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ABSTRACT

RAMCloud is a DRAM-based storage system that provides inex-
pensive durability and availability by recovering quicklfger crashes,
rather than storing replicas in DRAM. RAMCloud scatterskugr
data across hundreds or thousands of disks, and it harnesses
dreds of servers in parallel to reconstruct lost data. Thtesy uses

a log-structured approach for all its data, in DRAM as welbas
disk; this provides high performance both during normalrapen
and during recovery. RAMCloud employs randomized techesqu
to manage the system in a scalable and decentralized faghian
60-node cluster, RAMCloud recovers 35 GB of data from a ¢aile
server in 1.6 seconds. Our measurements suggest that ttoaelpp
will scale to recover larger memory sizes (64 GB or more) §sle
time with larger clusters.
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1. INTRODUCTION

The role of DRAM in storage systems has been increasinglyapid
in recent years, driven by the needs of large-scale Web appli
tions. These applications manipulate very large datasitsam
intensity that cannot be satisfied by disks alone. As a reaph
plications are keeping more and more of their data in DRAM. Fo
example, large-scale caching systems such as memcachack[3]
being widely used (in 2009 Facebook used a total of 150 TB of
DRAM in memcached and other caches for a database containing

200 TB of disk storage [15]), and the major Web search engines
now keep their search indexes entirely in DRAM.

Although DRAM’s role is increasing, it still tends to be used
limited or specialized ways. In most cases DRAM is just a each
for some other storage system such as a database; in otlesr cas
(such as search indexes) DRAM is managed in an applicafieoific
fashion. It is difficult for developers to use DRAM effectiyen
their applications; for example, the application must ngeneon-
sistency between caches and the backing storage. In agdiéiche
misses and backing store overheads make it difficult to captu
DRAM's full performance potential.

RAMCloud is a general-purpose storage system that makes it
easy for developers to harness the full performance peleoti
large-scale DRAM storage. It keeps all data in DRAM all timed;j
so there are no cache misses. RAMCloud storage is durable and
available, so developers need not manage a separate bathiag
RAMCloud is designed to scale to thousands of servers and hun
dreds of terabytes of data while providing uniform low-fatg ac-
cess (5-1Qus round-trip times for small read operations).

The most important factor in the design of RAMCloud was the
need to provide a high level of durability and availabilitythv
out impacting system performance. Replicating all dataRAM
would have solved some availability issues, but with 3xicepion
this would have tripled the cost and energy usage of the syste
Instead, RAMCloud keeps only a single copy of data in DRAM,;
redundant copies are kept on disk or flash, which is both @eap
and more durable than DRAM. However, this means that a server
crash will leave some of the system’s data unavailable itrtdn
be reconstructed from secondary storage.

RAMCloud’s solution to the availability problem is fast stare-
covery: the system reconstructs the entire contents of adoger’s
memory (64 GB or more) from disk and resumes full service i 1-
seconds. We believe this is fast enough to be consideredificen
ous availability” for most applications.

This paper describes and evaluates RAMCloud’s approactsto f
recovery. There are several interesting aspects to the RAMIC
architecture:

e Harnessing scale RAMCloud takes advantage of the sys-
tem’s large scale to recover quickly after crashes. Eacteser
scatters its backup data across all of the other serveosy-all
ing thousands of disks to participate in recovery. Hundreds
of recovery mastergork together to avoid network and CPU
bottlenecks while recovering data. RAMCloud uses both
data parallelism and pipelining to speed up recovery.

Log-structured storage RAMCloud uses techniques sim-
ilar to those from log-structured file systems [21], not just
for information on disk but also for information in DRAM.



The log-structured approach provides high performance and
simplifies many issues related to crash recovery.

Randomization: RAMCloud uses randomized approaches
to make decisions in a distributed and scalable fashion. In
some cases randomization is combined with refinement: a

server selects several candidates at random and then shoose

among them using more detailed information; this provides
near-optimal results at low cost.

Tablet profiling : RAMCloud uses a novel dynamic tree struc-
ture to track the distribution of data within tables; thidgse
divide a server’s data into partitions for fast recovery.

We have implemented the RAMCloud architecture in a work-
ing system and evaluated its crash recovery properties. 60ur
node cluster recovers in 1.6 seconds from the failure of eeser
with 35 GB of data, and the approach scales so that larger clus
ters can recover larger memory sizes in less time. Measunsoé
our randomized replica placement algorithm show that itlpoes
uniform allocations that minimize recovery time and thaaigely
eliminates straggler effects caused by varying disk speeds

Overall, fast crash recovery allows RAMCloud to provideahle
and available DRAM-based storage for the same price andjgner
usage as today’s volatile DRAM caches.

2. RAMCLOUD

Crash recovery and normal request processing are tighty-in
twined in RAMCloud, so this section provides background om t
RAMCloud concept and the basic data structures used to gsoce
requests. We have omitted some details because of spacte-limi
tions.

2.1 Basics

RAMCloud is a storage system where every byte of data is ptese
in DRAM at all times. The hardware for RAMCloud consists of
hundreds or thousands of off-the-shelf servers in a sinalacgn-
ter, each with as much DRAM as is cost-effective (24 to 64 GB
today). RAMCloud aggregates the DRAM of all these servetis in
a single coherent storage system. It uses backup copieskbodi
flash to make its storage durable and available, but the ipeaface
of the system is determined by DRAM, not disk.

The RAMCloud architecture combines two interesting preper
ties: low latency and large scale. First, RAMCloud is desitn
to provide the lowest possible latency for remote accessppli-a
cations in the same datacenter. Our goal is end-to-end tihes
5-10 us for reading small objects in datacenters with tens of thou-
sands of machines. This represents an improvement of 06,0
over existing datacenter-scale storage systems.

Unfortunately, today’s datacenters cannot meet RAMClela¥
tency goals (Ethernet switches and NICs typically add att[2@0-
500 us to round-trip latency in a large datacenter). Thus we use
low-latency Infiniband NICs and switches in our developresi-
ronment as an approximation to the networking hardware vpe ho
will be commonplace in a few years; this makes it easier tdoegp
latency issues in the RAMCloud software. The current RAM®@lo
system supports fis reads in a small cluster, and each storage
server can handle about 1 million small read requests pensec

The second important property of RAMCloud is scale: a single
RAMCloud cluster must support thousands of servers in otaler
provide a coherent source of data for large applicationaleSwre-
ates several challenges, such as the likelihood of frequampo-
nent failures and the need for distributed decision-makiravoid
bottlenecks. However, scale also creates opportunitigs, as the

Client

[Client] [Client] [Client] .

(Master] (Master] (Master]

Backup Backup Backup

Coordinator

Master

Figure 1: RAMCloud cluster architecture. Each storage server costai
master and a backup. A central coordinator manages thergmvoeand

tablet configuration. Client applications run on separaéehimes and ac-
cess RAMCloud using a client library that makes remote proce calls.

ability to enlist large numbers of resources on problems fadst
crash recovery.

RAMCloud’s overall goal is to enable a new class of applmasgi
that manipulate large datasets more intensively than rersbeen
possible. For more details on the motivation for RAMCloudi an
some of its architectural choices, see [18].

