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Abstract 

Optimizing an application’s performance for a given 

microarchitecture has become painfully difficult. Increasing 

microarchitecture complexity, workload diversity, and the 

unmanageable volume of data produced by performance tools 

increase the optimization challenges. At the same time 

resource and time constraints get tougher with recently 

emerged segments. This further calls for accurate and prompt 

analysis methods. 

In this paper a Top-Down Analysis is developed – a 

practical method to quickly identify true bottlenecks in out-of-

order processors. The developed method uses designated 

performance counters in a structured hierarchical approach to 

quickly and, more importantly, correctly identify dominant 

performance bottlenecks. The developed method is adopted by 

multiple in-production tools including VTune. Feedback from 

VTune average users suggests that the analysis is made easier 

thanks to the simplified hierarchy which avoids the high-

learning curve associated with microarchitecture details. 

Characterization results of this method are reported for the 

SPEC CPU2006 benchmarks as well as key enterprise 

workloads. Field case studies where the method guides 

software optimization are included, in addition to architectural 

exploration study for most recent generations of Intel Core™ 

products. 

The insights from this method guide a proposal for a novel 

performance counters architecture that can determine the true 

bottlenecks of a general out-of-order processor. Unlike other 

approaches, our analysis method is low-cost and already 

featured in in-production systems – it requires just eight 

simple new performance events to be added to a traditional 

PMU. It is comprehensive – no restriction to predefined set of 

performance issues. It accounts for granular bottlenecks in 

super-scalar cores, missed by earlier approaches. 
 

1. Introduction 

The primary aim of performance monitoring units (PMUs) 

is to enable software developers to effectively tune their 

workload for maximum performance on a given system.  

Modern processors expose hundreds of performance events, 

any of which may or may not relate to the bottlenecks of a 

particular workload.  Confronted with a huge volume of data, 

it is a challenge to determine the true bottlenecks out of these 

events. A main contributor to this, is the fact that these 

performance events were historically defined in an ad-doc 

bottom-up fashion, where PMU designers attempted to cover 

key issues via “dedicated miss events” [1]. Yet, how does one 

pin-point performance issues that were not explicitly foreseen 

at design time? 

Bottleneck identification has many applications: computer 

architects can better understand resource demands of emerging 

workloads. Workload characterization often uses data of raw 

event counts. Such unprocessed data may not necessary point 

to the right bottlenecks the architects should tackle. Compiler 

writers can determine what Profile Guided Optimization 

(PGO) suit a workload more effectively and with less 

overhead. Monitors of virtual systems can improve resource 

utilization and minimize energy. 

In this paper, we present a Top-Down Analysis - a 

feasible, fast method that identifies critical bottlenecks in out-

of-order CPUs. The idea is simple - a structured drill down in 

a hierarchical manner, guides the user towards the right area to 

investigate. Weights are assigned to nodes in the tree to guide 

users to focus their analysis efforts on issues that indeed 

matter and disregard insignificant issues. For instance, say a 

given application is significantly hurt by instruction fetch 

issues; the method categorizes it as Frontend Bound at the 

uppermost level of the tree. A user/tool is expected to drill 

down (only) on the Frontend sub-tree of the hierarchy. The 

drill down is recursively performed until a tree-leaf is reached. 

A leaf can point to a specific stall of the workload, or it can 

denote a subset of issues with a common micro-architectural 

symptom which are likely to limit the application’s 

performance. 

We have featured our method with the Intel 3
rd

 generation 

Core™ codenamed Ivy Bridge. Combined with the 

hierarchical approach, a small set of Top-Down oriented 

counters are used to overcome bottleneck identification 

challenges (detailed in next section). Multiple tools have 

adopted our method including VTune [2] and an add-on 

package to the standard Linux perf utility [3]. Field experience 

with the method has revealed some performance issues that 

used to be underestimated by traditional methods. Finally, the 

insights from this method are used to propose a novel 

performance counters architecture that can determine the true 

bottlenecks of general out-of-order architecture, in a top down 

approach. 

The rest of this paper is organized as follows. Section 2 

provides a background and discusses the challenges with 

bottleneck identification in out-of-order CPUs. The Top-Down 

Analysis method and its abstracted metrics are introduced in 

Section 3. In Section 4, novel low-cost counters architecture is 

proposed to obtain these metrics. Results on popular 

workloads as well as sample use-cases are presented in 

Section 5. Related work is discussed in Section 6 and finally, 

Section 7 concludes and outlines future work. 
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2. Background 

Modern high-performance CPUs go to great lengths to 

keep their execution pipelines busy, applying techniques such 

as large-window out-of-order execution, predictive 

speculation, and hardware prefetching.  Across a broad range 

of traditional workloads, these high-performance architectures 

have been largely successful at executing arbitrary code at a 

high rate of instructions-per-cycle (IPC). However, with these 

sophisticated super-scalar out-of-order machines attempting to 

operate so “close to the edge”, even small performance 

hiccups can limit a workload to perform far below its 

potential.  Unfortunately, identifying true performance limiters 

from among the many inconsequential issues that can be 

tolerated by these CPUs has remained an open problem in the 

field. 

From a bird’s eye view, the pipeline of modern out-of-

order CPU has two main portions: a frontend and a backend. 

The frontend is responsible for fetching instructions from 

memory and translating them into micro-operations (uops). 

These uops are fed to the backend portion. The backend is 

responsible to schedule, execute and commit (retire) these 

uops per original program’s order. So as to keep the machine 

balanced, delivered uops are typically buffered in some 

“ready-uops-queue” once ready for consumption by the 

backend. An example block diagram for the Ivy Bridge 

microarchitecture, with underlying functional units is depicted 

in Figure 1. 

