
1

A Top-Down Method for Performance Analysis and Counters Architecture

Ahmad Yasin
ahmad.yasin@intel.com

Intel Corporation, Architecture Group

v1.02

Abstract

Optimizing an application’s performance for a given

microarchitecture has become painfully difficult. Increasing

microarchitecture complexity, workload diversity, and the

unmanageable volume of data produced by performance tools

increase the optimization challenges. At the same time

resource and time constraints get tougher with recently

emerged segments. This further calls for accurate and prompt

analysis methods.

In this paper a Top-Down Analysis is developed – a

practical method to quickly identify true bottlenecks in out-of-

order processors. The developed method uses designated

performance counters in a structured hierarchical approach to

quickly and, more importantly, correctly identify dominant

performance bottlenecks. The developed method is adopted by

multiple in-production tools including VTune. Feedback from

VTune average users suggests that the analysis is made easier

thanks to the simplified hierarchy which avoids the high-

learning curve associated with microarchitecture details.

Characterization results of this method are reported for the

SPEC CPU2006 benchmarks as well as key enterprise

workloads. Field case studies where the method guides

software optimization are included, in addition to architectural

exploration study for most recent generations of Intel Core™

products.

The insights from this method guide a proposal for a novel

performance counters architecture that can determine the true

bottlenecks of a general out-of-order processor. Unlike other

approaches, our analysis method is low-cost and already

featured in in-production systems – it requires just eight

simple new performance events to be added to a traditional

PMU. It is comprehensive – no restriction to predefined set of

performance issues. It accounts for granular bottlenecks in

super-scalar cores, missed by earlier approaches.

1. Introduction

The primary aim of performance monitoring units (PMUs)

is to enable software developers to effectively tune their

workload for maximum performance on a given system.

Modern processors expose hundreds of performance events,

any of which may or may not relate to the bottlenecks of a

particular workload. Confronted with a huge volume of data,

it is a challenge to determine the true bottlenecks out of these

events. A main contributor to this, is the fact that these

performance events were historically defined in an ad-doc

bottom-up fashion, where PMU designers attempted to cover

key issues via “dedicated miss events” [1]. Yet, how does one

pin-point performance issues that were not explicitly foreseen

at design time?

Bottleneck identification has many applications: computer

architects can better understand resource demands of emerging

workloads. Workload characterization often uses data of raw

event counts. Such unprocessed data may not necessary point

to the right bottlenecks the architects should tackle. Compiler

writers can determine what Profile Guided Optimization

(PGO) suit a workload more effectively and with less

overhead. Monitors of virtual systems can improve resource

utilization and minimize energy.

In this paper, we present a Top-Down Analysis - a

feasible, fast method that identifies critical bottlenecks in out-

of-order CPUs. The idea is simple - a structured drill down in

a hierarchical manner, guides the user towards the right area to

investigate. Weights are assigned to nodes in the tree to guide

users to focus their analysis efforts on issues that indeed

matter and disregard insignificant issues. For instance, say a

given application is significantly hurt by instruction fetch

issues; the method categorizes it as Frontend Bound at the

uppermost level of the tree. A user/tool is expected to drill

down (only) on the Frontend sub-tree of the hierarchy. The

drill down is recursively performed until a tree-leaf is reached.

A leaf can point to a specific stall of the workload, or it can

denote a subset of issues with a common micro-architectural

symptom which are likely to limit the application’s

performance.

We have featured our method with the Intel 3
rd

 generation

Core™ codenamed Ivy Bridge. Combined with the

hierarchical approach, a small set of Top-Down oriented

counters are used to overcome bottleneck identification

challenges (detailed in next section). Multiple tools have

adopted our method including VTune [2] and an add-on

package to the standard Linux perf utility [3]. Field experience

with the method has revealed some performance issues that

used to be underestimated by traditional methods. Finally, the

insights from this method are used to propose a novel

performance counters architecture that can determine the true

bottlenecks of general out-of-order architecture, in a top down

approach.

The rest of this paper is organized as follows. Section 2

provides a background and discusses the challenges with

bottleneck identification in out-of-order CPUs. The Top-Down

Analysis method and its abstracted metrics are introduced in

Section 3. In Section 4, novel low-cost counters architecture is

proposed to obtain these metrics. Results on popular

workloads as well as sample use-cases are presented in

Section 5. Related work is discussed in Section 6 and finally,

Section 7 concludes and outlines future work.

2

2. Background

Modern high-performance CPUs go to great lengths to

keep their execution pipelines busy, applying techniques such

as large-window out-of-order execution, predictive

speculation, and hardware prefetching. Across a broad range

of traditional workloads, these high-performance architectures

have been largely successful at executing arbitrary code at a

high rate of instructions-per-cycle (IPC). However, with these

sophisticated super-scalar out-of-order machines attempting to

operate so “close to the edge”, even small performance

hiccups can limit a workload to perform far below its

potential. Unfortunately, identifying true performance limiters

from among the many inconsequential issues that can be

tolerated by these CPUs has remained an open problem in the

field.

From a bird’s eye view, the pipeline of modern out-of-

order CPU has two main portions: a frontend and a backend.

The frontend is responsible for fetching instructions from

memory and translating them into micro-operations (uops).

These uops are fed to the backend portion. The backend is

responsible to schedule, execute and commit (retire) these

uops per original program’s order. So as to keep the machine

balanced, delivered uops are typically buffered in some

“ready-uops-queue” once ready for consumption by the

backend. An example block diagram for the Ivy Bridge

microarchitecture, with underlying functional units is depicted

in Figure 1.

Figure 1: Out-of-order CPU block diagram - Intel Core™

Traditional methods [4][5] do simple estimations of stalls.