2.2 Data Model

The current data model in RAMCloud is a simple key-value
store. RAMCloud supports any number of tables, each of which
contains any number of objects. An object consists of a 6#ibin-
tifier, a variable-length byte array (up to 1 MB), and a 64vhitsion
number. RAMCloud provides a simple set of operations foatre
ing and deleting tables and for reading, writing, and detetib-
jects within a table. Objects are addressed with their iflerg and
are read and written in their entirety. There is no builttipgort for
atomic updates to multiple objects, but RAMCloud does miewa
conditional update (“replace the contents of objécin table T’
only if its current version number "), which can be used to im-
plement more complex transactions in application softwar¢he
future we plan to experiment with more powerful featureshsas
indexes, mini-transactions [4], and support for large gsap

2.3 System Structure

As shown in Figure 1, a RAMCloud cluster consists of a large
number of storage servers, each of which has two componants:
master which manages RAMCloud objects in its DRAM and ser-
vices client requests, andbackup which stores redundant copies
of objects from other masters using its disk or flash memoaghE
RAMCloud cluster also contains one distinguished servéed¢a
the coordinator The coordinator manages configuration informa-
tion such as the network addresses of the storage servetheand
locations of objects; it is not involved in most client regtse

The coordinator assigns objects to storage servers in ohits
tablets consecutive key ranges within a single table. Small tables
are stored in their entirety on a single storage servereta@ples
are split across multiple servers. Client applications dbhave
control over the tablet configuration; however, they canieah
some locality by taking advantage of the fact that smallgsifand
adjacent keys in large tables) are stored together on aessegler.

The coordinator stores the mapping between tablets anaigstor
servers. The RAMCloud client library maintains a cache @ th
information, fetching the mappings for each table the firaetit
is accessed. Clients can usually issue storage requestlylito
the relevant storage server without involving the coorttinalf a
client’s cached configuration information becomes statmbse a
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tablet has moved, the client library discovers this when akes
request update hash table

a request to a server that no longer contains the tablet, mhwh Disk
point it flushes the stale data from its cache and fetches-ujate g : Buffered Segment
information from the coordinator. Clients use the same raerisim s /El:l
during crash recovery to find the new location for data. | I | v Backup
1 1 ! Buffered Segment DISK

2.4 Managing Replicas _>9%% AN g

The internal structure of a RAMCloud storage server is deter g -
mined primarily by the need to provide durability and availity. b -+ Backup
In the absence of these requirements, a master would cof$itst i - Buffered S ) Disk
tle more than a hash table that maps fré@wble identifier, object L - 7 NSuttered Segmen
identifier) pairs to objects in DRAM. The main challenge is pro- 3 Master .~
viding durability and availability without sacrificing gfermance 4.Respondto 3. Replicate object Backup
or greatly increasing system cost. write request to backups

One possible approach to availability is to replicate edueai
in the memories of several servers. However, with a typiepli+ Figure 2: When a master receives a write request, it updates its inenyem
cation factor of three, this approach would triple both thstand log and forwards the new data to several backups, which itifte data

in their memory. The data is eventually written to disk or filas large
batches. Backups must use an auxiliary power source toettzatrbuffers
can be written to stable storage after a power failure.

energy usage of the system (each server is already fullethab
adding more memory would also require adding more servats an
networking). The cost of main-memory replication can baioed
by using coding techniques such as parity striping [20], thig

makes crash recovery considerably more expensive. Fuartiey 8 MB segmentsTh(? master keeps a count of unused space within
DRAM-based replicas are still vulnerable in the event of pow ~ €ach segment, which accumulates as objects are deletectier ov
failures. written. It reclaims wasted space by occasionally invokingg

Instead, RAMCloud keeps only a single copy of each object in cleaner the cleaner selects one or more segments to clean, reads
DRAM, with redundant copies on secondary storage such &s dis the live records from the segments and rewrites them at et tie
or flash. This makes replication nearly free in terms of cost a  the log, then deletes the cleaned segments along with taekup
energy usage (the DRAM for primary copies will dominate both COPies. Segments are also the unit of buffering and I/O ok

of these factors), but it raises two issues. First, the usgoofer ~ the large segment size enables efficient I/O for both diskfias.
storage for backup might impact the normal-case performarfic RAMCloud uses a log-structured approach not only for backup
the system (e.g., by waiting for synchronous disk writespc-S  Storage, but also for information in DRAM: the memory of a mas
ond, this approach could result in long periods of unavéitgior ter is structured as a collection of log segments identwahose
poor performance after server crashes, since the dataaviéitobe ~ Stored on backups. This allows masters to manage both their i
reconstructed from secondary storage. Section 2.5 descripy ~ memory data and their backup data using a single mechanisen. T
RAMCloud solves the performance problem, and Section 3sdeal 109 provides an efficient memory management mechanism, with
with crash recovery. the cleaner implementing a form of generational garbagecol
tion. In order to support random access to objects in meneagh
2.5 Log-Structured Storage master keeps a hash table that maps fitable identifier, object

identifier) pairs to the current version of an object in a segment.
The hash table is used both to look up objects during storpge o
erations and to determine whether a particular object@eiisithe
current one during cleaning (for example, if there is no habite
entry for a particular object in a segment being cleaned,eiams
the object has been deleted).

The buffered logging approach allows writes to completéwit
out waiting for disk operations, but it limits overall systéhrough-
put to the bandwidth of the backup storage. For example, each
RAMCloud server can handle about 300,000 100-byte wridgesitsd
(versus 1 million reads/second) assuming 2 disks per sdi@@iMB/s
write bandwidth for each disk, 3 disk replicas of each objant
a 100% bandwidth overhead for log cleaning. Additional slis&n
be used to boost write throughput.

RAMCloud manages object data using a logging approach. This
was originally motivated by the desire to transfer backufada
disk or flash as efficiently as possible, but it also provide&fi-
cient memory management mechanism, enables fast recavety,
has a simple implementation. The data for each master isniaeh
as a log as shown in Figure 2. When a master receives a write re-
quest, it appends the new object to its in-memory log anddoae/
that log entry to several backup servers. The backups btlffer
information in memory and return immediately to the mastithw
out writing to disk or flash. The master completes its reqaest
returns to the client once all of the backups have acknovaédg-
ceipt of the log data. When a backup’s buffer fills, it writbe t
accumulated log data to disk or flash in a single large trantfen
deletes the buffered data from its memory.

Backups must ensure that buffered log data is as durablet@as da
on disk or flash (i.e., information must not be lost in a poveel- f 3. RECOVERY
ure). One solution is to use new DIMM memory modules that in-  When a RAMCloud storage server crashes, the objects that had

corporate flash memory and a super-capacitor that provitasyh been present in its DRAM must be reconstructed by replayig i
power for the DIMM to write its contents to flash after a powat-o log. This requires reading log segments from backup storage
age [2]; each backup could use one of these modules to hatdl all  cessing the records in those segments to identify the duweesion
its buffered log data. Other alternatives are per-servitetyaback- of each live object, and reconstructing the hash table uzestdr-
ups that extend power long enough for RAMCloud to flush baffer  age operations. The crashed master’s data will be unaieiletil
or enterprise disk controllers with persistent cache mgmor the hash table has been reconstructed.

RAMCloud manages its logs using techniques similar to tirose Fortunately, if the period of unavailability can be madeyer
log-structured file systems [21]. Each master’s log is d@idiéhto short, so that it is no longer than other delays that are camimo
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Figure 3: (a) Disk bandwidth is a recovery bottleneck if each master's.daimirrored on a small number of backup machir(e$.Scattering log segments
across many backups removes the disk bottleneck, but néeg\al data on one recovery master is limited by the netvintdrface and CPU of that machine.
(c) Fast recovery is achieved by partitioning the data of theled master and recovering each partition on a separateergaoaster.

normal operation, and if crashes happen infrequently, ¢hesh re-
covery will be unnoticeable to the application’s users. \Whdve
that 1-2 second recovery is fast enough to constitute “nantis
availability” for most applications; our goal is to achiewss speed
for servers with at least 64 GB of memory.

