
CockroachDB: The Resilient Geo-Distributed

SQL Database

Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,

Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray,
Lucy Zhang, and Peter Mattis

sigmod2020@cockroachlabs.com
Cockroach Labs, Inc.

ABSTRACT
We live in an increasingly interconnected world, with 

many organizations operating across countries or even con-
tinents. To serve their global user base, organizations are 
replacing their legacy DBMSs with cloud-based systems ca-
pable of scaling OLTP workloads to millions of users.

CockroachDB is a scalable SQL DBMS that was built from 
the ground up to support these global OLTP workloads 
while maintaining high availability and strong consistency. 
Just like its namesake, CockroachDB is resilient to disasters 
through replication and automatic recovery mechanisms.
This paper presents the design of CockroachDB and its 

novel transaction model that supports consistent geo-distrib-
uted transactions on commodity hardware. We describe how 
CockroachDB replicates and distributes data to achieve fault 
tolerance and high performance, as well as how its distributed 
SQL layer automatically scales with the size of the database 
cluster while providing the standard SQL interface that users 
expect. Finally, we present a comprehensive performance 
evaluation and share a couple of case studies of CockroachDB 
users. We conclude by describing lessons learned while build-
ing CockroachDB over the last five years.

ACM Reference Format:

Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, 
Jordan Lewis, Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, 
Raphael Poss, Paul Bardea, Amruta Ranade, Ben Darnell, Bram 
Gruneir, Justin Jaffray, Lucy Zhang, and Peter Mattis. 2020. Cock-
roachDB: The Resilient Geo-Distributed SQL Database. In Proceed-
ings of the 2020 ACM SIGMOD International Conference on Manage-

ment of Data (SIGMOD’20), June 14ś19, 2020, Portland, OR, USA.

SIGMOD’20, June 14ś19, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6735-6/20/06.
https://doi.org/10.1145/3318464.3386134

Figure 1: A global CockroachDB cluster

ACM,NewYork, NY, USA, 17 pages. https://doi.org/10.1145/3318464.

3386134

1 INTRODUCTION
Modern transaction processing workloads are increasingly

geo-distributed. This trend is fueled by the desire of global
companies to not only build scalable applications, but also
control with fine-granularity where data resides for perfor-
mance and regulatory reasons.
Consider, for example, a large company with a core user

base in Europe and Australia and a fast growing user base
in the US. To power its global platform while reducing oper-
ational costs, the company has made the strategic decision
to migrate to a cloud-based database management system
(DBMS). It has the following requirements: to comply with
the EU’s General Data Protection Regulation (GDPR), per-
sonal data for its European users must be domiciled within
the EU. To avoid high latencies due to cross-continental com-
munication, data should reside close to the users accessing it
most frequently, and follow them (within regulatory limits)
if they travel. Users expect an łalways onž experience, so the
DBMS must be fault tolerant, even surviving a full regional
failure. Finally, to avoid data anomalies and to simplify ap-
plication development, the DBMS must support SQL with
serializable transactions.

Industry 3: Cloud and Distributed Databases SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1493

This work is licensed under a Creative Commons Attribution-ShareAlike 
International 4.0 License.

https://creativecommons.org/licenses/by-sa/4.0/


SIGMOD’20, June 14ś19, 2020, Portland, OR, USA R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger et al.

CockroachDB (abbrev. CRDB) is a commercial DBMS de-
signed to support all of the aforementioned requirements. As
a case in point, the company described above is a real orga-
nization in the process of migrating their global platform to
CRDB, and Fig. 1 shows the strategic vision for their CRDB
deployment. In this paper, we present the design and imple-
mentation of CRDB and explain in detail the rationale for
the decisions we made, as well as some lessons learned along
the way. We explain how CRDB supports the requirements
of global companies such as the one above by focusing on
the following features:

(1) Fault tolerance and high availability To provide fault
tolerance, CRDBmaintains at least three replicas of every
partition in the database across diverse geographic zones.
It maintains high availability through automatic recovery
mechanisms whenever a node fails.

(2) Geo-distributed partitioning and replica placement

CRDB is horizontally scalable, automatically increasing
capacity and migrating data as nodes are added. By de-
fault it uses a set of heuristics for data placement (see
Section 2.2.3), but it also allows users to control, at a fine
granularity, how data is partitioned across nodes and
where replicas should be located. We will describe how
users can use this feature for performance optimization
or as part of a data domiciling strategy.

