue is not empty and if so, gets an RPC
request to process. Once it finishes the RPC function,
it sends the return value back to the RPC client with an
RDMA write to a memory address at the RPC client. The
RPC client allocates this memory address for the return
value before sending the RPC request and piggy-backs
the memory address with the RPC request.

The second network stack is our own implementation
of the socket interface directly on RDMA. The final stack
is a traditional socket TCP/IP stack we adapted from
lwip [35] on our ported e1000 Ethernet driver. Applica-
tions can choose between these two socket implementa-
tions and use virtual IPs for their socket communication.

5.3 Processor Monitor
We reserve a contiguous physical memory region dur-
ing kernel boot time and use fixed ranges of memory
in this region as ExCache, tags and metadata for these
caches, and kernel physical memory. We organize Ex-
Cache into virtually indexed sets with a configurable set
associativity. Since x86 (and most other architectures)
uses hardware-managed TLB and walks page table di-
rectly after TLB misses, we have to use paging and the
only chance we can trap to OS is at page fault time. We
thus use paged memory to emulate ExCache, with each
ExCache line being a 4 KB page. A smaller ExCache line
size would improve the performance of fetching lines
from mComponents but increase the size of ExCache tag
array and the overhead of tag comparison.

An ExCache miss causes a page fault and traps to Le-
goOS. To minimize the overhead of context switches,
we use the application thread that faults on a ExCache
miss to perform ExCache replacement. Specifically, this
thread will identify the set to insert the missing page us-
ing its virtual memory address, evict a page in this set if it
is full, and if needed, flush a dirty page to mComponent
(via a LegoOS RPC call to the owner mComponent of the
vRegion this page is in). To minimize the network round
trip needed to complete a ExCache miss, we piggy-back
the request of dirty page flush and new page fetching in
one RPC call when the mComponent to be flushed to and
the mComponent to fetch the missing page are the same.
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LegoOS maintains an approximate LRU list for each
ExCache set and uses a background thread to sweep all
entries in ExCache and adjust LRU lists. LegoOS sup-
ports two ExCache replacement policies: FIFO and LRU.
For FIFO replacement, we simply maintain a FIFO queue
for each ExCache set and insert a corresponding entry to
the tail of the FIFO queue when an ExCache page is in-
serted into the set. Eviction victim is chosen as the head
of the FIFO queue. For LRU, we use one background
thread to sweep all sets of ExCache to adjust their LRU
lists. For both policies, we use a per-set lock and lock
the FIFO queue (or the LRU list) when making changes
to them.

5.4 Memory Monitor

We use regular machines to emulate mComponents by
limiting usable cores to a small number (2 to 5 depend-
ing on configuration). We dedicate one core to busy poll
network requests and the rest for performing memory
functionalities. The LegoOS memory monitor performs
all its functionalities as handlers of RPC requests from
pComponents. The memory monitor handles most of
these functionalities locally and sends another RPC re-
quest to a sComponent for storage-related functionalities
(e.g., when a buffer cache miss happens). LegoOS stores
application data, application memory address mappings,
vma trees, and vRegion arrays all in the main memory of
the emulating machine.

The memory monitor loads an application executable
from sComponents to the mComponent, handles applica-
tion virtual memory address allocation requests, allocates
physical memory at the mComponent, and reads/writes
data to the mComponent. Our current implementation of
memory monitor is purely in software, and we use hash
tables to implement the virtual-to-physical address map-
pings. While we envision future mComponents to imple-
ment memory monitors in hardware and to have special-
ized hardware parts to store address mappings, our cur-
rent software implementation can still be useful for users
that want to build software-managed mComponents.

5.5 Storage Monitor

Since storage is not the focus of the current version of
LegoOS, we chose a simple implementation of building
storage monitor on top of the Linux vfs layer as a load-
able Linux kernel module. LegoOS creates a normal file
over vfs as the mount partition for each vNode and issues
vfs file operations to perform LegoOS storage I/Os. Do-
ing so is sufficient to evaluate LegoOS, while largely sav-
ing our implementation efforts on storage device drivers
and layered storage protocols. We leave exploring other
options of building LegoOS storage monitor to future
work.