3.1 Using Scale

The key to fast recovery in RAMCloud is to take advantage of
the massive resources of the cluster. This subsectiondintes
RAMCloud’s overall approach for harnessing scale; theofeihg
subsections describe individual elements of the mechaiism
detail.

As a baseline, Figure 3a shows a simple mirrored approachtewhe
each master chooses 3 backups and stores copies of all gedeg
ments on each backup. Unfortunately, this creates a bettlefor
recovery because the master's data must be read from only a fe
disks. In the configuration of Figure 3a with 3 disks, it wotdéte
about 3.5 minutes to read 64 GB of data.

RAMCloud works around the disk bottleneck by using more
disks during recovery. Each master scatters its log datzsaail
of the backups in the cluster (each segment on a differentfset
backups) as shown in Figure 3b. During recovery, theseeseait
log segments can be read simultaneously; with 1,000 digk&HEH
of data can be read into memory in less than one second.

Once the segments have been read from disk into backups’ mem-

ories, they must be combined to find the most recent version fo
each object (no backup can tell in isolation whether a palgic
object in a particular segment is the most recent versiong &p-
proach is to send all the log segments to a simgt®very master
and replay the log on that master, as in Figure 3b. Unforaipat
the recovery master is a bottleneck in this approach: with@Hps
network interface, it will take about 1 minute to read 64 GRlafa,
and the master's CPU will also be a bottleneck.

To eliminate the recovery master as the bottleneck, RAMEIlou
uses multiple recovery masters as shown in Figure 3c. Duigng
covery RAMCloud divides the objects of the crashed mastier in
partitions of roughly equal size. Each partition is assigned to a
different recovery master, which fetches the log data ferghrti-
tion’s objects from backups and incorporates those objatdsts
own log and hash table. With 100 recovery masters operating i
parallel, 64 GB of data can be transferred over a 10 Gbps mketwo
in less than 1 second. As will be shown in Section 4, this is als
enough time for each recovery master’s CPU to process tloainc
ing data.

Thus, the overall approach to recovery in RAMCloud is to com-
bine the disk bandwidth, network bandwidth, and CPU cycles o

thousands of backups and hundreds of recovery masters.ubhe s
sections below describe how RAMCloud divides its work among
all of these resources and how it coordinates the resouoces t
cover in 1-2 seconds.

3.2 Scattering Log Segments

For fastest recovery the log segments for each RAMCloud mas-
ter should be distributed uniformly across all of the backirpthe
cluster. However, there are several factors that complitas ap-
proach:

e Segment placement must reflect failure modes. For example,
a segment’s master and each of its backups must reside in
different racks, in order to protect against top-of-racktelw
failures and other problems that disable an entire rack.

e Different backups may have different bandwidth for I/O {dif
ferent numbers of disks, different disk speeds, or differen
storage classes such as flash memory); segments should be
distributed so that each backup uses the same amount of time
to read its share of the data during recovery.

e All of the masters are writing segments simultaneouslyy the
should coordinate to avoid overloading any individual haxk
Backups have limited buffer space.

e Storage servers are continuously entering and leaving the
cluster, which changes the pool of available backups and may
unbalance the distribution of segments.

Making decisions such as segment replica placement in a cen-
tralized fashion on the coordinator would limit RAMCloudsal-
ability. For example, a cluster with 10,000 servers coulckhap
100,000 or more segments per second; this could easily these
coordinator to become a performance bottleneck.

Instead, each RAMCloud master decides independently where
to place each replica, using a combination of randomizadiod
refinement. When a master needs to select a backup for a segmen
it chooses several candidates at random from a list of auyzcin
the cluster. Then it selects the best candidate, using dwledge
of where it has already allocated segment replicas andneton
about the speed of each backup’s disk (backups measuredéd sp
of their disks when they start up and provide this informatio
the coordinator, which relays it on to masters). The beskigac
is the one that can read its share of the master’'s segmeitagpl
most quickly from disk during recovery. A backup is rejecikid
is in the same rack as the master or any other replica for thiertu
segment. Once a backup has been selected, the master somdact



backup to reserve space for the segment. At this point thieuipac
can reject the request if it is overloaded, in which case thstar
selects another candidate.

The use of randomization eliminates pathological behasach
as all masters choosing the same backups in a lock-stepfashi
Adding the refinement step provides a solution nearly asrati
as a centralized manager (see [17] and [5] for a theoretiwya
sis). For example, if a master scatters 8,000 segmentssat@30
backups using a purely random approach, backups will haeg-8 s

ments on average. However, some backups are likely to end up

with 15-20 segments, which will result in uneven disk ugtinn
during recovery. Adding just a small amount of choice makes t
segment distribution nearly uniform and also allows for pem
sation based on other factors such as disk speed (see Séetjon
This mechanism also handles the entry of new backups gitgcefu
a new backup is likely to be selected more frequently thastiexj
backups until every master has taken full advantage of it.

RAMCloud masters mark one of the replicas for each segment

as theprimary replica Only the primary replicas are read during
recovery (unless they are unavailable), and the performapt-
mizations described above consider only primary replicas.

We considered the possibility of storing one of the backygti+e

3. Cleanup. Recovery masters begin serving requests, and the
crashed master’s log segments are freed from backup storage

These phases are described in more detail below.

3.5 Setup

3.5.1 Finding Log Segment Replicas

At the start of recovery, replicas of the crashed mastegmeats
must be located among the cluster’s backups. RAMCloud does n
keep a centralized map of replicas since it would be difficoilt
scale and would hinder common-case performance. Only nsaste
know where their segments are replicated, but this infdonas
lost when they crash.

The coordinator reconstructs the locations of the crashast m
ter’s replicas by querying all of the backups in the clustéach
backup responds with a list of the replicas it has stored Her t
crashed master (backups maintain this index in memory).cbthe
ordinator then aggregates the responses into a singledonaaap.

By using RAMCloud’s fast RPC system and querying multiple
backups in parallel, the segment location information igected
quickly.

cas on the same machine as the master. This would reduce net-3 5 2 Detecting Incomplete Logs

work bandwidth requirements, but it has two disadvantagest,

it would reduce system fault tolerance: the master alreadyome
copy in its memory, so placing a second copy on the mastests di
provides little benefit. If the master crashes, the disk osjiybe
lost along with the memory copy; it would only provide value i
a cold start after a power failure. Second, storing one capin
the master would limit the burst write bandwidth of a mastethe
bandwidth of its local disks. In contrast, with all replicasattered,
a single master can potentially use the disk bandwidth oéttee
cluster (up to the limit of its network interface).

3.3 Failure Detection

RAMCloud detects server failures in two ways. First, RAM-
Cloud clients will notice if a server fails to respond to a e
procedure call. Second, RAMCloud checks its own servergto d
tect failures even in the absence of client activity; thiswas RAM-
Cloud to replace lost replicas before multiple crashesepasma-
nent data loss. Each RAMCloud server periodically issuen@ p
RPC to another server chosen at random and reports faitutbe t
coordinator. This is another example of using a randomized d
tributed approach in place of a centralized approach. Thbagpr
bility of detecting a crashed machine in a single round ofpirs
about 63% for clusters with 100 or more nodes; the odds aeggre
than 99% that a failed server will be detected within five idgin

In either case, server failures are reported to the coawtina
The coordinator verifies the problem by attempting to commun
cate with the server itself, then initiates recovery if tbever does
not respond. Timeouts must be relatively short (tens ofiseit-
onds) so that they don’t significantly delay recovery. Seeie 5
for a discussion of the risks introduced by short timeouts.