 

Figure 1: Out-of-order CPU block diagram - Intel Core™ 

Traditional methods [4][5] do simple estimations of stalls. 

E.g. the numbers of misses of some cache are multiplied by a 

pre-defined latency: 

Stall_Cycles = Σ Penaltyi * MissEventi 

While this “naïve-approach” might work for an in-order CPU, 

surely it is not suitable for modern out-of-order CPUs due to 

numerous reasons: (1) Stalls overlap, where many units work 

in parallel. E.g. a data cache miss can be handled, while some 

future instruction is missing the instruction cache. (2) 

Speculative execution, when CPU follows an incorrect 

control-path. Events from incorrect path are less critical than 

those from correct-path. (3) Penalties are workload-

dependent, while naïve-approach assumes a fixed penalty for 

all workloads. E.g. the distance between branches may add to 

a misprediction cost. (4) Restriction to a pre-defined set of 

miss-events, these sophisticated microarchitectures have so 

many possible hiccups and only the most common subset is 

covered by dedicated events. (5) Superscalar inaccuracy, a 

CPU can issue, execute and retire multiple operations in a 

cycle. Some (e.g. client) applications become limited by the 

pipeline’s bandwidth as latency is mitigated with more and 

more techniques.  

We address those gaps as follows. A major category 

named “Bad Speculation” (defined later) is placed at the top of 

the hierarchy. It accounts for stalls due to incorrect predictions 

as well as resources wasted by execution of incorrect paths. 

Not only does this bring the issue to user’s first attention, but 

it also simplifies requisites from hardware counters used 

elsewhere in the hierarchy. We introduce a dozen truly Top-

Down designated counters to let us deal with other points. We 

found that determining what pipeline stage to look at and “to 

count when matters”, play a critical role in addressing (1) and 

(3). For example, instead of total memory access duration, we 

examine just the sub-duration when execution units are 

underutilized as a result of pending memory access. Calling 

for generic events, not tied to “dedicated miss events” let us 

deal with (4). Some of these are occupancy events
1
 in order to 

deal with (5). 

 

3. Top-Down Analysis 

Top-Down Analysis methodology aims to determine 

performance bottlenecks correctly and quickly. It guides users 

to focus on issues that really matter during the performance 

optimization phase. This phase is typically performed within 

the time and resources constraints of the overall application 

development process. Thus, it becomes more important to 

quickly identify the bottlenecks. 

The approach itself is straightforward: Categorize CPU 

execution time at a high level first. This step flags (reports 

high fraction value) some domain(s) for possible investigation. 

Next, the user can drill down into those flagged domains, and 

can safely ignore all non-flagged domains. The process is 

repeated in a hierarchical manner until a specific performance 

issue is determined or at least a small subset of candidate 

issues is identified for potential investigation.  

In this section we first overview the hierarchy structure, 

and then present the heuristics behind the higher levels of the 

hierarchy. 

 

3.1. The Hierarchy 

The hierarchy is depicted in Figure 2. First, we assume the 

user has predefined criteria for analysis. For example, a user 

might choose to look at an application’s hotspot where at least 

20% of execution time is spent. Another example is to analyze 

why a given hotspot does not show expected speedup from 

                                                           
1
 An occupancy event is capable to increment by more than 1 in a given cycle 

when a certain condition is met for multiple entities 
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one hardware generation to another. Hotspot can be a software 

module, function, loop, or a sequence of instructions across 

basic blocks. 

 

Figure 2: The Top-Down Analysis Hierarchy 

 

Top-Down breakdown is applied to the interesting hotspots 

where available pipeline slots are split into four basic 

categories: Retiring, Bad Speculation, Frontend Bound and 

Backend Bound. These terms are defined in the following sub-

sections. The best way to illustrate this methodology is 

through an example. Take a workload that is limited by the 

data cache performance. The method flags Backend Bound, 

and Frontend Bound will not be flagged. This means the user 

needs to drill down at the Backend Bound category as next 

step, leaving alone all Frontend related issues. When drilling 

down at the Backend, the Memory Bound category would be 

flagged as the application was assumed cache-sensitive. 

Similarly, the user can skip looking at non-memory related 

issues at this point. Next, a drill down inside Memory Bound 

is performed. L1, L2 and L3-Bound naturally break down the 

Memory Bound category. Each of them indicates the portion 

the workload is limited by that cache-level. L1 Bound should 

be flagged there. Lastly, Loads block due to overlap with 

earlier stores or cache line split loads might be specific 

performance issues underneath L1 Bound. The method would 

eventually recommend the user to focus on this area. 

Note that the hierarchical structure adds a natural safety 

net when looking at counter values. A value of an inner node 

should be disregarded unless nodes on the path from the root 

to that particular node are all flagged. For example, a simple 

code doing some divide operations on a memory-resident 

buffer may show high values for both Ext. Memory Bound 

and Divider nodes in Figure 2. Even though the Divider node 

itself may have high fraction value, it should be ignored 

assuming the workload is truly memory bound. This is assured 

as Backend.CoreBound will not be flagged. We refer to this as 

hierarchical-safety property. Note also that only weights of 

sibling nodes are comparable. This is due to the fact they are 

calculated at same pipeline stage. Comparing fractions of non-

sibling nodes is not recommended. 

 

 

3.2. Top Level breakdown 

There is a need for first-order classification of pipeline 

activity. Given the highly sophisticated microarchitecture, the 

first interesting question is how and where to do the first level 

breakdown? We choose the issue point, marked by the asterisk 

in Figure 1, as it is the natural border that splits the frontend 

and backend portions of machine.  It enables a highly accurate 

Top-Level classification. 