5.6 Experience and Discussion
We started our implementation of LegoOS from scratch
to have a clean design and implementation that can fit
the splitkernel model and to evaluate the efforts needed
in building different monitors. However, with the vast
amount and the complexity of drivers, we decided to port
Linux drivers instead of writing our own. We then spent
our engineering efforts on an “as needed” base and took
shortcuts by porting some of the Linux code. For exam-
ple, we re-used common algorithms and data structures
in Linux to easily port Linux drivers. We believe that be-
ing able to support largely unmodified Linux drivers will
assist the adoption of LegoOS.

When we started building LegoOS, we had a clear
goal of sticking to the principle of “clean separation of
functionalities”. However, we later found several places
where performance could be improved if this principle is
relaxed. For example, for the optimization in §4.4.2 to
work correctly, pComponent needs to store the address
range and permission for anonymous virtual memory re-
gions — memory-related information that otherwise only
mComponents need to know. Another example is the im-
plementation of mremap. With LegoOS’ principle of
mComponents handling all memory address allocations,
memory monitors will allocate new virtual memory ad-
dress ranges for mremap requests. However, when data
in the mremap region is in ExCache, LegoOS needs to
move it to another set if the new virtual address does not
fall into the current set. If mComponents are ExCache-
aware, they can choose the new virtual memory address
to fall into the same set as the current one. Our strategy
is to relax the clean-separation principle only by giving
“hints”, and only for frequently-accessed, performance-
critical operations.

6 Evaluation
This section presents the performance evaluation of Le-
goOS using micro- and macro-benchmarks and two un-
modified real applications. We also quantitatively ana-
lyze the failure rate of LegoOS. We ran all experiments
on a cluster of 10 machines, each with two Intel Xeon
CPU E5-2620 2.40GHz processors, 128 GB DRAM, and
one 40 Gbps Mellanox ConnectX-3 InfiniBand network
adapter; a Mellanox 40 Gbps InfiniBand switch connects
all of the machines. The Linux version we used for com-
parison is v4.9.47.

6.1 Micro- and Macro-benchmark Results
Network performance. Network communication is at the
core of LegoOS’ performance. Thus, we evaluate Le-
goOS’ network performance first before evaluating Le-
goOS as a whole. Figure 7 plots the average latency of
sending messages with socket-over-InfiniBand (Linux-
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IPoIB) in Linux, LegoOS’ implementation of socket on
top of InfiniBand (LegoOS-Sock-o-IB), and LegoOS’
implementation of RPC over InfiniBand (LegoOS-RPC-
IB). LegoOS uses LegoOS-RPC-IB for all its internal
network communication across components and uses
LegoOS-Sock-o-IB for all application-initiated socket
network requests. Both LegoOS’ networking stacks sig-
nificantly outperform Linux’s.
Memory performance. Next, we measure the perfor-
mance of mComponent using a multi-threaded user-level
micro-benchmark. In this micro-benchmark, each thread
performs one million sequential 4 KB memory loads in
a heap. We use a huge, empty ExCache (32 GB) to run
this test, so that each memory access can generate an Ex-
Cache (cold) miss and go to the mComponent.

Figure 8 compares LegoOS’ mComponent perfor-
mance with Linux’s single-node memory performance
using this workload. We vary the number of per-
mComponent worker threads from 1 to 8 with one and
two mComponents (only showing representative config-
urations in Figure 8). In general, using more worker
threads per mComponent and using more mComponents
both improve throughput when an application has high
parallelism, but the improvement largely diminishes af-
ter the total number of worker threads reaches four. We
also evaluated the optimization technique in § 4.4.2 (p-
local in Figure 8). As expected, bypassing mComponent
accesses with p-local lines significantly improves mem-
ory access performance. The difference between p-local
and Linux demonstrates the overhead of trapping to Le-
goOS kernel and setting up ExCache.
Storage performance. To measure the performance of
LegoOS’ storage system, we ran a single-thread micro-
benchmark that performs sequential and random 4 KB
read/write to a 25 GB file on a Samsung PM1725s NVMe
SSD (the total amount of data accessed is 1 GB). For
write workloads, we issue an fsync after each write to
test the performance of writing all the way to the SSD.