3.4 Recovery Flow

The coordinator supervises the recovery process, whictepas
in three phases:

1. Setup. The coordinator finds all replicas of all log segments
belonging to the crashed master, selects recovery masters,

and assigns each recovery master a partition to recover.

After backups return their lists of replicas, the coordimahust
determine whether the reported segment replicas form ttiezen
log of the crashed master. The redundancy in RAMCloud makes
it highly likely that the entire log will be available, butersystem
must be able to detect situations where some data is missiie (
as network partitions).

RAMCloud avoids centrally tracking the list of the segmethtst
comprise a master’s log by making each log self-describihg;
completeness of the log can be verified using data in the $edf.it
Each segment includeslag digest which is a list of identifiers
for all segments in the log at the time this segment was writte
Log digests are small (less than 1% storage overhead evem whe
uncompressed, assuming 8 MB segments and 8,000 segments per
master).

This leaves a chance that all the replicas for the newestesgigm
in the log are unavailable, in which case the coordinatorlgvaot
be able to detect that the log is incomplete (the most redgest
it could find would not list the newest segment). To preveiy, th
when a master creates a new segment replica it makes itgitvans
to the new digest carefully. First, a new digest is insertethe
new replica, and it is marked astive Then, after the new active
digest is durable, a final update to the prior active digestkena
it as inactive. This ordering ensures the log always has tweac
digest, even if the master crashes between segments. Twe act
log digests may be discovered during recovery, but the doatar
simply ignores the newer one since its segment must be empty.

If the active log digest and a replica for each segment cannot
be found, then RAMCloud cannot recover the crashed magter. |
this unlikely case, RAMCloud notifies the operator and wéits
backups to return to the cluster with replicas for each oftissing
segments. Alternatively, at the operator’s discretion,M@oud
can continue recovery with loss of data.

3.5.3 Starting Partition Recoveries

Next, the coordinator must divide up the work of recovering t
crashed master. The choice of partitions for a crashed miste
made by the master itself: during normal operation each enast
analyzes its own data and computes a set of partitions thaldwo

2. Replay. Recovery masters fetch log segments in parallel and evenly divide the work of recovery. This information is ealla

incorporate the crashed master’s partitions into their lngs.

will (it describes how a master's assets should be divided in the
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4 5 In order to maximize concurrency, recovery masters andugeck
{ Hash table operate independently. As soon as the coordinator coneacts

i backup to obtain its list of segments, the backup beginefuieiihg
segments from disk and dividing them by partition. At the sam
S time, masters fetch segment data from backups and repligeit.
ally backups will constantly run ahead of masters, so thaineat
data is ready and waiting whenever a recovery master regjitest
I=Momon) L°9| However, this only works if the recovery masters and baclups
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% Bt 8— > cess segments in the same order. If a recovery master atalgen
8 — i requests the last segment in the backup’s order then thenveitit
LA—'.\____‘/ stall: it will not receive any data to process until the bazhas
i Backup Recovery Master read all of its segments.
6. Write segment 5. Replicate log In order to avoid pipeline stalls, each backup decides imady
replicas to disk data to backups the order in which it will read its segments. It returns timfrma-

tion to the coordinator during the setup phase, and the oatat
Figure 4: During recovery, segment data flows from disk or flash on a includes the order information when it communicates wittorery
backup over the network tola recovery master, then back tdaekups as masters to initiate recovery. Each recovery master usésidl-
part of the recovery master's log. edge of backup disk speeds to estimate when each segmeat’s da
is likely to be loaded. It then requests segment data in oofler

event of its demise). Masters periodically upload theitsaib the expected availability. (This approach causes all mastereguest
coordinator. Section 3.9 describes how masters compuitenitiis segments in the same order; we could introduce randomizédio
efficiently. avoid contention caused by lock-step behavior.)

During recovery setup, the coordinator assigns each ofdhe p Unfortunately, there will still be variations in the speddwvhich
titions in the crashed master’s will to an existing mastehinithe backups read and process segments. In order to avoid stelisife
cluster. Each of these recovery masters receives two tliiogs of slow backups, each master keeps several concurrentstscfoe
the coordinator: a list of the locations of all the crashedteis segment data outstanding at any given time during recoveny;
log segments and a list of tablets that the recovery mastet rau plays segment data in the order that the requests return.
cover and incorporate into the data it manages. Because of the optimizations described above, recoverjensas

will end up replaying segments in a different order than the i
3.6 Replay which the segments were originally written. Fortunatelhg ver-

The vast majority of recovery time is spent replaying segsen sion numbers in log records allow the log to be replayed ina@ny

to reconstruct partitions on the recovery masters. Duepipy the der without affecting the result. During replay each masteply

contents of each segment are processed in six stages (see &)g retains the version of each object with the highest versiomber,
discarding any older versions that it encounters.
Although each segment has multiple replicas stored onréiffe

2. The backup divides the records in the segment into separat €Nt backups, only the primary replicas are read during ®gov
groups for each partition based on table and object idergtifie ~ réading more than one would waste valuable disk bandwidts-M
in the log records. ters identify primary replicas when scattering their segtseas

described in Section 3.2. During recovery each backup tepor
3. The records for each partition are transferred over thie ne all of its segments, but it identifies the primary replicas amly
work to the recovery master for that partition. prefetches the primary replicas from disk. Recovery master
quest non-primary replicas only if there is a failure regdime pri-

1. The segment is read from disk into the memory of a backup.

4. The recovery master incorporates the data into its in-omgm

log and hash table. mary replica.
5. Asthe recovery master fills segments in memory, it refdiea
those segments over the network to backups with the same3'8 Cleanup

scattering mechanism used in normal operation. After a recovery master completes the recovery of its assign
) ) ) partition, it notifies the coordinator that it is ready to\dee re-
6. The backups write the new segment replicas to disk or flash. quests. The coordinator updates its configuration infdonao
indicate that the master now owns the tablets in the recdveae
RAMCloud harnesses concurrency in two dimensions during re tition, at which point the partition is available for clierequests.

covery. The first dimension is data parallelism: differeatkups  Clients with failed RPCs to the crashed master have beeingait
read different segments from disk in parallel, differentaeery for new configuration information to appear; they discovearid
masters reconstruct different partitions in parallel, ancdn. The retry their RPCs with the new master. Recovery masters ogin be
second dimension is pipelining: all of the six stages lisibdve service independently without waiting for other recovergsters
proceed in parallel, with a segment as the basic unit of watkile to finish.

one segment is being read from disk on a backup, another sigme ~ Once all recovery masters have completed recovery, thelisoor
is being partitioned by that backup’s CPU, and records from a  nator contacts each of the backups again. At this point thieuges

other segment are being transferred to a recovery masteilasi ~ free the storage for the crashed master's segments, sifeat
pipelining occurs on recovery masters. For fastest regoatiof longer needed. Recovery is complete once all of the backayps h
the resources of the cluster should be kept fully utilized|tiding been notified.

disks, CPUs, and the network.
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Figure 5: A tablet profile consists of a hierarchical collection of keic

arrays; buckets are subdivided dynamically when their tolecome large.
The tree structure creates (bounded) uncertainty whegrasgi partition

boundaries, since counts in ancestor buckets may reprebguts either
before or after the boundary.