E.g. the numbers of misses of some cache are multiplied by a

pre-defined latency:

Stall_Cycles = Σ Penaltyi * MissEventi

While this “naïve-approach” might work for an in-order CPU,

surely it is not suitable for modern out-of-order CPUs due to

numerous reasons: (1) Stalls overlap, where many units work

in parallel. E.g. a data cache miss can be handled, while some

future instruction is missing the instruction cache. (2)

Speculative execution, when CPU follows an incorrect

control-path. Events from incorrect path are less critical than

those from correct-path. (3) Penalties are workload-

dependent, while naïve-approach assumes a fixed penalty for

all workloads. E.g. the distance between branches may add to

a misprediction cost. (4) Restriction to a pre-defined set of

miss-events, these sophisticated microarchitectures have so

many possible hiccups and only the most common subset is

covered by dedicated events. (5) Superscalar inaccuracy, a

CPU can issue, execute and retire multiple operations in a

cycle. Some (e.g. client) applications become limited by the

pipeline’s bandwidth as latency is mitigated with more and

more techniques.

We address those gaps as follows. A major category

named “Bad Speculation” (defined later) is placed at the top of

the hierarchy. It accounts for stalls due to incorrect predictions

as well as resources wasted by execution of incorrect paths.

Not only does this bring the issue to user’s first attention, but

it also simplifies requisites from hardware counters used

elsewhere in the hierarchy. We introduce a dozen truly Top-

Down designated counters to let us deal with other points. We

found that determining what pipeline stage to look at and “to

count when matters”, play a critical role in addressing (1) and

(3). For example, instead of total memory access duration, we

examine just the sub-duration when execution units are

underutilized as a result of pending memory access. Calling

for generic events, not tied to “dedicated miss events” let us

deal with (4). Some of these are occupancy events
1
 in order to

deal with (5).

3. Top-Down Analysis

Top-Down Analysis methodology aims to determine

performance bottlenecks correctly and quickly. It guides users

to focus on issues that really matter during the performance

optimization phase. This phase is typically performed within

the time and resources constraints of the overall application

development process. Thus, it becomes more important to

quickly identify the bottlenecks.

The approach itself is straightforward: Categorize CPU

execution time at a high level first. This step flags (reports

high fraction value) some domain(s) for possible investigation.

Next, the user can drill down into those flagged domains, and

can safely ignore all non-flagged domains. The process is

repeated in a hierarchical manner until a specific performance

issue is determined or at least a small subset of candidate

issues is identified for potential investigation.

In this section we first overview the hierarchy structure,

and then present the heuristics behind the higher levels of the

hierarchy.

3.1. The Hierarchy

The hierarchy is depicted in Figure 2. First, we assume the

user has predefined criteria for analysis. For example, a user

might choose to look at an application’s hotspot where at least

20% of execution time is spent. Another example is to analyze

why a given hotspot does not show expected speedup from

1
 An occupancy event is capable to increment by more than 1 in a given cycle

when a certain condition is met for multiple entities

3

one hardware generation to another. Hotspot can be a software

module, function, loop, or a sequence of instructions across

basic blocks.

Figure 2: The Top-Down Analysis Hierarchy

Top-Down breakdown is applied to the interesting hotspots

where available pipeline slots are split into four basic

categories: Retiring, Bad Speculation, Frontend Bound and

Backend Bound. These terms are defined in the following sub-

sections. The best way to illustrate this methodology is

through an example. Take a workload that is limited by the

data cache performance. The method flags Backend Bound,

and Frontend Bound will not be flagged. This means the user

needs to drill down at the Backend Bound category as next

step, leaving alone all Frontend related issues. When drilling

down at the Backend, the Memory Bound category would be

flagged as the application was assumed cache-sensitive.

Similarly, the user can skip looking at non-memory related

issues at this point. Next, a drill down inside Memory Bound

is performed. L1, L2 and L3-Bound naturally break down the

Memory Bound category. Each of them indicates the portion

the workload is limited by that cache-level. L1 Bound should

be flagged there. Lastly, Loads block due to overlap with

earlier stores or cache line split loads might be specific

performance issues underneath L1 Bound. The method would

eventually recommend the user to focus on this area.

Note that the hierarchical structure adds a natural safety

net when looking at counter values. A value of an inner node

should be disregarded unless nodes on the path from the root

to that particular node are all flagged. For example, a simple

code doing some divide operations on a memory-resident

buffer may show high values for both Ext. Memory Bound

and Divider nodes in Figure 2. Even though the Divider node

itself may have high fraction value, it should be ignored

assuming the workload is truly memory bound. This is assured

as Backend.CoreBound will not be flagged. We refer to this as

hierarchical-safety property. Note also that only weights of

sibling nodes are comparable. This is due to the fact they are

calculated at same pipeline stage. Comparing fractions of non-

sibling nodes is not recommended.

3.2. Top Level breakdown

There is a need for first-order classification of pipeline

activity. Given the highly sophisticated microarchitecture, the

first interesting question is how and where to do the first level

breakdown? We choose the issue point, marked by the asterisk

in Figure 1, as it is the natural border that splits the frontend

and backend portions of machine. It enables a highly accurate

Top-Level classification.

At issue point we classify each pipeline-slot into one of

four base categories: Frontend Bound, Backend Bound, Bad

Speculation and Retiring, as illustrated by Figure 3. If a uop is

issued in a given cycle, it would eventually either get retired

or cancelled. Thus it can be attributed to either Retiring or Bad

Speculation respectively.

Figure 3: Top Level breakdown flowchart

Otherwise it can be split into whether there was a backend-

stall or not. A backend-stall is a backpressure mechanism the

Backend asserts upon resource unavailability (e.g. lack of load

buffer entries). In such a case we attribute the stall to the

Backend, since even if the Frontend was ready with more uops

it would not be able to pass them down the pipeline. If there

was no backend-stall, it means the Frontend should have

delivered some uops while the Backend was ready to accept

them; hence we tag it with Frontend Bound. This backend-

stall condition is a key one as we outline in FetchBubbles

definition in next section.