At issue point we classify each pipeline-slot into one of 

four base categories: Frontend Bound, Backend Bound, Bad 

Speculation and Retiring, as illustrated by Figure 3. If a uop is 

issued in a given cycle, it would eventually either get retired 

or cancelled. Thus it can be attributed to either Retiring or Bad 

Speculation respectively.  

 

Figure 3: Top Level breakdown flowchart 

Otherwise it can be split into whether there was a backend-

stall or not. A backend-stall is a backpressure mechanism the 

Backend asserts upon resource unavailability (e.g. lack of load 

buffer entries). In such a case we attribute the stall to the 

Backend, since even if the Frontend was ready with more uops 

it would not be able to pass them down the pipeline. If there 

was no backend-stall, it means the Frontend should have 

delivered some uops while the Backend was ready to accept 

them; hence we tag it with Frontend Bound. This backend-

stall condition is a key one as we outline in FetchBubbles 

definition in next section. 

In fact the classification is done at pipeline slots 

granularity as a superscalar CPU is capable of issuing multiple 

uops per cycle. This makes the breakdown very accurate and 

robust which is a necessity at the hierarchy’s top level. This 

accurate classification distinguishes our method from previous 

approaches in [1][5][6]. 

 

3.3. Frontend Bound category 

Recall that Frontend denotes the first portion of the 

pipeline where the branch predictor predicts the next address 

to fetch, cache lines are fetched, parsed into instructions, and 

decoded into micro-ops that can be executed later by the 

Backend. Frontend Bound denotes when the frontend of the 

CPU undersupplies the backend. That is, the latter would have 

been willing to accept uops. 

Dealing with Frontend issues is a bit tricky as they occur at 

the very beginning of the long and buffered pipeline. This 

means in many cases transient issues will not dominate the 

actual performance. Hence, it is rather important to dig into 
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this area only when Frontend Bound is flagged at the Top-

Level. With that said, we observe in numerous cases the 

Frontend supply bandwidth can dominate the performance, 

especially when high IPC applies. This has led to the addition 

of dedicated units to hide the fetch pipeline latency and sustain 

required bandwidth. The Loop Stream Detector as well as 

Decoded I-cache (i.e. DSB, the Decoded-uop Stream Buffer 

introduced in Sandy Bridge) are a couple examples from Intel 

Core [7]. 

Top-Down further distinguishes between latency and 

bandwidth stalls. An i-cache miss will be classified under 

Frontend Latency Bound, while inefficiency in the 

instruction decoders will be classified under Frontend 

Bandwidth Bound. Ultimately, we would want these to 

account for only when the rest of pipeline is likely to get 

impacted, as discussed earlier. 

Note that these metrics are defined in Top-Down 

approach; Frontend Latency accounts for cases that lead to 

fetch starvation (the symptom of no uop delivery) regardless 

of what has caused that. Familiar i-cache and i-TLB misses fit 

here, but not only these. For example, [4] has flagged 

Instruction Length Decoding as a fetch bottleneck. It is CPU-

specific, hence not shown in Figure 2. Branch Resteers 

accounts for delays in the shadow of pipeline flushes e.g. due 

to branch misprediction. It is tightly coupled with Bad 

Speculation (where we elaborate on misprediction costs). 

The methodology further classifies bandwidth issues per 

fetch-unit inserting uops to the uops-ready-queue. Instruction 

Decoders are commonly used to translate mainstream 

instructions into uops the rest of machine understands - That 

would be one fetch unit. Also sophisticated instruction, like 

CPUID, typically have dedicated unit to supply long uop 

flows. That would be 2
nd

 fetch unit and so on. 

  

3.4. Bad Speculation category 

Bad Speculation reflects slots wasted due to incorrect 

speculations. These include two portions: slots used to issue 

uops that do not eventually retire; as well as slots in which the 

issue pipeline was blocked due to recovery from earlier miss-

speculations. For example, uops issued in the shadow of a 

mispredicted branch would be accounted in this category. 

Note third portion of a misprediction penalty deals with how 

quick is the fetch from the correct target. This is accounted in 

Branch Resteers as it may overlap with other frontend stalls. 

Having Bad Speculation category at the Top-Level is a key 

principle in our Top-Down Analysis. It determines the fraction 

of the workload under analysis that is affected by incorrect 

execution paths, which in turn dictates the accuracy of 

observations listed in other categories. Furthermore, this 

permits nodes at lower levels to make use of some of the many 

traditional counters, given that most counters in out-of-order 

CPUs count speculatively. Hence, a high value in Bad 

Speculation would be interpreted by the user as a “red flag” 

that need to be investigated first, before looking at other 

categories. In other words, assuring Bad Speculation is minor 

not only improves utilization of the available resources, but 

also increases confidence in metrics reported throughout the 

hierarchy. 

The methodology classifies the Bad Speculation slots into 

Branch Misspredict and Machine Clears. While the former 

is pretty famous, the latter results in similar symptom where 

the pipeline is flushed. For example, incorrect data speculation 

generated Memory Ordering Nukes [7] - a subset of Machine 

Clears. We make this distinction as the next steps to analyze 

these issues can be completely different. The first deals with 

how to make the program control flow friendlier to the branch 

predictor, while the latter points to typically unexpected 

situations. 

 

3.5. Retiring category 

This category reflects slots utilized by “good uops” – 

issued uops that eventually get retired. Ideally, we would want 

to see all slots attributed to the Retiring category; that is 

Retiring of 100% corresponds to hitting the maximal uops 

retired per cycle of the given microarchitecture. For example, 

assuming one instruction is decoded into one uop, Retiring of 

50% means an IPC of 2 was achieved in a four-wide machine . 

Hence maximizing Retiring increases IPC. 