3.9 Tablet Profiling

Each master is responsible for creatinwi#l, which describes
how its objects should be partitioned during recovery. Aipan
consists of one or more tablets. The master should balampaiit
titions so that they require roughly equal time to recoved the
partitions should be sized based on the desired recovegy fliine
master’s storage is not actually partitioned during noroperation
as this would create unnecessary overheads; partitiomtygoa-
curs during recovery. The master uploads its will to the dotor
and updates the will as its data evolves.

RAMCloud computes wills usintablet profiles Each tablet pro-
file tracks the distribution of resource usage within a sifigble or
tablet in a master. It consists of a collection of bucketgheaf
which counts the number of log records corresponding to gean
of object identifiers, along with the total log space constirhg
those records. Tablet profiles are updated as new log reeoeds
created and old segments are cleaned, and the master palipdi
scans its tablet profiles to compute a new will.

Unfortunately, it isn’t possible to choose the buckets fealalet
profile statically because the space of object identifidesige (24
and clients can allocate object identifiers however theynwi§ith
any static choice of buckets, it is possible that all of thieots in a
table could end up in a single bucket, which would providemo i
formation for partitioning. Buckets must be chosen dynathycso
that the contents of each bucket are small compared to therisn
of a partition.

RAMCloud represents a tablet profile as a dynamic tree ofétuck
arrays, as shown in Figure 5. Initially the tree consists sfra
gle bucket array that divides the entire 64-bit identifieacginto
buckets of equal width (in the current implementation tler256
buckets in each array). Whenever a master creates a newclogire
it updates the appropriate bucket. If a bucket becomes tge (¢he
number of records or space usage exceeds a threshold) théd a ¢
bucket array is created to subdivide the bucket’s rangesimtaller
buckets. Future log records are profiled in the child bucketya
instead of the parent. However, the counts in the parentdiuek
main (RAMCloud does not attempt to redistribute them in thiédc
bucket array since this could require rescanning a largeopoof
the log). The master decrements bucket counts when it clegns
segments. Each bucket array records the position of thedad h
when that array was created, and the master uses this irtforma
during cleaning to decrement the same bucket that was ireeriet

when the record was created (thus, over time the counts wazdn
buckets are likely to become small). Bucket arrays are psdd
back into their parents when usage drops.

To calculate partitions, a master scans its tablet profitea i
depth-first search, accumulating counts of records ancegjsaye
and establishing partition boundaries whenever the cougash
threshold values. For example, one policy might be to agségn
titions based on log space usage so that no partition has thmeme
600 MB of log data or more than three million objects.

The tablet profile structure creates uncertainty in theaais-
age of a partition, as illustrated in Figure 5. If a partitlmoundary
is placed at the beginning of a leaf bucket, it isn’t possibl¢ell
whether counts in ancestor buckets belong to the new et
the previous one. Fortunately, the uncertainty is boundedd.ex-
ample, in the current RAMCloud implementation, there cdogd
up to 7 ancestor buckets, each of which could account for 8 MB o
data (the threshold for subdividing a bucket), for a woestecun-
certainty of 56 MB for each partition boundary. In order taubd
recovery times, RAMCloud pessimistically assumes thahoni
counts fall within the current partition.

In the configuration used for RAMCloud, the memory overhead
for tablet profiles is 0.6% in the worst case (8 levels of btigke
ray for 8 MB of data). The parameters of the tablet profile can b
changed to make trade-offs between the storage overhegddor
files and the accuracy of partition boundaries.

3.10 Consistency

We designed RAMCloud to provide a strong form of consistency
(linearizability [13], which requires exactly-once serties), even
across host failures and network partitions. A full disoossof
RAMCloud’s consistency architecture is beyond the scopehisf
paper, and the implementation is not yet complete; howévaf;
fects crash recovery in two ways. First, a master that isestied
of failure (asick mastey must stop servicing requests before it can
be recovered, to ensure that applications always read aitel thve
latest version of each object. Second, when recovering &osa
pected coordinator failures, RAMCloud must ensure thag onke
coordinator can manipulate and serve the cluster’s coriiur at
atime.

RAMCloud will disable a sick master’s backup operations whe
it starts recovery, so the sick master will be forced to contiae
coordinator to continue servicing writes. The coordinatmntacts
backups at the start of recovery to locate a replica of evegy s
ment in the sick master’s log, including the active segmenthich
the master may still be writing. Once a backup with a replita o
the active segment has been contacted, it will reject baokepa-
tions from the sick master with an indication that the mastast
stop servicing requests until it has contacted the cootadiin®as-
ters will periodically check in with their backups, so dikag a
master’s backup operations will also stop it from serviagiead re-
quests by the time recovery completes.

Coordinator failures will be handled safely using the Zoeper
service [14]. The coordinator will use ZooKeeper to stoseciin-
figuration information, which consists of a list of activeoisige
servers along with the tablets they manage. ZooKeeperissasn
replication mechanisms to provide a high level of durapifind
availability for this information. To handle coordinatailfires, the
active coordinator and additional standby coordinator$ aaim-
pete for a single coordinator lease in ZooKeeper, which ressu
that at most one coordinator runs at a time. If the activedioator
fails or becomes disconnected, its lease will expire andlitstop
servicing requests. An arbitrary standby coordinator ad¢uire
the lease, read the configuration information from ZooKeegred



resume service. The configuration information is small, soewr
pect to recover from coordinator failures just as quicklyottser
server failures.

3.11 Additional Failure Modes

Our work on RAMCloud so far has focused on recovering the
data stored in the DRAM of a single failed master. The sestion
below describe several other ways in which failures can ootu
a RAMCloud cluster and some preliminary ideas for dealinthwi
them; we defer a full treatment of these topics to future work

3.11.1 Backup Failures

RAMCloud handles the failure of a backup server by creating
new replicas to replace the ones on the failed backup. Evasgen
is likely to have at least one segment replica on the failaxkiya,
so the coordinator notifies all of the masters in the clustesmit
detects a backup failure. Each master checks its segmdatttab
identify segments stored on the failed backup, then it eseaew
replicas using the approach described in Section 3.2. Athef
masters perform their rereplication concurrently and & repli-
cas are scattered across all of the disks in the cluster,covery
from backup failures is fast. If each master has 64 GB of mem-
ory then each backup will have about 192 GB of data that must be
rewritten (assuming 3 replicas for each segment). For caspa
256 GB of data must be transferred to recover a dead mast&B64
must be read, then 192 GB must be written during rereplinatio

3.11.2 Multiple Failures

Given the large number of servers in a RAMCloud cluster,gher
will be times when multiple servers fail simultaneously. &vh
this happens, RAMCloud recovers from each failure indepatig
The only difference in recovery is that some of the primamlire
cas for each failed server may have been stored on the oitest fa
servers. In this case the recovery masters will use secpnelpli-
cas; recovery will complete as long as there is at least oplecee
available for each segment. It should be possible to reaowti-
ple failures concurrently; for example, if a RAMCloud clesston-
tains 5,000 servers with flash drives for backup, the measemes
in Section 4 indicate that a rack failure that disables 40tenas
each with 64 GB storage, could be recovered in about 2 seconds

If many servers fail simultaneously, such as in a power failu
that disables many racks, RAMCloud may not be able to recover
immediately. This problem arises if no replicas are avédldbr a
lost segment or if the remaining masters do not have enouayte sp
capacity to take over for all the lost masters. In this caséVRA
Cloud must wait until enough machines have rebooted to geovi
the necessary data and capacity (alternatively, an opesatore-
quest that the system continue with some loss of data). RAMCI
clusters should be configured with enough redundancy ane spa
capacity to make situations like this rare.