In fact the classification is done at pipeline slots

granularity as a superscalar CPU is capable of issuing multiple

uops per cycle. This makes the breakdown very accurate and

robust which is a necessity at the hierarchy’s top level. This

accurate classification distinguishes our method from previous

approaches in [1][5][6].

3.3. Frontend Bound category

Recall that Frontend denotes the first portion of the

pipeline where the branch predictor predicts the next address

to fetch, cache lines are fetched, parsed into instructions, and

decoded into micro-ops that can be executed later by the

Backend. Frontend Bound denotes when the frontend of the

CPU undersupplies the backend. That is, the latter would have

been willing to accept uops.

Dealing with Frontend issues is a bit tricky as they occur at

the very beginning of the long and buffered pipeline. This

means in many cases transient issues will not dominate the

actual performance. Hence, it is rather important to dig into

4

this area only when Frontend Bound is flagged at the Top-

Level. With that said, we observe in numerous cases the

Frontend supply bandwidth can dominate the performance,

especially when high IPC applies. This has led to the addition

of dedicated units to hide the fetch pipeline latency and sustain

required bandwidth. The Loop Stream Detector as well as

Decoded I-cache (i.e. DSB, the Decoded-uop Stream Buffer

introduced in Sandy Bridge) are a couple examples from Intel

Core [7].

Top-Down further distinguishes between latency and

bandwidth stalls. An i-cache miss will be classified under

Frontend Latency Bound, while inefficiency in the

instruction decoders will be classified under Frontend

Bandwidth Bound. Ultimately, we would want these to

account for only when the rest of pipeline is likely to get

impacted, as discussed earlier.

Note that these metrics are defined in Top-Down

approach; Frontend Latency accounts for cases that lead to

fetch starvation (the symptom of no uop delivery) regardless

of what has caused that. Familiar i-cache and i-TLB misses fit

here, but not only these. For example, [4] has flagged

Instruction Length Decoding as a fetch bottleneck. It is CPU-

specific, hence not shown in Figure 2. Branch Resteers

accounts for delays in the shadow of pipeline flushes e.g. due

to branch misprediction. It is tightly coupled with Bad

Speculation (where we elaborate on misprediction costs).

The methodology further classifies bandwidth issues per

fetch-unit inserting uops to the uops-ready-queue. Instruction

Decoders are commonly used to translate mainstream

instructions into uops the rest of machine understands - That

would be one fetch unit. Also sophisticated instruction, like

CPUID, typically have dedicated unit to supply long uop

flows. That would be 2
nd

 fetch unit and so on.

3.4. Bad Speculation category

Bad Speculation reflects slots wasted due to incorrect

speculations. These include two portions: slots used to issue

uops that do not eventually retire; as well as slots in which the

issue pipeline was blocked due to recovery from earlier miss-

speculations. For example, uops issued in the shadow of a

mispredicted branch would be accounted in this category.

Note third portion of a misprediction penalty deals with how

quick is the fetch from the correct target. This is accounted in

Branch Resteers as it may overlap with other frontend stalls.

Having Bad Speculation category at the Top-Level is a key

principle in our Top-Down Analysis. It determines the fraction

of the workload under analysis that is affected by incorrect

execution paths, which in turn dictates the accuracy of

observations listed in other categories. Furthermore, this

permits nodes at lower levels to make use of some of the many

traditional counters, given that most counters in out-of-order

CPUs count speculatively. Hence, a high value in Bad

Speculation would be interpreted by the user as a “red flag”

that need to be investigated first, before looking at other

categories. In other words, assuring Bad Speculation is minor

not only improves utilization of the available resources, but

also increases confidence in metrics reported throughout the

hierarchy.

The methodology classifies the Bad Speculation slots into

Branch Misspredict and Machine Clears. While the former

is pretty famous, the latter results in similar symptom where

the pipeline is flushed. For example, incorrect data speculation

generated Memory Ordering Nukes [7] - a subset of Machine

Clears. We make this distinction as the next steps to analyze

these issues can be completely different. The first deals with

how to make the program control flow friendlier to the branch

predictor, while the latter points to typically unexpected

situations.

3.5. Retiring category

This category reflects slots utilized by “good uops” –

issued uops that eventually get retired. Ideally, we would want

to see all slots attributed to the Retiring category; that is

Retiring of 100% corresponds to hitting the maximal uops

retired per cycle of the given microarchitecture. For example,

assuming one instruction is decoded into one uop, Retiring of

50% means an IPC of 2 was achieved in a four-wide machine .

Hence maximizing Retiring increases IPC.

Nevertheless, a high Retiring value does not necessary

mean there is no room for more performance. Microcode

sequences such as Floating Point (FP) assists typically hurt

performance and can be avoided [7]. They are isolated under

Micro Sequencer metric in order to bring it to user’s

attention.

A high Retiring value for non-vectorized code may be a

good hint for user to vectorize the code. Doing so essentially

lets more operations to be completed by single

instruction/uop; hence improve performance. For more details

see Matrix-Multiply use-case in Section 5. Since FP

performance is of special interest in HPC land, we further

breakdown the base retiring category into FP Arithmetic with

Scalar and Vector operations distinction. Note that this is an

informative field-originated expansion. Other styles of

breakdown on the distribution of retired operations may apply.

3.6. Backend Bound category

Backend Bound reflects slots no uops are being delivered

at the issue pipeline, due to lack of required resources for

accepting them in the backend. Examples of issues attributed

in this category include data-cache misses or stalls due to

divider being overloaded.