Nevertheless, a high Retiring value does not necessary 

mean there is no room for more performance. Microcode 

sequences such as Floating Point (FP) assists typically hurt 

performance and can be avoided [7]. They are isolated under 

Micro Sequencer metric in order to bring it to user’s 

attention. 

A high Retiring value for non-vectorized code may be a 

good hint for user to vectorize the code. Doing so essentially 

lets more operations to be completed by single 

instruction/uop; hence improve performance. For more details 

see Matrix-Multiply use-case in Section 5. Since FP 

performance is of special interest in HPC land, we further 

breakdown the base retiring category into FP Arithmetic with 

Scalar and Vector operations distinction. Note that this is an 

informative field-originated expansion. Other styles of 

breakdown on the distribution of retired operations may apply. 

 

3.6. Backend Bound category 

Backend Bound reflects slots no uops are being delivered 

at the issue pipeline, due to lack of required resources for 

accepting them in the backend. Examples of issues attributed 

in this category include data-cache misses or stalls due to 

divider being overloaded. 

Backend Bound is split into Memory Bound and Core 

Bound. This is achieved by breaking down backend stalls 

based on execution units’ occupation at every cycle. Naturally, 

in order to sustain a maximum IPC, it is necessary to keep 

execution units busy. For example, in a four-wide machine, if 

three or less uops are executed in a steady state of some code, 

this would prevent it to achieve a optimal IPC of 4. These 

suboptimal cycles are called ExecutionStalls. 

Memory Bound corresponds to execution stalls related to 

the memory subsystem. These stalls usually manifest with 
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execution units getting starved after a short while, like in the 

case of a load missing all caches.  

Core Bound on the other hand, is a bit trickier. Its stalls 

can manifest either with short execution starvation periods, or 

with sub-optimal execution ports utilization: A long latency 

divide operation might serialize execution, while pressure on 

execution port that serves specific types of uops, might 

manifest as small number of ports utilized in a cycle. Actual 

metric calculations is described in Section 4. 

Core Bound issues often can be mitigated with better code 

generation. E.g., a sequence of dependent arithmetic 

operations would be classified as Core Bound. A compiler 

may relieve that with better instruction scheduling. 

Vectorization can mitigate Core Bound issues as well; as 

demonstrated in Section 5.5. 

 

3.7. Memory Bound breakdown (within Backend) 

Modern CPUs implement three levels of cache hierarchy 

to hide latency of external memory. In the Intel Core case, the 

first level has a data cache (L1D). L2 is the second level 

shared instruction and data cache, which is private to each 

core. L3 is the last level cache, which is shared among sibling 

cores. We assume hereby a three-cache-level hierarchy with a 

unified external memory; even though the metrics are generic-

enough to accommodate other cache- and memory- 

organizations, including NUMA. 

To deal with the overlapping artifact, we introduce a novel 

heuristic to determine the actual penalty of memory accesses. 

A good out-of-order scheduler should be able to hide some of 

the memory access stalls by keeping the execution units busy 

with useful uops that do not depends on pending memory 

accesses. Thus the true penalty for a memory access is when 

the scheduler has nothing ready to feed the execution units. It 

is likely that further uops are either waiting for the pending 

memory access, or depend on other unready uops. Significant 

ExecutionStalls while no demand-load
2
 is missing some 

cache-level, hints execution is likely limited by up to that level 

itself. Figure 4 also illustrates how to break ExecutionStalls 

per cache-level. 

For example, L1D cache often has short latency which is 

comparable to ALU stalls. Yet in certain scenarios, like load 

blocked to forward data from earlier store to an overlapping 

address, a load might suffer high latency while eventually 

being satisfied by L1D. In such scenario, the in-flight load will 

last for a long period without missing L1D. Hence, it gets 

tagged under L1 Bound per flowchart in Figure 4. Load 

blocks due to 4K Aliasing [7] is another scenario with same 

symptom. Such scenarios of L1 hits and near caches’ misses, 

are not handled by some approaches [1][5].  

Note performance hiccups, as the mentioned L1 Bound 

scenarios, would appear as leaf-nodes in the hierarchy in 

Figure 2. We skipped listing them due to scope limitation. 

                                                           
2
 Hardware prefetchers are of special treatment. We disregard them as long as 

they were able to hide the latency from the demand requests. 

   

 Figure 4: Memory Bound breakdown flowchart 

So far, load operations of the memory subsystem were 

treated. Store operations are buffered and executed post-

retirement (completion) in out-of-order CPUs due to memory 

ordering requirements of x86 architecture. For the most part 

they have small impact on performance (as shown in results 

section); they cannot be completely neglected though. Top-

Down defined Stores Bound metric, as fraction of cycles with 

low execution ports utilization and high number of stores are 

buffered. In case both load and store issues apply we will 

prioritize the loads nodes given the mentioned insight. 

Data TLB misses can be categorized under Memory 

Bound sub-nodes. For example, if a TLB translation is 

satisfied by L1D, it would be tagged under L1 Bound. 

Lastly, a simplistic heuristic is used to distinguish MEM 

Bandwidth and MEM Latency under Ext. Memory Bound. 

We measure occupancy of requests pending on data return 

from memory controller. Whenever the occupancy exceeds a 

certain threshold, say 70% of max number of requests the 

memory controller can serve simultaneously, we flag that as 

potentially limited by the memory bandwidth. The remainder 

fraction will be attributed to memory latency. 

4. Counters Architecture 

This section describes the hardware support required to 

feature the described Top-Down Analysis. We assume a 

baseline PMU commonly available in modern CPU (e.g. x86 

or ARM). Such a PMU offers a small set of general counters 

capable of counting performance events. Nearly a dozen of 

events are sufficient to feature the key nodes of the hierarchy. 