Figure 9 presents the throughput of this workload on
LegoOS and on single-node Linux. For LegoOS, we use
one mComponent to store the buffer cache of this file
and initialize the buffer cache to empty so that file I/Os
can go to the sComponent (Linux also uses an empty
buffer cache). Our results show that Linux’s performance
is determined by the SSD’s read/write bandwidth. Le-

goOS’ random read performance is close to Linux, since
network cost is relatively low compared to the SSD’s
random read performance. With better SSD sequential
read performance, network cost has a higher impact. Le-
goOS’ write-and-fsync performance is worse than Linux
because LegoOS requires one RTT between pCompo-
nent and mComponent to perform write and two RTTs
(pComponent to mComponent, mComponent to sCom-
ponent) for fsync.
PARSEC results. We evaluated LegoOS with a set
of workloads from the PARSEC benchmark suite [22],
including BlackScholes, Freqmine, and StreamCluster.
These workloads are a good representative of compute-
intensive datacenter applications, ranging from machine-
learning algorithms to streaming processing ones. Fig-
ure 10 presents the slowdown of LegoOS over single-
node Linux with enough memory for the entire applica-
tion working sets. LegoOS uses one pComponent with
128 MB ExCache, one mComponent with one worker
thread, and one sComponent for all the PARSEC tests.
For each workload, we tested one and four workload
threads. StreamCluster, a streaming workload, performs
the best because of its batching memory access pat-
tern (each batch is around 110 MB). BlackScholes and
Freqmine perform worse because of their larger work-
ing sets (630 MB to 785 MB). LegoOS performs worse
with higher workload threads, because the single worker
thread at the mComponent becomes the bottleneck to
achieving higher throughput.

6.2 Application Performance

We evaluated LegoOS’ performance with two real, un-
modified applications, TensorFlow [4] and Phoenix [85],
a single-node multi-threaded implementation of MapRe-
duce [32]. TensorFlow’s experiments use the Cifar-10
dataset [2] and Phoenix’s use a Wikipedia dataset [3].
Unless otherwise stated, the base configuration used for
all TensorFlow experiments is 256 MB 64-way ExCache,
one pComponent, one mComponent, and one sCompo-
nent. The base configuration for Phoenix is the same as
TensorFlow’s with the exception that the base ExCache
size is 512 MB. The total amount of virtual memory ad-
dresses touched in TensorFlow is 4.4 GB (1.75 GB for
Phoenix). The total working sets of the TensorFlow and
Phoenix execution are 0.9 GB and 1.7 GB. Our default
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ExCache sizes are set as roughly 25% of total working
sets. We ran both applications with four threads.
Impact of ExCache size on application performance.
Figures 11 and 12 plot the TensorFlow and Phoenix run
time comparison across LegoOS, a remote swapping sys-
tem (InfiniSwap [47]), a Linux server with a swap file in
a local high-end NVMe SSD, and a Linux server with
a swap file in local ramdisk. All values are calculated
as a slowdown to running the applications on a Linux
server that have enough local resources (main memory,
CPU cores, and SSD). For systems other than LegoOS,
we change the main memory size to the same size of Ex-
Cache in LegoOS, with rest of the memory on swap file.
With around 25% working set, LegoOS only has a slow-
down of 1.68× and 1.34× for TensorFlow and Phoenix
compared to a monolithic Linux server that can fit all
working sets in its main memory.