Backend Bound is split into Memory Bound and Core

Bound. This is achieved by breaking down backend stalls

based on execution units’ occupation at every cycle. Naturally,

in order to sustain a maximum IPC, it is necessary to keep

execution units busy. For example, in a four-wide machine, if

three or less uops are executed in a steady state of some code,

this would prevent it to achieve a optimal IPC of 4. These

suboptimal cycles are called ExecutionStalls.

Memory Bound corresponds to execution stalls related to

the memory subsystem. These stalls usually manifest with

5

execution units getting starved after a short while, like in the

case of a load missing all caches.

Core Bound on the other hand, is a bit trickier. Its stalls

can manifest either with short execution starvation periods, or

with sub-optimal execution ports utilization: A long latency

divide operation might serialize execution, while pressure on

execution port that serves specific types of uops, might

manifest as small number of ports utilized in a cycle. Actual

metric calculations is described in Section 4.

Core Bound issues often can be mitigated with better code

generation. E.g., a sequence of dependent arithmetic

operations would be classified as Core Bound. A compiler

may relieve that with better instruction scheduling.

Vectorization can mitigate Core Bound issues as well; as

demonstrated in Section 5.5.

3.7. Memory Bound breakdown (within Backend)

Modern CPUs implement three levels of cache hierarchy

to hide latency of external memory. In the Intel Core case, the

first level has a data cache (L1D). L2 is the second level

shared instruction and data cache, which is private to each

core. L3 is the last level cache, which is shared among sibling

cores. We assume hereby a three-cache-level hierarchy with a

unified external memory; even though the metrics are generic-

enough to accommodate other cache- and memory-

organizations, including NUMA.

To deal with the overlapping artifact, we introduce a novel

heuristic to determine the actual penalty of memory accesses.

A good out-of-order scheduler should be able to hide some of

the memory access stalls by keeping the execution units busy

with useful uops that do not depends on pending memory

accesses. Thus the true penalty for a memory access is when

the scheduler has nothing ready to feed the execution units. It

is likely that further uops are either waiting for the pending

memory access, or depend on other unready uops. Significant

ExecutionStalls while no demand-load
2
 is missing some

cache-level, hints execution is likely limited by up to that level

itself. Figure 4 also illustrates how to break ExecutionStalls

per cache-level.

For example, L1D cache often has short latency which is

comparable to ALU stalls. Yet in certain scenarios, like load

blocked to forward data from earlier store to an overlapping

address, a load might suffer high latency while eventually

being satisfied by L1D. In such scenario, the in-flight load will

last for a long period without missing L1D. Hence, it gets

tagged under L1 Bound per flowchart in Figure 4. Load

blocks due to 4K Aliasing [7] is another scenario with same

symptom. Such scenarios of L1 hits and near caches’ misses,

are not handled by some approaches [1][5].

Note performance hiccups, as the mentioned L1 Bound

scenarios, would appear as leaf-nodes in the hierarchy in

Figure 2. We skipped listing them due to scope limitation.

2
 Hardware prefetchers are of special treatment. We disregard them as long as

they were able to hide the latency from the demand requests.

 Figure 4: Memory Bound breakdown flowchart

So far, load operations of the memory subsystem were

treated. Store operations are buffered and executed post-

retirement (completion) in out-of-order CPUs due to memory

ordering requirements of x86 architecture. For the most part

they have small impact on performance (as shown in results

section); they cannot be completely neglected though. Top-

Down defined Stores Bound metric, as fraction of cycles with

low execution ports utilization and high number of stores are

buffered. In case both load and store issues apply we will

prioritize the loads nodes given the mentioned insight.

Data TLB misses can be categorized under Memory

Bound sub-nodes. For example, if a TLB translation is

satisfied by L1D, it would be tagged under L1 Bound.

Lastly, a simplistic heuristic is used to distinguish MEM

Bandwidth and MEM Latency under Ext. Memory Bound.

We measure occupancy of requests pending on data return

from memory controller. Whenever the occupancy exceeds a

certain threshold, say 70% of max number of requests the

memory controller can serve simultaneously, we flag that as

potentially limited by the memory bandwidth. The remainder

fraction will be attributed to memory latency.

4. Counters Architecture

This section describes the hardware support required to

feature the described Top-Down Analysis. We assume a

baseline PMU commonly available in modern CPU (e.g. x86

or ARM). Such a PMU offers a small set of general counters

capable of counting performance events. Nearly a dozen of

events are sufficient to feature the key nodes of the hierarchy.

In fact, only eight designated new events are required. The rest

can be found in the PMU already today – these are marked

with asterisk in Table 1. For example, TotalSlots event can be

calculated with the basic Clockticks event. Additional PMU

legacy events may be used to further expand the hierarchy,

thanks to the hierarchical-safety property described in Section

3.

It is noteworthy that a low-cost hardware support is

required. The eight new events are easily implementable. They

6

rely on design local signals, possibly masked with a stall

indication. Neither at-retirement tagging is required as in IBM

POWER5 [6], nor complex structures with latency counters as

in Accurate CPI Stacks proposals [1][8][9].

4.1. Top-Down Events

The basic Top-Down generic events are summarized in Table

1. Please refer to Appendix 1 for the Intel implementation of

these events. Notice there, an implementation can provide

simpler events and yet get fairly good results.

Table 1: Definitions of Top-Down performance events

Event Definition

TotalSlots* Total number of issue-pipeline slots.