In fact, only eight designated new events are required. The rest 

can be found in the PMU already today – these are marked 

with asterisk in Table 1. For example, TotalSlots event can be 

calculated with the basic Clockticks event. Additional PMU 

legacy events may be used to further expand the hierarchy, 

thanks to the hierarchical-safety property described in Section 

3. 

It is noteworthy that a low-cost hardware support is 

required. The eight new events are easily implementable. They 
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rely on design local signals, possibly masked with a stall 

indication. Neither at-retirement tagging is required as in IBM 

POWER5 [6], nor complex structures with latency counters as 

in Accurate CPI Stacks proposals [1][8][9]. 

4.1. Top-Down Events 

The basic Top-Down generic events are summarized in Table 

1. Please refer to Appendix 1 for the Intel implementation of 

these events. Notice there, an implementation can provide 

simpler events and yet get fairly good results. 

Table 1: Definitions of Top-Down performance events 

Event Definition 

TotalSlots* Total number of issue-pipeline slots. 

SlotsIssued* Utilized issue-pipeline slots to issue operations 

SlotsRetired* Utilized issue-pipeline slots to retire (complete) 

operations 

FetchBubbles Unutilized issue-pipeline slots while there is no 

backend-stall 

RecoveryBubbles Unutilized issue-pipeline slots due to recovery 

from earlier miss-speculation 

BrMispredRetired* Retired miss-predicted branch instructions 

MachineClears* Machine clear events (pipeline is flushed) 

MsSlotsRetired* Retired pipeline slots supplied by the micro-

sequencer fetch-unit 

OpsExecuted* Number of operations executed in a cycle 

MemStalls.AnyLoad Cycles with no uops executed and at least 1 in-
flight load that is not completed yet 

MemStalls.L1miss Cycles with no uops executed and at least 1 in-

flight load that has missed the L1-cache 

MemStalls.L2miss Cycles with no uops executed and at least 1 in-
flight load that has missed the L2-cache 

MemStalls.L3miss Cycles with no uops executed and at least 1 in-

flight load that has missed the L3-cache 

MemStalls.Stores Cycles with few uops executed and no more 
stores can be issued 

ExtMemOutstanding Number of outstanding requests to the memory 

controller every cycle 
 

4.2. Top-Down Metrics 

The events in Table 1 can be directly used to calculate the 

metrics using formulas shown in Table 2. In certain cases, a 

flavor of the baseline hardware event is used
3
. Italic #-prefixed 

metric denotes an auxiliary expression. 

Table 2: Formulas for Top-Down Metrics 

Metric Name Formula 

Frontend Bound FetchBubbles / TotalSlots 

Bad Speculation (SlotsIssued – SlotsRetired + RecoveryBubbles) / 

TotalSlots 

Retiring SlotsRetired / TotalSlots 

Backend Bound 1 – (Frontend Bound + Bad Speculation + Retiring) 

Fetch Latency 

Bound 

FetchBubbles[≥ #MIW] / Clocks 

Fetch Bandwidth 

Bound 

Frontend Bound – Fetch Latency Bound 

#BrMispredFraction BrMispredRetired / (BrMispredRetired + 

MachineClears) 

Branch Mispredicts #BrMispredFraction * Bad Speculation 

Machine Clears Bad Speculation – Branch Mispredicts 

                                                           
3
 For example, the FetchBubbles[≥ MIW] notation tells to count cycles in 

which number of fetch bubbles exceed Machine Issue Width (MIW). This 

capability is called Counter Mask ever available in x86 PMU [10]. 

MicroSequencer MsSlotsRetired / TotalSlots 

BASE Retiring – MicroSequencer 

#ExecutionStalls (OpsExecuted[= FEW] ) / Clocks 

Memory Bound (MemStalls.AnyLoad + MemStalls.Stores) / Clocks 

Core Bound #ExecutionStalls – Memory Bound 

L1 Bound (MemStalls.AnyLoad – MemStalls.L1miss) / Clocks 

L2 Bound (MemStalls.L1miss – MemStalls.L2miss) / Clocks 

L3 Bound (MemStalls.L2miss – MemStalls.L3miss) / Clocks 

Ext. Memory Bound MemStalls.L3miss / Clocks 

MEM Bandwidth ExtMemOutstanding[≥  THRESHOLD] / 

ExtMemOutstanding[≥ 1]   

MEM Latency (ExtMemOutstanding[≥ 1]  / Clocks) – MEM 

Bandwidth 

Note ExecutionStall denotes sub-optimal cycles in which 

no or few uops are executed. A workload is unlikely to hit max 

IPC in such case. While these thresholds are implementation-

specific, our data suggests cycles with 0, 1 or 2 uops executed 

are well-representing Core Bound scenarios at least for Sandy 

Bridge-like cores.  

5. Results 

In this section, we present Top-Down Analysis results for 

the SPEC CPU2006 benchmarks in single-thread (1C) and 

multi-copy (4C) modes with setup described in Table 3. Then, 

an across-CPUs study demonstrates an architecture 

exploration use-case. As Frontend Bound tends to be less of a 

bottleneck in CPU2006, results for key server workloads are 

included. Lastly, we share a few use-cases where performance 

issues are tuned using Top-Down Analysis. 

Table 3: Baseline system setup parameters 

Processor Intel® Core™ i7-3940XM (Ivy Bridge). 3 GHz 

fixed frequency. A quadcore with 8MB L3 cache. 
Hardware prefetchers enabled. 