3.11.3 Cold Start

RAMCloud must guarantee the durability of its data even & th

entire cluster loses power at once. In this case the clustieneed

to perform a “cold start” when power returns. Normally, when
backup restarts, it discards all of the segments storedsatisk or
flash, since they have already been rereplicated elsewkhtoe-
ever, in a cold start this information must be preserved. kBps
will contact the coordinator as they reboot, and the coartdinwill
instruct them to retain existing data; it will also retrieadist of
their segments. Once a quorum of backups has become aeailabl
the coordinator will begin reconstructing masters. RAM@l@an
use the same partitioned approach described above, but inalee

CPU Xeon X3470 (4x2.93 GHz cores, 3.6 GHz Turbo)

RAM 16 GB DDR3 at 1333 MHz

Disk 1 WD 2503ABYX (7200 RPM, 250 GB)
Effective read/write: 105/110 MB/s

Disk 2 Seagate ST3500418AS (7200 RPM, 500 GB)
Effective read/write: 108/87 MB/s

Flash Crucial M4 CT128M4SSD2 (128GB)

Disks Effective read/write: 269/182 MB/s

NIC Mellanox ConnectX-2 Infiniband HCA

Switches| 5x 36-port Mellanox InfiniScale IV (4X QDR)

Table 1: Experimental cluster configuration. All 60 nodes have it
hardware. Effective disk bandwidth is the average througifiiom 1,000

8 MB sequential accesses to random locations in the first 720fGBe

disk. Flash drives were used in place of disks for Figure 9.0rte cluster
has 5 network switches arranged in two layers. Each portéman net-

work bandwidth is 32 Gbps, but nodes are limited to about 2psGily PCI

Express. The switching fabric is oversubscribed, progdi best about
22 Gbps of bisection bandwidth per node when congested.
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Figure 6: Recovery time as a function of partition size with a single re
covery master and 60 backups. Each curve uses objects ajla simform
size.

more sense to use a different approach where masters are reco
structed exactly as they existed before the cold start. WHise
faster than the partitioned approach because mastersavitieed
to write any backup data: the existing backups can contimserve
after the masters are reconstructed.

The current RAMCloud implementation does not perform cold
starts.

4. EVALUATION

We implemented the RAMCloud architecture described in Sec-
tions 2 and 3, and we evaluated the performance and scaladfili
crash recovery using a 60-node cluster. The cluster hasdear-
sists of standard off-the-shelf components (see Table t) thie
exception of its networking equipment, which is based ominfi
band; with it our end hosts achieve both high bandwidth (2psBb
and low latency (user-level applications can communicatcty
with the NICs to send and receive packets, bypassing theBern

The default experimental configuration used one backupeserv
on each machine, with a single disk. A subset of these maghine
also ran recovery masters. One additional machine ran the co
dinator, the crashed master, and the client applicatiorarder to
increase the effective scale of the system, some expersntant
two independent backup servers on each machine (each weth on
disk).
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Figure 7: Recovery time as a function of the number of disks, with alsing
recovery master, one 600 MB partition with 1,024 byte olsieand each
disk on a separate machine. “Avg. Disk Reading” measuresvtheage
elapsed time (across all disks) to read backup data durcayeey; “Max.
Disk Reading” graphs the longest time for any disk in thetelusOnce 6-8
disks are available recovery time is limited by the netwdrkhe recovery
master.

In each experiment a client application observed and medsur
crash of a single master and the subsequent recovery. Emticli-
tially filled the master with objects of a single size (1,034ds by
default). It then sent a magic RPC to the coordinator whialsed
it to recover the master. The client waited until all paotits had
been successfully recovered, then read a value from oneoséth
partitions and reported the end-to-end recovery time. Aflesi-
ments used a disk replication factor of 3 (i.e., 3 replicaslisk in
addition to one copy in DRAM). The CPUs, disks, and networks
were idle and entirely dedicated to recovery (in practieepvery
would have to compete for resources with application waét
though we would argue for giving priority to recovery).

Each of the subsections below addresses one questiordredate
the performance of recovery. The overall results are:

e A 60-node cluster can recover lost data at about 22 GB/sec
(a crashed server with 35 GB storage can be recovered in
1.6 seconds), and recovery performance scales with cluster

size. However, our scalability measurements are limited by
the small size of our test cluster.

e The speed of an individual recovery master is limited primar
ily by network speed for writing new segment replicas.

e The segment scattering algorithm distributes segmergs-eff
tively and compensates for varying disk speeds.

e Fast recovery significantly reduces the risk of data loss.

4.1 How Large Should Partitions Be?

Our first measurements provide data for configuring RAMCloud
(partition size and number of disks needed per recoveryarast
Figure 6 measures how quickly a single recovery master aan pr
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Figure 8: Recovery performance under proportional scaling (onevesgo
master and 6 backups for each 600 MB partition of data to Ego¥Each
recovery master shared a host with 2 backups, and each poamt aver-
age of 5 runs (Figure 11 shows the variance between runs).riaambal

line would indicate perfect scalability. Recovery time iimited by disk
bandwidth.

replication factor of 3, the recovery master must write 1B @&
data to backups).

For 1-second recovery Figure 6 suggests that partitionslého
be limited to no more than 800 MB and no more than 3 million
log records (with 128-byte objects a recovery master canga®
400 MB of data per second, which is roughly 3 million log retsjr
With 10 Gbps Ethernet, partitions must be limited to 300 M& du
to the bandwidth requirements for rereplication.

In our measurements we filled the log with live objects, bet th
presence of deleted versions will, if anything, make reppfester.
The master's memory has the same log structure as the backup
replicas, so the amount of log data to read will always be lequa
to the size of the master's memory, regardless of deletesiores.
However, deleted versions may not need to be rereplicatgub(di-
ing on the order of replay).

4.2 How Many Disks Are Needed for Each
Recovery Master?

Each of our disks provided an effective bandwidth of 100-110
MB/s when reading 8 MB segments; combined with Figure 6, this
suggests that RAMCloud will need about 6-8 disks for eachwec
ery master in order to keep the pipeline full. Figure 7 grajglesv-
ery performance with one recovery master and a varying numbe
of disks and reaches the same conclusion. With large nunabers
disks, the speed of recovery is limited by outbound netwarhds
width on the recovery master.