SlotsIssued* Utilized issue-pipeline slots to issue operations

SlotsRetired* Utilized issue-pipeline slots to retire (complete)

operations

FetchBubbles Unutilized issue-pipeline slots while there is no

backend-stall

RecoveryBubbles Unutilized issue-pipeline slots due to recovery

from earlier miss-speculation

BrMispredRetired* Retired miss-predicted branch instructions

MachineClears* Machine clear events (pipeline is flushed)

MsSlotsRetired* Retired pipeline slots supplied by the micro-

sequencer fetch-unit

OpsExecuted* Number of operations executed in a cycle

MemStalls.AnyLoad Cycles with no uops executed and at least 1 in-
flight load that is not completed yet

MemStalls.L1miss Cycles with no uops executed and at least 1 in-

flight load that has missed the L1-cache

MemStalls.L2miss Cycles with no uops executed and at least 1 in-
flight load that has missed the L2-cache

MemStalls.L3miss Cycles with no uops executed and at least 1 in-

flight load that has missed the L3-cache

MemStalls.Stores Cycles with few uops executed and no more
stores can be issued

ExtMemOutstanding Number of outstanding requests to the memory

controller every cycle

4.2. Top-Down Metrics

The events in Table 1 can be directly used to calculate the

metrics using formulas shown in Table 2. In certain cases, a

flavor of the baseline hardware event is used
3
. Italic #-prefixed

metric denotes an auxiliary expression.

Table 2: Formulas for Top-Down Metrics

Metric Name Formula

Frontend Bound FetchBubbles / TotalSlots

Bad Speculation (SlotsIssued – SlotsRetired + RecoveryBubbles) /

TotalSlots

Retiring SlotsRetired / TotalSlots

Backend Bound 1 – (Frontend Bound + Bad Speculation + Retiring)

Fetch Latency

Bound

FetchBubbles[≥ #MIW] / Clocks

Fetch Bandwidth

Bound

Frontend Bound – Fetch Latency Bound

#BrMispredFraction BrMispredRetired / (BrMispredRetired +

MachineClears)

Branch Mispredicts #BrMispredFraction * Bad Speculation

Machine Clears Bad Speculation – Branch Mispredicts

3
 For example, the FetchBubbles[≥ MIW] notation tells to count cycles in

which number of fetch bubbles exceed Machine Issue Width (MIW). This

capability is called Counter Mask ever available in x86 PMU [10].

MicroSequencer MsSlotsRetired / TotalSlots

BASE Retiring – MicroSequencer

#ExecutionStalls (OpsExecuted[= FEW]) / Clocks

Memory Bound (MemStalls.AnyLoad + MemStalls.Stores) / Clocks

Core Bound #ExecutionStalls – Memory Bound

L1 Bound (MemStalls.AnyLoad – MemStalls.L1miss) / Clocks

L2 Bound (MemStalls.L1miss – MemStalls.L2miss) / Clocks

L3 Bound (MemStalls.L2miss – MemStalls.L3miss) / Clocks

Ext. Memory Bound MemStalls.L3miss / Clocks

MEM Bandwidth ExtMemOutstanding[≥ THRESHOLD] /

ExtMemOutstanding[≥ 1]

MEM Latency (ExtMemOutstanding[≥ 1] / Clocks) – MEM

Bandwidth

Note ExecutionStall denotes sub-optimal cycles in which

no or few uops are executed. A workload is unlikely to hit max

IPC in such case. While these thresholds are implementation-

specific, our data suggests cycles with 0, 1 or 2 uops executed

are well-representing Core Bound scenarios at least for Sandy

Bridge-like cores.

5. Results

In this section, we present Top-Down Analysis results for

the SPEC CPU2006 benchmarks in single-thread (1C) and

multi-copy (4C) modes with setup described in Table 3. Then,

an across-CPUs study demonstrates an architecture

exploration use-case. As Frontend Bound tends to be less of a

bottleneck in CPU2006, results for key server workloads are

included. Lastly, we share a few use-cases where performance

issues are tuned using Top-Down Analysis.

Table 3: Baseline system setup parameters

Processor Intel® Core™ i7-3940XM (Ivy Bridge). 3 GHz

fixed frequency. A quadcore with 8MB L3 cache.
Hardware prefetchers enabled.

Memory 8GB DDR3 @1600 MHz

OS Windows 8 64-bit

Benchmark SPEC CPU 2006 v1.2 (base/rate mode)

Compiler Intel Compiler 14 (SSE4.2 ISA)

5.1. SPEC CPU2006 1C

At the Top Level, Figure 5a suggests diverse breakdown

of the benchmark’s applications. Performance wise, the

Retiring category is close to 50% which aligns with aggregate

Instruction-Per-Cycle (IPC) of ~1.7 measured for same set of

runs. Recall 100% Retiring means four retired uops-per-cycle

while for SPEC CPU2006 an instruction is decoded into

slightly more than one uop on average. Note how Retiring

correlates well with IPC, included to cross-validate with an

established metric.

Overall Backend Bound is dominant. So we drill down

into it in next diagrams in Figure 5. The Backend Level

diagram guides the user whether to look at Core or Memory

issues next. For example, 456.hmmer is flagged as

Backend.CoreBound. Close check of the top hotspots with

VTune, indeed points to loops with tight data-dependent

arithmetic instructions.

7

(a) Top Level

(b) Backend Level

(c) Memory Level

Figure 5: Top-Down Analysis breakdown for SPEC CPU

2006 benchmarks in single-thread mode

The Integer applications are more sensitive to Frontend

Bound and Bad Speculation than the FP applications. This

aligns with simulations data using a propriety cycle-accurate

simulator, as well as prior analysis by Jaleel [11]. For

example, Jaleel’s analysis reported that gcc, perlbench,

xalancbmk, gobmk, and sjeng have code footprint bigger than

32KB. They are classified as most Frontend Bound workloads.

Note how the breakdown eases to assess the relative

significance of bottlenecks should multiple apply.

5.2. SPEC CPU2006 4C

Results running 4-copies of these applications are shown

in Figure 6. Top Level shows similarity to 1-copy. At a closer

look, some applications do exhibit much increased Backend

Bound. These are memory-sensitive applications as suggested

by bigger Memory Bound fractions in Figure 6b. This is

expected as L3 cache is “shared” among cores. Since an

identical thread is running alone inside each physical core and

given CPU2006 has minor i-cache misses, Frontend Bound

and Bad Speculation in 4-copy roughly did not changed over

1-copy.