Memory 8GB DDR3 @1600 MHz 

OS Windows 8 64-bit  

Benchmark SPEC CPU 2006 v1.2 (base/rate mode) 

Compiler Intel Compiler 14 (SSE4.2 ISA) 
 

5.1. SPEC CPU2006 1C 

At the Top Level, Figure 5a suggests diverse breakdown 

of the benchmark’s applications. Performance wise, the 

Retiring category is close to 50% which aligns with aggregate 

Instruction-Per-Cycle (IPC) of ~1.7 measured for same set of 

runs. Recall 100% Retiring means four retired uops-per-cycle 

while for SPEC CPU2006 an instruction is decoded into 

slightly  more than one uop on average. Note how Retiring 

correlates well with IPC, included to cross-validate with an 

established metric.  

Overall Backend Bound is dominant. So we drill down 

into it in next diagrams in Figure 5. The Backend Level 

diagram guides the user whether to look at Core or Memory 

issues next. For example, 456.hmmer is flagged as 

Backend.CoreBound. Close check of the top hotspots with 

VTune, indeed points to loops with tight data-dependent 

arithmetic instructions.  
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(a) Top Level 

 
(b) Backend Level 

 
(c) Memory Level 

Figure 5: Top-Down Analysis breakdown for SPEC CPU 

2006 benchmarks in single-thread mode 

The Integer applications are more sensitive to Frontend 

Bound and Bad Speculation than the FP applications. This 

aligns with simulations data using a propriety cycle-accurate 

simulator, as well as prior analysis by Jaleel [11]. For 

example, Jaleel’s analysis reported that gcc, perlbench, 

xalancbmk, gobmk, and sjeng have code footprint bigger than 

32KB. They are classified as most Frontend Bound workloads. 

Note how the breakdown eases to assess the relative 

significance of bottlenecks should multiple apply. 

5.2. SPEC CPU2006 4C 

Results running 4-copies of these applications are shown 

in Figure 6. Top Level shows similarity to 1-copy. At a closer 

look, some applications do exhibit much increased Backend 

Bound. These are memory-sensitive applications as suggested 

by bigger Memory Bound fractions in Figure 6b. This is 

expected as L3 cache is “shared” among cores. Since an 

identical thread is running alone inside each physical core and 

given CPU2006 has minor i-cache misses, Frontend Bound 

and Bad Speculation in 4-copy roughly did not changed over 

1-copy. 

 

 
(a) Top Level  

 
(b) Backend Level 

 
(c) Memory Level 

Figure 6: Top-Down Analysis breakdown for SPEC CPU 

2006 benchmarks in multi-core mode (4-copy) 

For the less-scalable applications, Memory Bound 

breakdown points to off-core contention when comparing 

Figure 6c to 5c
4
. The key differences occur in applications 

that are either (I) sensitive to available memory bandwidth, or 

(II) impacted by shared cache competition between threads. 

An example of (I) is 470.lbm which is known for its high 

memory bandwidth requirements [12]. Its large MEM Bound 

is the primary change between 1- and 4-copy. 

A key example of (II) is 482.sphinx3. A close look at 

Memory Bound breakdown indicates the 4-copy sees reduced 

L3 Bound, and a greatly increased MEM Bound; capacity 

contention between threads in the shared L3 cache has forced 

many more L3 misses. This conclusion can be validated by 

consulting the working-set of this workload [11]: a single copy 

demands 8MB (same as LLC capacity) in 1-copy, vs 2MB 

effective per-core LLC share in 4-copy runs. 

Figure 7 shows how off-chip resources are utilized for 

some FP applications, with 1- and 4-copy side-by-side. The 

                                                           
4
 Negative L2 Bound is due to PMU erratum on L1 prefetchers  
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bars’ height indicates fraction of run time where the memory 

controller is serving some request. “MEM Bandwidth” is the 

relative portion where many requests are being serviced 

simultanously. Note we could plot these metrics at their native 

local units, thanks to the hierarchical-safety property. We 

should consider them carefully though.  

 

Figure 7: Off-chip comparison of memory-sensitive FP apps  

The available 25GB/s bandwidth clearly satisfies demand 

of 1-copy. The picture changes in 4-copy in different ways. 

435.gromacs, 447.dealII, 454.calculix and 465.tonto now 

spend more memory cycles due to increase of 1.3-3.6x in L3 

misses per-kilo instructions as measured by distinct set of 

performance counters. Note however, they showed on-par 

Memory- and Core-Bound stall fractions in Figure 6b, likely 

because the out-of-order could mitigate most of these memory 

cycles. This aligns with measured IPC in range of 1.7-2.3 in 4-

copy. In contrast, 410.bwaves, 433.milc, 437.leslie3d and 

470.lbm become much more MEM Bound in 4-copy per 

Figure 6c. Figure 7 tells us that was due to memory latency in 

1-copy which turns into memory bandwidth in 4-copy (4x data 

demand). Top-Down correctly classifies 470.lbm as MEM 

Bandwidth limited [12]. 

5.3. Microarchitectures comparison 

So far we have shown results for the same system. This 

section demonstrates how Top-Down can assist hardware 

architects. Figure 8 shows Top Level for Intel Core 3
rd

 and 4
th
 

generation CPUs, side-by-side for a subset of CPU2006 

integer benchmarks. The newer Intel Core has improved front-

end where speculative iTLB and i-cache accesses are 

supported with better timing to improve the benefits of 

prefetching [7]. This can be clearly noticed for the benefiting 

benchmarks with reduction in Frontend Bound. This 

validation adds to the confidence of underlying heuristics 

invented two generations earlier. 

 

Figure 8: Top Down across-microarchitectures  

5.4. Server workloads 

Key server workloads’ results on Sandy Bridge EP are 

shown in Figure 9. Retiring is lower compared to the SPEC 

workloads, which conform to the lower IPC domain (a range 

of 0.4 to 1 is measured). Backend- and Frontend-Bound are 

more significant given the bigger footprints.  