LegoOS’ performance is significantly better than
swapping to SSD and to remote memory largely because
of our efficiently-implemented network stack, simplified
code path compared with Linux paging subsystem, and
the optimization technique proposed in §4.4.2. Surpris-
ingly, it is similar or even better than swapping to lo-
cal memory, even when LegoOS’ memory accesses are
across network. This is mainly because ramdisk goes
through buffer cache and incurs memory copies between
the buffer cache and the in-memory swap file.

LegoOS’ performance results are not easy to achieve
and we went through rounds of design and implementa-
tion refinement. Our network stack and RPC optimiza-
tions yield a total improvement of up to 50%. For ex-
ample, we made all RPC server (mComponent’s) replies
unsignaled to save mComponent’ processing time and to
increase its request handling throughput. Another opti-
mization we did is to piggy-back dirty cache line flush
and cache miss fill into one RPC. The optimization of the
first anonymous memory access (§4.4.2) improves Le-
goOS’ performance further by up to 5%.
ExCache Management. Apart from its size, how an Ex-
Cache is managed can also largely affect application per-
formance. We first evaluated factors that could affect
ExCache hit rate and found that higher associativity im-
proves hit rate but the effect diminishes when going be-
yond 512-way. We then focused on evaluating the miss
cost of ExCache, since the miss path is handled by Le-
goOS in our design. We compare the two eviction poli-
cies LegoOS supports (FIFO and LRU), two implemen-

tations of finding an empty line in an ExCache set (lin-
early scan a free bitmap and fetching the head of a free
list), and one network optimization (piggyback flushing
a dirty line with fetching the missing line).

Figure 13 presents these comparisons with one and
four mComponent worker threads. All tests run the
Cifar-10 workload on TensorFlow with 256 MB 64-way
ExCache, one mComponent, and one sComponent. Us-
ing bitmaps for this ExCache configuration is always
worse than using free lists because of the cost to linearly
scan a whole bitmap, and bitmaps perform even worse
with higher associativity. Surprisingly, FIFO performs
better than LRU in our tests, even when LRU utilizes ac-
cess locality pattern. We attributed LRU’s worse perfor-
mance to the lock contention it incurs; the kernel back-
ground thread sweeping the ExCache locks an LRU list
when adjusting the position of an entry in it, while Ex-
Cache miss handler thread also needs to lock the LRU
list to grab its head. Finally, the piggyback optimization
works well and the combination of FIFO, free list, and
piggyback yields the best performance.
Number of mComponents and replication. Finally, we
study the effect of the number of mComponents and
memory replication. Figure 14 plots the performance
slowdown as the number of mComponents increases
from one to four. Surprisingly, using more mCompo-
nents lowers application performance by up to 6%. This
performance drop is due to the effect of ExCache pig-
gyback optimization. When there is only one mCompo-
nent, flushes and misses are all between the pComponent
and this mComponent, thus enabling piggyback on every
flush. However, when there are multiple mComponents,
LegoOS can only perform piggyback when flushes and
misses are to the same mComponent.

We also evaluated LegoOS’ memory replication per-
formance in Figure 14. Replication has a performance
overhead of 2% to 23% (there is a constant 1 MB space
overhead to store the backup log). LegoOS uses the same
application thread to send the replica data to the backup
mComponent and then to the primary mComponent, re-
sulting in the performance lost.
Running multiple applications together. All our experi-
ments so far run only one application at a time. Now we
evaluate how multiple applications perform when run-
ning them together on a LegoOS cluster. We use a sim-
ple scenario of running one TensorFlow instance and one
Phoenix instance together in two settings: 1) two pCom-
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Processor Disk Memory NIC Power Other Monolithic LegoOS
MTTF (year) 204.3 33.1 289.9 538.8 100.5 27.4 5.8 6.8 - 8.7

Table 1: Mean Time To Failure Analysis. MTTF numbers of devices (columns 2 to 7) are obtained from [90] and MTTF values of monolithic server and
LegoOS are calculated using the per-device MTTF numbers.
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Figure 15: Multiple Applications.

ponents each running one instance, both accessing one
mComponent(2P1M), and 2) one pComponent running
two instances and accessing two mComponents (1P2M).
Both settings use one sComponent. Figure 15 presents
the runtime slowdown results. We also vary the num-
ber of mComponent worker threads for the 2P1M setting
and the amount of ExCache for the 1P2M setting. With
2P1M, both applications suffer from a performance drop
because their memory access requests saturate the single
mComponent. Using more worker threads at the mCom-
ponent improves the performance slightly. For 1P2M,
application performance largely depends on ExCache
size, similar to our findings with single-application ex-
periments.