(a) Top Level

(b) Backend Level

(c) Memory Level

Figure 6: Top-Down Analysis breakdown for SPEC CPU

2006 benchmarks in multi-core mode (4-copy)

For the less-scalable applications, Memory Bound

breakdown points to off-core contention when comparing

Figure 6c to 5c
4
. The key differences occur in applications

that are either (I) sensitive to available memory bandwidth, or

(II) impacted by shared cache competition between threads.

An example of (I) is 470.lbm which is known for its high

memory bandwidth requirements [12]. Its large MEM Bound

is the primary change between 1- and 4-copy.

A key example of (II) is 482.sphinx3. A close look at

Memory Bound breakdown indicates the 4-copy sees reduced

L3 Bound, and a greatly increased MEM Bound; capacity

contention between threads in the shared L3 cache has forced

many more L3 misses. This conclusion can be validated by

consulting the working-set of this workload [11]: a single copy

demands 8MB (same as LLC capacity) in 1-copy, vs 2MB

effective per-core LLC share in 4-copy runs.

Figure 7 shows how off-chip resources are utilized for

some FP applications, with 1- and 4-copy side-by-side. The

4
 Negative L2 Bound is due to PMU erratum on L1 prefetchers

8

bars’ height indicates fraction of run time where the memory

controller is serving some request. “MEM Bandwidth” is the

relative portion where many requests are being serviced

simultanously. Note we could plot these metrics at their native

local units, thanks to the hierarchical-safety property. We

should consider them carefully though.

Figure 7: Off-chip comparison of memory-sensitive FP apps

The available 25GB/s bandwidth clearly satisfies demand

of 1-copy. The picture changes in 4-copy in different ways.

435.gromacs, 447.dealII, 454.calculix and 465.tonto now

spend more memory cycles due to increase of 1.3-3.6x in L3

misses per-kilo instructions as measured by distinct set of

performance counters. Note however, they showed on-par

Memory- and Core-Bound stall fractions in Figure 6b, likely

because the out-of-order could mitigate most of these memory

cycles. This aligns with measured IPC in range of 1.7-2.3 in 4-

copy. In contrast, 410.bwaves, 433.milc, 437.leslie3d and

470.lbm become much more MEM Bound in 4-copy per

Figure 6c. Figure 7 tells us that was due to memory latency in

1-copy which turns into memory bandwidth in 4-copy (4x data

demand). Top-Down correctly classifies 470.lbm as MEM

Bandwidth limited [12].

5.3. Microarchitectures comparison

So far we have shown results for the same system. This

section demonstrates how Top-Down can assist hardware

architects. Figure 8 shows Top Level for Intel Core 3
rd

 and 4
th

generation CPUs, side-by-side for a subset of CPU2006

integer benchmarks. The newer Intel Core has improved front-

end where speculative iTLB and i-cache accesses are

supported with better timing to improve the benefits of

prefetching [7]. This can be clearly noticed for the benefiting

benchmarks with reduction in Frontend Bound. This

validation adds to the confidence of underlying heuristics

invented two generations earlier.

Figure 8: Top Down across-microarchitectures

5.4. Server workloads

Key server workloads’ results on Sandy Bridge EP are

shown in Figure 9. Retiring is lower compared to the SPEC

workloads, which conform to the lower IPC domain (a range

of 0.4 to 1 is measured). Backend- and Frontend-Bound are

more significant given the bigger footprints.

Figure 9: Top and Frontend levels for server workloads

It is interesting to see that the characterization of DBMS

workloads generally conforms to [4] who reported these

workloads are limited by last-level data cache misses and 1
st

level i-cache misses a while back.

Within the Frontend, Latency issues are dominant across all

server workloads. This is due to more i-cache and i-TLB

misses as expected there, in contrast to client workloads

whose Frontend Bound was almost evenly split between

Latency and Bandwidth issues (not shown due to paper scope

limitation).

5.5. Case Study 1: Matrix-Multiply

A matrix-multiply textbook kernel is analyzed with Top-

Down. It demos the iterative nature of performance tuning.

Table 4: Results of tuning Matrix-Multiply case

The initial code in multiply1() is extremely MEM Bound as

big matrices are traversed in cache-unfriendly manner.

Loop Interchange optimization, applied in multiply2()gives

big speedup. The optimized code continues to be Backend

Bound though now it shifts from Memory Bound to become

Core Bound.

Next in multiply3(), Vectorization is attempted as it reduces

the port utilization with less net instructions. Another speedup

is achieved.

5.6. Case Study 2: False Sharing

A university class educates students on multithreading

pitfalls through an example to parallelize a serial compute-

bound code. First attempt has no speedup (or, a slowdown)

9

due to False Sharing. False Sharing is a multithreading hiccup,

where multiple threads contend on different data-elements

mapped into the same cache line. It can be easily avoided by

padding to make threads access different lines.

Table 5: Results of tuning False Sharing case

The single-thread code has modest IPC. Top-Down

correctly classifies the first multithreaded code attempt as

Backend.Memory.StoresBound (False Sharing must have one

thread writing to memory, i.e. a store, to apply). Stores Bound

was eliminated in the fixed multithreaded version.

5.7. Case Study 3: Software Prefetch

A customer propriety object-recognition real application is

analyzed with Top-Down. The workload is classified as

Backend.Memory.ExtMemory.LatencyBound at application

scope. Ditto for biggest hotspot function; though the metric

fractions are sharper there. This is a symptom of more non-

memory bottlenecks in other hotspots.

Table 6: Results of tuning Software Prefetch case

Software Prefetches[10] are planted in the algorithm’s

critical loop to prefetch data of next iteration. A speedup of

35% per the algorithm-score is achieved, which is translated to

1.21x at workload scope. Note the optimized version shows

higher memory-bandwidth utilization and has become more

Backend.CoreBound.