 

Figure 9: Top and Frontend levels for server workloads 

It is interesting to see that the characterization of DBMS 

workloads generally conforms to [4] who reported these 

workloads are limited by last-level data cache misses and 1
st
 

level i-cache misses a while  back. 

Within the Frontend, Latency issues are dominant across all 

server workloads. This is due to more i-cache and i-TLB 

misses as expected there, in contrast to client workloads 

whose Frontend Bound was almost evenly split between 

Latency and Bandwidth issues (not shown due to paper scope 

limitation). 

5.5. Case Study 1: Matrix-Multiply 

A matrix-multiply textbook kernel is analyzed with Top-

Down. It demos the iterative nature of performance tuning. 

Table 4: Results of tuning Matrix-Multiply case 

 

The initial code in multiply1() is extremely MEM Bound as 

big matrices are traversed in cache-unfriendly manner. 

Loop Interchange optimization, applied in multiply2()gives 

big speedup. The optimized code continues to be Backend 

Bound though now it shifts from Memory Bound to become 

Core Bound. 

Next in multiply3(), Vectorization is attempted as it reduces 

the port utilization with less net instructions. Another speedup 

is achieved. 

5.6. Case Study 2: False Sharing 

A university class educates students on multithreading 

pitfalls through an example to parallelize a serial compute-

bound code. First attempt has no speedup (or, a slowdown) 
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due to False Sharing. False Sharing is a multithreading hiccup, 

where multiple threads contend on different data-elements 

mapped into the same cache line. It can be easily avoided by 

padding to make threads access different lines. 

Table 5: Results of tuning False Sharing case 

 

The single-thread code has modest IPC. Top-Down 

correctly classifies the first multithreaded code attempt as 

Backend.Memory.StoresBound (False Sharing must have one 

thread writing to memory, i.e. a store, to apply). Stores Bound 

was eliminated in the fixed multithreaded version. 

5.7. Case Study 3: Software Prefetch 

A customer propriety object-recognition real application is 

analyzed with Top-Down. The workload is classified as 

Backend.Memory.ExtMemory.LatencyBound at application 

scope. Ditto for biggest hotspot function; though the metric 

fractions are sharper there. This is a symptom of more non-

memory bottlenecks in other hotspots. 

Table 6: Results of tuning Software Prefetch case 

 

Software Prefetches[10] are planted in the algorithm’s 

critical loop to prefetch data of next iteration. A speedup of 

35% per the algorithm-score is achieved, which is translated to 

1.21x at workload scope. Note the optimized version shows 

higher memory-bandwidth utilization and has become more 

Backend.CoreBound. 

6. Related Work 

The widely-used naïve-approach is adopted by [4][5] to 

name a few. While this might work for in-order CPUs, it is far 

from being accurate for out-of-order CPUs due to: stalls 

overlap, speculative misses and workload-dependent penalties 

as elaborated in Sections 2. 

IBM POWER5 [6] has dedicated PMU events to aid 

compute CPI breakdown at retirement (commit) stage. Stall 

periods with no retirement are counted per type of the next 

instruction to retire and possibly a miss-event tagged to it. 

Again this is a predefined set of fixed events picked in a 

bottom-up way. While a good improvement over naïve-

approach, it underestimates frontend misses’ cost as they get 

accounted after the point where the scheduler’s queue gets 

emptied. Levinthal [5] presents a Cycle Accounting method 

for earlier Intel Core implementations. A flat breakdown is 

performed at execution-stage, to decompose total cycles into 

retired, non-retired and stall components. Decomposition of 

stall components then uses the inadequate naïve-approach as 

author himself indicates. 

In contrast, Top-Down does breakdown at issue-stage, at 

finer granularity (slots) and avoids summing-up all penalties 

into one flat breakdown. Rather it drills down stalls in a 

hierarchical manner, where each level zooms into the 

appropriate portion of the pipeline. Further, designated Top-

Down events are utilized; sampling (as opposed to counting) 

on frontend issues is enabled, as well as breakdown when HT 

is on. None of these is featured by [5]. 

Some researchers have attempted to accurately classify 

performance impacts on out-of-order architectures. Eyerman 

et al. in [1][9] use a simulation-based interval analysis model 

in order to propose a counter architecture for building accurate 

CPI stacks. The presented results show improvements over 

naïve-approach and IBM POWER5 in terms of being closer to 

the reference simulation-based model. A key drawback of this 

approach (and its reference model) is that it restricts all stalls 

to a fixed set of eight predefined miss events. In [1][4][5] 

there is no consideration of (fetch) bandwidth issues, and 

short-latency bottlenecks like L1 Bound. Additionally, high 

hardware cost is implied due to fairly complex tracking 

structures as authors themselves later state in [8]. While [8] 

replaces the original structure with smaller FIFO; extra logic is 

required for penalty calculation and aggregation to new 

dedicated counters. This is in comparison with the simple 

events adopted by our method with no additional 

counters/logic. We have pointed to more drawbacks in 

previous sections. 

More recently, [13] and [12] proposed instrumentation-

based tools to analyze data-locality and scalability bottlenecks, 

respectively. In [13], average memory latency is sampled with 

a PMU and coupled with reuse distance obtained through 

combination of Pin and a cache simulator, in order to prioritize 

optimization efforts. An offline analyzer maps these metrics 

back to source code and enables the user to explore the data in 

hierarchal manner starting from main function. [12] presents a 

method to obtain speedup stacks for a specific type of parallel 

programs, while accounting for three bottlenecks: cache 

capacity, external memory bandwidth and synchronization.  