4.3 How Well Does Recovery Scale?

The most important issue in recovery for RAMCloud is scala-
bility: if one recovery master can recover 600 MB of data i on
second, can 10 recovery masters recover 6 GB in the samestimie,
can 100 recovery masters recover 60 GB? Unfortunately, idie d

cess backup data, assuming enough backups to keep themecove bandwidth available in our cluster limited us to 20 recovergs-

master fully occupied. Depending on the object size, a mgov
master can replay log data at a rate of 400-800 MB/s, inctudin
the overhead for reading the data from backups and writing ne
backup copies. With small objects the speed of recoverynis li
ited by the cost of updating the hash table and tablet profiléth
large objects recovery is limited by the network speed dumirites

to new backups (for example, with 600 MB partitions and a disk

ters (120 backups), which is only about 20% the number wedvoul
expect in a full-size RAMCloud recovery. Nonetheless, witthis
limited range RAMCloud demonstrates excellent scalabiliig-

ure 8 graphs recovery time as the amount of lost data is isetea
and the cluster size is increased to match. For each 600 MB par
tition of lost data, the cluster includes one recovery masiel 6
backups with one disk each. With 20 recovery masters and 120
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stead of disks. Each partition contained 600 MB of data, aBdstwere 2
backups for each recovery master. As with Figure 8, scadipgaportional:
the number of recovery masters and backups increases withutnber of
partitions being recovered. Each point is an average of 5.ruk hori-

zontal line would indicate perfect scalability. Recovesyslower than in
Figure 8 for a number of reasons: less disk bandwidth aveilpbr mas-
ter (540 MB/s vs. 600-660 MB/s), network saturation, andcpssor and
memory contention between the master and backups on eaeh nod

disks, RAMCloud can recover 11.7 GB of data in under 1.1 sec-
onds, which is only 13% longer than it takes to recover 600 MB
with a single master and 6 disks.

In order to allow more recovery masters to participate irovec
ery, we replaced all the disks in our cluster with flash drieesh of
which provided 270 MB/s read bandwidth (as opposed to 110sMB/
for the disks). With this configuration we were able to rurores-
ies that used 60 recovery masters, as shown in Figure 9. Btesy
still scales well: with 60 recovery masters RAMCloud carores
35 GB of data from a lost server in about 1.6 seconds, whicB%s 2
longer than it takes 2 recovery masters to recover 1.2 GBtaf da

It is important to keep the overhead for additional mastes a
backups small, so that recovery can span hundreds of hdstge
clusters. In order to isolate these overheads, we ran additex-
periments with artificially small segments (16 KB) and kdpseg-
ment replicas in DRAM to eliminate disk overheads. Figure
(bottom curve) shows the recovery time using trivial paotis con-
taining just a single 1 KB object; this measures the costHerco-
ordinator to contact all the backups and masters during ¢hgs
phase. Our cluster scales to 60 recovery masters with onlytab
10 ms increase in recovery time (thanks in large part to f .

Figure 10 also shows recovery time using 1.2 MB partitiorss an
16 KB segments (upper curve). In this configuration the elust
performs roughly the same number of RPCs as it does in Figure 8
but it has very little data to process. This exposes the fixed-o
heads for recovery masters to communicate with backupsheas t
system scale increases, each master must contact morepbacku
retrieving less data from each individual backup. Each tamidil
recovery master adds only about 1.5 ms of overhead, so work ca
be split across 100 recovery masters without substaniiatheas-
ing recovery time.
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4.4 How Well Does Segment Scattering Work?
Figure 11 shows that the segment placement algorithm destri

in Section 3.2 works well. We measured three different viarie

of the placement algorithm: the full algorithm, which catesis
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Figure 10: Management overhead as a function of system scale. Partitio
size is reduced to 16 KB and segment replicas are stored inNDiRArder

to eliminate overheads related to data size or disk. For “1p&Bitions”
each partition only contains a single object; this measthescoordina-
tor's overheads for contacting masters and backups. “1.2pslftions”
maintains the same number of segments (and roughly the samieen of
RPCs) as in Figure 8; it measures the overhead for masteontaat more
and more backups as cluster size increases. Each dataptietaverage
over 5 runs, and there were 2 backups for each recovery master

backup; a version that uses purely random placement; and-an i
between version that attempts to even out the number of sggme
on each backup but does not consider disk speed. The top graph
Figure 11 shows that the full algorithm improves recovemyetiby
about 33% over a purely random placement mechanism. Much of
the improvement came from evening out the number of segments
on each backup; considering disk speed improves recovesy/ty
only 12% over the even-segment approach because the diks di
not vary much in speed.

To further test how the algorithm handles variations in dis&ed,
we also took measurements using the configuration of our clus
ter when it first arrived. The fans were shipped in a “max speed
debugging setting, and the resulting vibration causecelaggia-
tions in speed among the disks (as much as a factor of 4x). In
this environment the full algorithm provided an even largenefit
over purely random placement, but there was relativelig liiene-
fit from considering segment counts without also considpdisk
speed (Figure 11, bottom graph). RAMCloud's placement-algo
rithm compensates effectively for variations in the speedisks,
allowing recovery times almost as fast with highly variadlsks
as with uniform disks. Disk speed variations may not be $igni
cant in our current cluster, but we think they will be impaittén
large datacenters where there are likely to be differenegaions
of hardware.

4.5 Will Scattering Result in Data Loss?

RAMCloud’s approach of scattering segment replicas allaster
recovery, but it increases the system’s vulnerability i ¢hrent of
simultaneous node failures. For example, consider a clusth
1,000 nodes and 2x disk replication. With RAMCloud’s saatig
approach to segment placement, there is a 5% chance thatitlata
be lost if any 3 nodes fail simultaneously (the three nodédlsawt
count for the master and both backups for at least one seynhent
contrast, if each master concentrates all its segmentesptin two
backups, as in Figure 3a, the probability of data loss dropests
than 10° with 3 simultaneous failures.

both disk speed and number of segments already present bn eac Fortunately, the fast recovery enabled by scattering mikes

10
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Figure 11: Impact of segment placement on recovery time. Each line is
a cumulative distribution of 120 recoveries of twenty 600 &titions,
showing the percent of recoveries that completed withivargiime. “Even
Read Time” uses the placement algorithm described in Se8ti®; “Uni-
form Random” uses a purely random approach; and “Even Sdgimat
tempts to spread segments evenly across backups withositleang disk
speed. The top graph measured the cluster in its normal coafign, with
relatively uniform disk performance; the bottom graph nueed the sys-
tem as it was shipped (unnecessarily high fan speed causetions that
degraded performance significantly for some disks). Wittsfat normal
speed, “Even Read Time” and “Even Segments” perform nehdysame
since there is little variation in disk speed.

unlikely that a second or third failure will occur before afifailure
has been recovered, and this more than makes up for thecamditi
vulnerability, as shown in Figure 12. With one-second recpthe
probability of data loss is very low (about ¥@n one year even with

a 100,000-node cluster). The risk of data loss rises rapidly re-
covery time: if recovery takes 1,000 seconds, then RAMClisud
likely to lose data in any one-year period. The line label&@05s”
corresponds roughly to the recovery mechanisms in othéersygs
such as GFS and HDFS (these systems keep 3 replicas on disk, v:
1 replica in DRAM and 2 replicas on disk for the corresponding
RAMCloud); with large cluster sizes these other systems ey
vulnerable to data loss. Using a concentrated approachrrétan
scattering improves reliability, but the benefit from fastcovery

is much larger: a 10x improvement in recovery time improwis r
ability more than a 1,000x reduction in scattering.

One risk with Figure 12 is that it assumes server failuresrare
dependent. There is considerable evidence that this ihaatase
in datacenters [23, 8]; for example, it is not unusual foiremacks
to become inaccessible at once. Thus it is important for e s
ment scattering algorithm to consider sources of correlfiure,
such as rack boundaries. If there are unpredictable soofeas-
related failure, they will result in longer periods of undahility
while RAMCloud waits for one or more of the backups to reboot
(RAMCloud is no better or worse than other systems in this re-
spect).

Although we made all of the performance measurements in this
section with 3x disk replication to be conservative, Figlitesug-
gests that the combination of two copies on disk and one aopy i
DRAM should be quite safe. The main argument for 3x disk repli
cation is to ensure 3-way redundancy even in the event of-a dat
acenter power outage, which would eliminate the DRAM capies
With 3x disk replication in addition to the DRAM copy, the dik-
hood of data loss is extremely small: less than 1% in a year eve
with 100,000 servers and 1,000-second recovery times.