6. Related Work

The widely-used naïve-approach is adopted by [4][5] to

name a few. While this might work for in-order CPUs, it is far

from being accurate for out-of-order CPUs due to: stalls

overlap, speculative misses and workload-dependent penalties

as elaborated in Sections 2.

IBM POWER5 [6] has dedicated PMU events to aid

compute CPI breakdown at retirement (commit) stage. Stall

periods with no retirement are counted per type of the next

instruction to retire and possibly a miss-event tagged to it.

Again this is a predefined set of fixed events picked in a

bottom-up way. While a good improvement over naïve-

approach, it underestimates frontend misses’ cost as they get

accounted after the point where the scheduler’s queue gets

emptied. Levinthal [5] presents a Cycle Accounting method

for earlier Intel Core implementations. A flat breakdown is

performed at execution-stage, to decompose total cycles into

retired, non-retired and stall components. Decomposition of

stall components then uses the inadequate naïve-approach as

author himself indicates.

In contrast, Top-Down does breakdown at issue-stage, at

finer granularity (slots) and avoids summing-up all penalties

into one flat breakdown. Rather it drills down stalls in a

hierarchical manner, where each level zooms into the

appropriate portion of the pipeline. Further, designated Top-

Down events are utilized; sampling (as opposed to counting)

on frontend issues is enabled, as well as breakdown when HT

is on. None of these is featured by [5].

Some researchers have attempted to accurately classify

performance impacts on out-of-order architectures. Eyerman

et al. in [1][9] use a simulation-based interval analysis model

in order to propose a counter architecture for building accurate

CPI stacks. The presented results show improvements over

naïve-approach and IBM POWER5 in terms of being closer to

the reference simulation-based model. A key drawback of this

approach (and its reference model) is that it restricts all stalls

to a fixed set of eight predefined miss events. In [1][4][5]

there is no consideration of (fetch) bandwidth issues, and

short-latency bottlenecks like L1 Bound. Additionally, high

hardware cost is implied due to fairly complex tracking

structures as authors themselves later state in [8]. While [8]

replaces the original structure with smaller FIFO; extra logic is

required for penalty calculation and aggregation to new

dedicated counters. This is in comparison with the simple

events adopted by our method with no additional

counters/logic. We have pointed to more drawbacks in

previous sections.

More recently, [13] and [12] proposed instrumentation-

based tools to analyze data-locality and scalability bottlenecks,

respectively. In [13], average memory latency is sampled with

a PMU and coupled with reuse distance obtained through

combination of Pin and a cache simulator, in order to prioritize

optimization efforts. An offline analyzer maps these metrics

back to source code and enables the user to explore the data in

hierarchal manner starting from main function. [12] presents a

method to obtain speedup stacks for a specific type of parallel

programs, while accounting for three bottlenecks: cache

capacity, external memory bandwidth and synchronization.

These can be seen as advanced optimization-specific

techniques that may be invoked from Top-Down once

Backend.MemoryBound is flagged. Furthermore, better

metrics based on our MemStalls.L3Miss event e.g. can be used

instead of raw latency value in [13] to quantify when speedup

may apply. Examining metrics at higher program scope first,

may be applied to our method as already done in VTune’s

General Exploration view [2]. While [12] estimates speedups

10

(our method does not), it accounts for subset of scalability

bottlenecks. For example, the case in 5.6 is not be covered by

their three bottlenecks.

7. Summary and Future Work

This paper presented Top-Down Analysis method - a

comprehensive, systematic in-production analysis

methodology to identify critical performance bottlenecks in

out-of-order CPUs. Using designated PMU events in

commodity multi-cores, the method adopts a hierarchical

classification, enabling the user to zero-in on issues that

directly lead to sub-optimal performance. The method was

demonstrated to classify critical bottlenecks, across variety of

client and server workloads, with multiple microarchitectures’

generations, and targeting both single-threaded and multi-core

scenarios.

The insights from this method are used to propose a novel

low-cost performance counters architecture that can determine

the true bottlenecks of a general out-of-order processor. Only

eight simple new events are required.

The presented method raises few points on PMU

architecture and tools front. Breakdown of few levels require

multiple events to be collected simultaneously. Some

techniques might tolerate this; such as Sandy Bridge’s support

of up to eight general-purpose counters [10], or event-

multiplexing in the tools [2][3]. Still a better hardware support

is desired. Additionally, the ability to pinpoint an identified

issue back to the user code can benefit much software

developers. While PMU precise mechanisms are a promising

direction, some microarchitecture areas are under-covered.

Yet, enterprise-class applications impose additional challenges

with flat long-tail profiles.

Correctly classifying bottlenecks in the context of

hardware hyper-threading (HT) is definitely a challenging

front. While it was beyond the scope of this paper, the design

of some Top Down events, does take HT into account, letting

the Top Level works when HT is enabled; but that is just the

start. Lastly, While the goal of our method was to identify

critical bottlenecks, it does not gauge the speedup should

underlying issues be fixed. Generally, even to determine

whether an issue-fix will be translated into speedup (at all) is

tricky. A workload often moves to the next critical bottleneck.

[12] has done nice progress to that end in scalability

bottlenecks context.

Acknowledgements

The author would like to thank the anonymous reviewers at

Intel; Joseph Nuzman and Vish Viswanathan in particular for

their insightful comments, Tal Katz for data collection and

Mashor Housh for a close technical write-up review.

References
[1] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A

performance counter architecture for computing accurate CPI

components,” in ACM SIGOPS Operating Systems Review, 2006, vol.

40, pp. 175–184.

[2] Intel Corporation, “Intel® VTuneTM Amplifier XE 2013.” [Online].