These can be seen as advanced optimization-specific 

techniques that may be invoked from Top-Down once 

Backend.MemoryBound is flagged. Furthermore, better 

metrics based on our MemStalls.L3Miss event e.g. can be used 

instead of raw latency value in [13] to quantify when speedup 

may apply. Examining metrics at higher program scope first, 

may be applied to our method as already done in VTune’s 

General Exploration view [2]. While [12] estimates speedups 
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(our method does not), it accounts for subset of scalability 

bottlenecks. For example, the case in 5.6 is not be covered by 

their three bottlenecks. 

7. Summary and Future Work 

This paper presented Top-Down Analysis method - a 

comprehensive, systematic in-production analysis 

methodology to identify critical performance bottlenecks in 

out-of-order CPUs. Using designated PMU events in 

commodity multi-cores, the method adopts a hierarchical 

classification, enabling the user to zero-in on issues that 

directly lead to sub-optimal performance.  The method was 

demonstrated to classify critical bottlenecks, across variety of 

client and server workloads, with multiple microarchitectures’ 

generations, and targeting both single-threaded and multi-core 

scenarios.  

The insights from this method are used to propose a novel 

low-cost performance counters architecture that can determine 

the true bottlenecks of a general out-of-order processor. Only 

eight simple new events are required. 

The presented method raises few points on PMU 

architecture and tools front. Breakdown of few levels require 

multiple events to be collected simultaneously. Some 

techniques might tolerate this; such as Sandy Bridge’s support 

of up to eight general-purpose counters [10], or event-

multiplexing in the tools [2][3]. Still a better hardware support 

is desired. Additionally, the ability to pinpoint an identified 

issue back to the user code can benefit much software 

developers. While PMU precise mechanisms are a promising 

direction, some microarchitecture areas are under-covered. 

Yet, enterprise-class applications impose additional challenges 

with flat long-tail profiles. 

Correctly classifying bottlenecks in the context of 

hardware hyper-threading (HT) is definitely a challenging 

front. While it was beyond the scope of this paper, the design 

of some Top Down events, does take HT into account, letting 

the Top Level works when HT is enabled; but that is just the 

start. Lastly, While the goal of our method was to identify 

critical bottlenecks, it does not gauge the speedup should 

underlying issues be fixed. Generally, even to determine 

whether an issue-fix will be translated into speedup (at all) is 

tricky. A workload often moves to the next critical bottleneck. 

[12] has done nice progress to that end in scalability 

bottlenecks context. 
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Appendix 1 

Intel Core™ microarchitecture is a 4-wide issue machine. Table 7 

summarizes the metrics implementation using the Ivy Bridge PMU 

event names. Some of the Top-Down designated events are not 

directly available in hardware; instead a formula is supplied to 

approximate metric from available events. Note metrics that do not 

appear in the table have nothing specific to the Intel implementation 

and can be used as is from Table 2. 

Table 7: Intel’s implementation of Top-Down Metrics 

Metric Name Intel Core™ events 

Clocks CPU_CLK_UNHALTED.THREAD 

Slots 4 * Clocks 

Frontend Bound IDQ_UOPS_NOT_DELIVERED.CORE / Slots  

Bad Speculation (UOPS_ISSUED.ANY - UOPS_RETIRED.RETIRE_SLOTS +     

4* INT_MISC.RECOVERY_CYCLES) / Slots  

Retiring UOPS_RETIRED.RETIRE_SLOTS / Slots 

Frontend Latency 

Bound 

IDQ_UOPS_NOT_DELIVERED.CORE: [≥ 4] / Clocks 

#BrMispredFraction BR_MISP_RETIRED.ALL_BRANCHES / ( 

BR_MISP_RETIRED.ALL_BRANCHES + MACHINE_CLEARS.COUNT ) 

#RetireUopFraction UOPS_RETIRED.RETIRE_SLOTS / UOPS_ISSUED.ANY 

MicroSequencer #RetireUopFraction * IDQ.MS_UOPS / Slots 

#ExecutionStalls (CYCLE_ACTIVITY.CYCLES_NO_EXECUTE - RS_EVENTS.EMPTY_CYCLES 

+ UOPS_EXECUTED.THREAD: [≥ 1] - UOPS_EXECUTED.THREAD: [≥ 2]) / 

Clocks 

Memory Bound (CYCLE_ACTIVITY.STALLS_MEM_ANY + RESOURCE_STALLS.SB ) / Clocks 

L1 Bound (CYCLE_ACTIVITY.STALLS_MEM_ANY - 

CYCLE_ACTIVITY.STALLS_L1D_MISS) / Clocks 

L2 Bound (CYCLE_ACTIVITY.STALLS_L1D_MISS - 

CYCLE_ACTIVITY.STALLS_L2_MISS)/Clocks 

#L3HitFraction MEM_LOAD_UOPS_RETIRED.LLC_HIT / 

(MEM_LOAD_UOPS_RETIRED.LLC_HIT 

+7*MEM_LOAD_UOPS_RETIRED.LLC_MISS ) 

L3 Bound #L3HitFraction * CYCLE_ACTIVITY.STALLS_L2_MISS / Clocks 

Ext. Memory Bound (1 - #L3HitFraction) * CYCLE_ACTIVITY.STALLS_L2_MISS / Clocks  

MEM Bandwidth UNC_ARB_TRK_OCCUPANCY.ALL: [≥ 28]/ UNC_CLOCK.SOCKET 

MEM Latency (UNC_ARB_TRK_OCCUPANCY.ALL: [≥ 1]  - 

UNC_ARB_TRK_OCCUPANCY.ALL: [≥ 28]) / UNC_CLOCK.SOCKET 
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