6.3 Failure Analysis
Finally, we provide a qualitative analysis on the failure
rate of a LegoOS cluster compared to a monolithic server
cluster. Table 1 summarizes our analysis. To measure the
failure rate of a cluster, we use the metric Mean Time To
(hardware) Failure (MTTF), the mean time to the fail-
ure of a server in a monolithic cluster or a component
in a LegoOS cluster. Since the only real per-device fail-
ure statistics we can find are the mean time to hardware
replacement in a cluster [90], the MTTF we refer to in
this study indicates the mean time to the type of hard-
ware failures that require replacement. Unlike traditional
MTTF analysis, we are not able to include transient fail-
ures.

To calculate MTTF of a monolithic server, we first
obtain the replacement frequency of different hardware
devices in a server (CPU, memory, disk, NIC, mother-
board, case, power supply, fan, CPU heat sink, and other
cables and connections) from the real world (the COM1
and COM2 clusters in [90]). For LegoOS, we envision
every component to have a NIC and a power supply, and
in addition, a pComponent to have CPU, fan, and heat
sink, an mComponent to have memory, and an sCompo-
nent to have a disk. We further assume both a monolithic
server and a LegoOS component to fail when any hard-
ware devices in them fails and the devices in them fail
independently. Thus, the MTTF can be calculated using
the harmonic mean (HM) of the MTTF of each device.

MTTF =
HMn

i=0(MTTFi)

n
(1)

where n includes all devices in a machine/component.
Further, when calculating MTTF of LegoOS, we esti-

mate the amount of components needed in LegoOS to run
the same applications as a monolithic cluster. Our esti-
mated worst case for LegoOS is to use the same amount
of hardware devices (i.e., assuming same resource uti-
lization as monolithic cluster). LegoOS’ best case is to
achieve full resource utilization and thus requiring only
about half of CPU and memory resources (since aver-
age CPU and memory resource utilization in monolithic
server clusters is around 50% [10, 45]).

With better resource utilization and simplified hard-
ware components (e.g., no motherboard), LegoOS im-
proves MTTF by 17% to 49% compared to an equivalent
monolithic server cluster.

7 Related Work
Hardware Resource Disaggregation. There have
been a few hardware disaggregation proposals from
academia and industry, including Firebox [15], HP ”The
Machine” [40, 48], dRedBox [56], and IBM Composable
System [28]. Among them, dRedBox and IBM Compos-
able System package hardware resources in one big case
and connect them with buses like PCIe. The Machine’s
scale is a rack and it connects SoCs with NVMs with a
specialized coherent network. FireBox is an early-stage
project and is likely to use high-radix switches to con-
nect customized devices. The disaggregated cluster we
envision to run LegoOS on is one that hosts hundreds to
thousands of non-coherent, heterogeneous hardware de-
vices, connected with a commodity network.

Memory Disaggregation and Remote memory. Lim
et al. first proposed the concept of hardware disaggre-
gated memory with two models of disaggregated mem-
ory: using it as network swap device and transparently
accessing it through memory instructions [63, 64]. Their
hardware models still use a monolithic server at the local
side. LegoOS’ hardware model separates processor and
memory completely.

Another set of recent projects utilize remote memory
without changing monolithic servers [6, 34, 47, 74, 79,
93]. For example, InfiniSwap [47] transparently swaps
local memory to remote memory via RDMA. These re-
mote memory systems help improve the memory re-
source packing in a cluster. However, as discussed in §2,
unlike LegoOS, these solutions cannot solve other lim-
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itations of monolithic servers like the lack of hardware
heterogeneity and elasticity.