4.6 What Is the Fastest Possible Recovery?

Assuming that recovery is scalable, it should be possible-to
cover even faster than 1-2 seconds by using more backupsaned m
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Figure 12: Probability of data loss in one year as a function of clusies,s
assuming 8,000 segments per master, two disk replicas &r BRAM
copy, and two crashes per year per server with a Poissoraladistribu-
tion. Different lines represent different recovery timemes labeled “Con-
centrated” assume that segments are concentrated in§teeattered: each
master picks 2 backups at random and replicates all of ithesty on each
of those backups.

recovery masters, with smaller partitions. However, waktthat

it will be difficult to recover faster than a few hundred ng#iconds
without significant changes to the recovery mechanism. kame

ple, RAMCloud currently requires 150 milliseconds just &tett
failure, and the time for the coordinator to contact evergkio@
may approach 100 ms in a large cluster. In addition, it talasin

100 ms to read a single segment from disk (but this could be re-
duced if flash memory replaces disk for backup storage).

5. RISKS

There are three risks associated with RAMCloud’s recoverghm
anism that we have not been able to fully evaluate yet. We tmpe
learn more about these risks (and devise solutions, if sacgsas
we gain more experience with the system.

Scalability. The measurements of scalability in Section 4.3 are
encouraging, but they are based on a cluster size about ftme-fi
of what we would expect in production. It seems likely thag&
clusters will expose problems that we have not yet seen.

Over-hasty recovery. In order to recover quickly, RAMCloud
must also detect failures quickly. Whereas traditionateays may
take 30 seconds or more to decide that a server has failed,-RAM
Cloud makes that decision in 150 ms. This introduces a riak th
RAMCloud will treat performance glitches as failures, féag in
unnecessary recoveries that could threaten both the pwafare
and the integrity of the system. Furthermore, fast failurgedtion
precludes some network protocols. For example, most TCRimp
mentations wait 200 ms before retransmitting lost packe®CP
is to be used in RAMCloud, either its retransmit interval mbes
shortened or RAMCloud's failure detection interval mustdrgth-
ened. The current implementation of RAMCloud supports isdve
transport protocols for its RPC system (including TCP), ads
which support fast failure detection.

Fragmented partitions. Our approach to recovery assumes that
a master’s objects can be divided into partitions duringvecy.
However, this changes the locality of access to those ahjettich
could degrade application performance after recovery.dtrent
data model does not benefit much from locality, but as we éxper
ment with richer data models, this issue could become inaptrt
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cient than in LFS. RAMCloud is simpler because the log nedd no

There are numerous examples where DRAM has been used tocontain metadata to enable random-access reads as in lef&sh

improve the performance of storage systems. Early expetsrie
the 1980s and 1990s included file caching [19] and main-mgmor
database systems[10, 11]. Inrecent years, large-scalajydioa-
tions have found DRAM indispensable to meet their perfortean
goals. For example, both Google and Yahoo! keep their evitele
search indexes in DRAM; Facebook offloads its databasersdrye
caching tens of terabytes of data in DRAM with memcached [3];
and Bigtable allows entire column families to be loaded m&m-
ory [6]. RAMCloud differs from these systems because it kesp
data permanently in DRAM (unlike Bigtable and Facebook,aluhi
use memory as a cache on a much larger disk-based storagm¥pyst
and it is general-purpose (unlike the Web search indexes).

There has recently been a resurgence of interest in mainenyem
databases. One example is H-Store [16], which keeps allidata
DRAM, supports multiple servers, and is general-purposew-H
ever, H-Store is focused more on achieving full RDBMS seimant
and less on achieving large scale or low latency to the sagrede
as RAMCloud. H-Store keeps redundant data in DRAM and does
not attempt to survive coordinated power failures.

A variety of “NoSQL" storage systems have appeared recently
driven by the demands of large-scale Web applications améhth
ability of relational databases to meet their needs. Exasil-
clude Dynamo [9] and PNUTS [7]. Many of these systems use
DRAM in some form, but all are fundamentally disk-based and
none are attempting to provide latencies in the same rangalksts
Cloud. These systems provide availability using symme#ri-
cation instead of fast crash recovery.

RAMCloud is similar in many ways to Google’s Bigtable [6] and
GFS [12]. Bigtable, like RAMCloud, implements fast crashae
ery (during which data is unavailable) rather than onlingica-
tion. Bigtable also uses a log-structured approach fonmeté)data,
and it buffers newly-written data in memory, so that writeemp
tions complete before data has been written to disk. GF@®searv
role for Bigtable somewhat like the backups in RAMCloud. Bot
Bigtable and GFS use aggressive data partitioning to speed-u
covery. However, Bigtable and GFS were designed primadiy f
disk-based datasets; this allows them to store 10-100x wohete
than RAMCloud, but their access latencies are 10-100x gl@sven
for data cached in DRAM).

Caching mechanisms such as memcached [3] appear to offer
particularly simple mechanism for crash recovery: if a éagh
server crashes, its cache can simply be re-created as nemeded
ther on the crashed server (after it restarts) or elsewlhtoeever,
in large-scale systems, caching approaches can causeygrgén
availability after crashes. Typically these systems ddpamnhigh
cache hit rates to meet their performance requirementscifies
are flushed, the system may perform so poorly that it is eisdignt
unusable until the cache has refilled. This happened in ageut
Facebook in September 2010 [1]: a software error caused 2% TB
memcached data to be flushed, rendering the site unusatfesfor
hours while the caches refilled from slower database servers

Randomization has been used by several previous systerhs to a
low system management decisions to be made in a distributd a
scalable fashion. For example, consistent hashing usdsmana-
tion to distribute objects among a group of servers [24, 9}zéh-
macher and others have studied the theoretical propeifiemne
domization with refinement and have shown that it produces-ne
optimal results [17, 5].

RAMCloud’s log-structured approach to storage managemsent
similar in many ways to log-structured file systems (LFS)][21
However, log management in RAMCloud is simpler and more effi-
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table enables fast access to data in DRAM, and the disk logyvisrn
read except during recovery, at which time the entire logeadr
Thus the log consists primarily of object records aachbstones
that mark their deletion. RAMCloud does not require cheakjso
as in LFS, because it replays the entire log during recoRAM-
Cloud is more efficient than LFS because it need not read data f
disk during cleaning: all live data is always in memory. Thmdyo
1/0 during cleaning is to rewrite live data at the head of thg; |
as a result, RAMCloud consumes 3-10x less bandwidth fonelea
ing than LFS (cleaning cost has been a controversial topicF&;
see [22], for example).

CONCLUSION

In this paper we have demonstrated that the resources afex lar
scale storage system can be used to recover quickly fronerserv
crashes. RAMCloud distributes backup data across a langpbeu
of secondary storage devices and employs both data pésellehd
pipelining to achieve end-to-end recovery times of 1-2 sdsoAl-
though we have only been able to evaluate RAMCloud on a small
cluster, our measurements indicate that the techniquésacaie to
larger clusters. Our implementation uses a simple logzgirad
representation for data, both in memory and on secondargtgsgo
which provides high write throughput in addition to enablifast
recovery.

Fast crash recovery is a key enabler for RAMCloud: it allows
a high-performance DRAM-based storage system to provide-du
bility and availability at one-third the cost of a traditalrapproach
using online replicas.
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