[3] A. Carvalho, “The New Linux ’perf’ tools,” presented at the Linux

Kongress, 2010.

[4] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “DBMSs on a

Modern Processor: Where Does Time Go?,” in Proceedings of the 25th

International Conference on Very Large Data Bases, San Francisco,
CA, USA, 1999, pp. 266–277.

[5] D. Levinthal, “Performance Analysis Guide for Intel Core i7 Processor

and Intel® Xeon 5500 processors.” Intel, 2009.
[6] A. Mericas, Vianney, Duc, Maron, Bill, Thomas Chen, Steve Kunkel,

and Bret Olszewski, “CPI analysis on POWER5, Part 2: Introducing the

CPI breakdown model,” 2006. [Online]
[7] Intel Corporation, “Intel® 64 and IA-32 Architectures Optimization

Reference Manual,” Intel. [Online].

[8] O. Allam, S. Eyerman, and L. Eeckhout, “An efficient CPI stack counter
architecture for superscalar processors,” in GLSVLSI, 2012.

[9] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A top-down

approach to architecting CPI component performance counters,” Micro,
IEEE, vol. 27, no. 1, pp. 84–93, 2007.

[10] Intel Corporation, “Intel® 64 and IA-32 Architectures Software

Developer Manuals,” 2013. [Online]

[11] A. Jaleel, “Memory Characterization of Workloads Using

Instrumentation-Driven Simulation,” 2010. [Online]. Available:

http://www.jaleels.org/ajaleel/workload/.
[12] D. Eklov, N. Nikoleris, and E. Hagersten, “A Profiling Method for

Analyzing Scalability Bottlenecks on Multicores,” 2012.

[13] X. Liu and J. Mellor-Crummey, “Pinpointing data locality bottlenecks
with low overhead,” in Performance Analysis of Systems and Software

(ISPASS), 2013 IEEE International Symposium on, 2013, pp. 183–193.

Appendix 1

Intel Core™ microarchitecture is a 4-wide issue machine. Table 7

summarizes the metrics implementation using the Ivy Bridge PMU

event names. Some of the Top-Down designated events are not

directly available in hardware; instead a formula is supplied to

approximate metric from available events. Note metrics that do not

appear in the table have nothing specific to the Intel implementation

and can be used as is from Table 2.

Table 7: Intel’s implementation of Top-Down Metrics

Metric Name Intel Core™ events

Clocks CPU_CLK_UNHALTED.THREAD

Slots 4 * Clocks

Frontend Bound IDQ_UOPS_NOT_DELIVERED.CORE / Slots

Bad Speculation (UOPS_ISSUED.ANY - UOPS_RETIRED.RETIRE_SLOTS +

4* INT_MISC.RECOVERY_CYCLES) / Slots

Retiring UOPS_RETIRED.RETIRE_SLOTS / Slots

Frontend Latency

Bound

IDQ_UOPS_NOT_DELIVERED.CORE: [≥ 4] / Clocks

#BrMispredFraction BR_MISP_RETIRED.ALL_BRANCHES / (

BR_MISP_RETIRED.ALL_BRANCHES + MACHINE_CLEARS.COUNT)

#RetireUopFraction UOPS_RETIRED.RETIRE_SLOTS / UOPS_ISSUED.ANY

MicroSequencer #RetireUopFraction * IDQ.MS_UOPS / Slots

#ExecutionStalls (CYCLE_ACTIVITY.CYCLES_NO_EXECUTE - RS_EVENTS.EMPTY_CYCLES

+ UOPS_EXECUTED.THREAD: [≥ 1] - UOPS_EXECUTED.THREAD: [≥ 2]) /

Clocks

Memory Bound (CYCLE_ACTIVITY.STALLS_MEM_ANY + RESOURCE_STALLS.SB) / Clocks

L1 Bound (CYCLE_ACTIVITY.STALLS_MEM_ANY -

CYCLE_ACTIVITY.STALLS_L1D_MISS) / Clocks

L2 Bound (CYCLE_ACTIVITY.STALLS_L1D_MISS -

CYCLE_ACTIVITY.STALLS_L2_MISS)/Clocks

#L3HitFraction MEM_LOAD_UOPS_RETIRED.LLC_HIT /

(MEM_LOAD_UOPS_RETIRED.LLC_HIT

+7*MEM_LOAD_UOPS_RETIRED.LLC_MISS)

L3 Bound #L3HitFraction * CYCLE_ACTIVITY.STALLS_L2_MISS / Clocks

Ext. Memory Bound (1 - #L3HitFraction) * CYCLE_ACTIVITY.STALLS_L2_MISS / Clocks

MEM Bandwidth UNC_ARB_TRK_OCCUPANCY.ALL: [≥ 28]/ UNC_CLOCK.SOCKET

MEM Latency (UNC_ARB_TRK_OCCUPANCY.ALL: [≥ 1] -

UNC_ARB_TRK_OCCUPANCY.ALL: [≥ 28]) / UNC_CLOCK.SOCKET

	1. Introduction
	2. Background
	3. Top-Down Analysis
	3.1. The Hierarchy
	3.2. Top Level breakdown
	3.3. Frontend Bound category
	3.4. Bad Speculation category
	3.5. Retiring category
	3.6. Backend Bound category
	3.7. Memory Bound breakdown (within Backend)

	4. Counters Architecture
	4.1. Top-Down Events
	4.2. Top-Down Metrics

	5. Results
	5.1. SPEC CPU2006 1C
	5.2. SPEC CPU2006 4C
	5.3. Microarchitectures comparison
	5.4. Server workloads
	5.5. Case Study 1: Matrix-Multiply
	5.6. Case Study 2: False Sharing
	5.7. Case Study 3: Software Prefetch

	6. Related Work
	7. Summary and Future Work
	Acknowledgements
	References
	Appendix 1