Storage Disaggregation. Cloud vendors usually pro-
vision storage at different physical machines [13, 103,
108]. Remote access to hard disks is a common practice,
because their high latency and low throughput can eas-
ily hide network overhead [61, 62, 70, 105]. While dis-
aggregating high-performance flash is a more challeng-
ing task [38, 59]. Systems such as ReFlex [60], Deci-
bel [73], and PolarFS [25], tightly integrate network and
storage layers to minimize software overhead in the face
of fast hardware. Although storage disaggregation is not
our main focus now, we believe those techniques can be
realized in future LegoOS easily.

Multi-Kernel and Multi-Instance OSes. Multi-kernel
OSes like Barrelfish [21, 107], Helios [76], Hive [26],
and fos [106] run a small kernel on each core or pro-
grammable device in a monolithic server, and they use
message passing to communicate across their internal
kernels. Similarly, multi-instance OSes like Popcorn [17]
and Pisces [83] run multiple Linux kernel instances on
different cores in a machine. Different from these OSes,
LegoOS runs on and manages a distributed set of hard-
ware devices; it manages distributed hardware resources
using a two-level approach and handles device failures
(currently only mComponent). In addition, LegoOS dif-
fers from these OSes in how it splits OS functionali-
ties, where it executes the split kernels, and how it per-
forms message passing across components. Different
from multi-kernels’ message passing mechanisms which
are performed over buses or using shared memory in
a server, LegoOS’ message passing is performed using
a customized RDMA-based RPC stack over InfiniBand
or RoCE network. Like LegoOS, fos [106] separates
OS functionalities and run them on different processor
cores that share main memory. Helios [76] runs satel-
lite kernels on heterogeneous cores and programmable
NICs that are not cache-coherent. We took a step further
by disseminating OS functionalities to run on individual,
network-attached hardware devices. Moreover, LegoOS
is the first OS that separates memory and process man-
agement and runs virtual memory system completely at
network-attached memory devices.

Distributed OSes. There have been several distributed
OSes built in late 80s and early 90s [14, 16, 19, 27,
82, 86, 96, 97]. Many of them aim to appear as a sin-
gle machine to users and focus on improving inter-node
IPCs. Among them, the most closely related one is
Amoeba [96, 97]. It organizes a cluster into a shared pro-
cess pool and disaggregated specialized servers. Unlike
Amoeba, LegoOS further separates memory from pro-
cessors and different hardware components are loosely
coupled and can be heterogeneous instead of as a ho-

mogeneous pool. There are also few emerging propos-
als to build distributed OSes in datacenters [54, 91], e.g.,
to reduce the performance overhead of middleware. Le-
goOS achieves the same benefits of minimal middleware
layers by only having LegoOS as the system manage-
ment software for a disaggregated cluster and using the
lightweight vNode mechanism.

8 Discussion and Conclusion
We presented LegoOS, the first OS designed for hard-
ware resource disaggregation. LegoOS demonstrated the
feasibility of resource disaggregation and its advantages
in better resource packing, failure isolation, and elastic-
ity, all without changing Linux ABIs. LegoOS and re-
source disaggregation in general can help the adoption
of new hardware and thus encourage more hardware and
system software innovations.

LegoOS is a research prototype and has a lot of room
for improvement. For example, we found that the amount
of parallel threads an mComponent can use to process
memory requests largely affect application throughput.
Thus, future developers of real mComponents can con-
sider use large amount of cheap cores or FPGA to imple-
ment memory monitors in hardware.

We also performed an initial investigation in load
balancing and found that memory allocation policies
across mComponents can largely affect application per-
formance. However, since we do not support mem-
ory data migration yet, the benefit of our load-balancing
mechanism is small. We leave memory migration for fu-
ture work. In general, large-scale resource management
of a disaggregated cluster is an interesting and important
topic, but is outside of the scope of this paper.
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