(3) High-performance transactions CRDB’s novel trans-
action protocol supports performant geo-distributed trans-
actions that can span multiple partitions. It provides se-
rializable isolation using no specialized hardware; a stan-
dard clock synchronization mechanism such as NTP is
sufficient. As a result, CRDB can be run on off-the-shelf
servers, including those of public and private clouds.

CRDB is a production-grade system that was designed to
łmake data easyž, so in addition to the above, CRDB supports
the SQL standard with a state-of-the-art query optimizer and
distributed SQL execution engine. It also includes all the fea-
tures necessary for our users to run CRDB in production as a
system of record, including online schema changes, backup
and restore, fast imports, JSON support, and integration with
external analytics systems.

All of the source code of CRDB is available on GitHub [12].
The core features of the database are under a Business Source
License (BSL), which converts to a fully open-source Apache
2.0 license after three years [13]. Additionally, CRDB is łcloud-
neutralž, meaning a single CRDB cluster can span an arbi-
trary number of different public and private clouds. These
two features enable users to mitigate the risks of vendor lock-
in, such as reliance on proprietary extensions of SQL [6, 23]
or exposure to cloud provider outages [70].

The remainder of the paper is organized as follows: In Sec-
tion 2, we present an overview of CRDB, summarizing how

the database provides fault tolerance and high availability
through replication and strategic data placement. Section 3
provides a deep-dive into CRDB’s transaction model. Sec-
tion 4 explains how we use timestamp ordering to achieve
strong consistency, even with loosely synchronized clocks
on commodity hardware. Section 5 describes the SQL data
model, planning, execution, and schema changes. Section 6
evaluates the performance of CRDB and contains two case
studies of CRDB usage. Section 7 summarizes our lessons
learned while building CRDB. Section 8 describes related
work, and Section 9 presents conclusions and future work.

2 SYSTEM OVERVIEW
This section begins with an overview of CRDB’s archi-

tecture in Section 2.1. Sections 2.2 and 2.3 describe how the
system replicates and distributes data to provide fault toler-
ance, high availability, and geo-distributed partitioning.

2.1 Architecture of CockroachDB
CRDB uses a standard shared-nothing [62] architecture,

in which all nodes are used for both data storage and com-
putation. A CRDB cluster consists of an arbitrary number
of nodes, which may be colocated in the same datacenter or
spread across the globe. Clients can connect to any node in
the cluster.
Within a single node, CRDB has a layered architecture.

We now introduce each of the layers, including concepts and
terminology used throughout the paper.

2.1.1 SQL. At the highest level is the SQL layer, which is
the interface for all user interactions with the database. It
includes the parser, optimizer, and the SQL execution engine,
which convert high-level SQL statements to low-level read
and write requests to the underlying key-value (KV) store.
In general, the SQL layer is not aware of how data is

partitioned or distributed, because the layers below present
the abstraction of a single, monolithic KV store. Section 5 will
describe how certain queries break this abstraction, however,
for more efficient distributed SQL computation.

2.1.2 Transactional KV. Requests from the SQL layer are
passed to the Transactional KV layer that ensures atomic-
ity of changes spanning multiple KV pairs. It is also largely
responsible for CRDB’s isolation guarantees. These atom-
icity and isolation guarantees will be described in detail in
Sections 3 and 4.

2.1.3 Distribution. This layer presents the abstraction of
a monolithic logical key space ordered by key. All data is
addressable within this key space, whether it be system data
(used for internal data structures and metadata) or user data
(SQL tables and indexes).

CRDB uses range-partitioning on the keys to divide the
data into contiguous ordered chunks of size ~64 MiB, that
are stored across the cluster. We call these chunks łRangesž.

Industry 3: Cloud and Distributed Databases  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1494



CockroachDB: The Resilient Geo-Distributed SQL Database SIGMOD’20, June 14ś19, 2020, Portland, OR, USA

Ordering between Ranges is maintained in a two-level index-
ing structure inside a set of system Ranges, which are cached
aggressively for fast key lookups. The Distribution layer is re-
sponsible for identifying which Ranges should handle which
subset of each query, and routes the subsets accordingly.

Ranges are ~64 MiB because it is a size small enough to al-
low Ranges to quickly move between nodes but large enough
to store a contiguous set of data likely to be accessed together.
Ranges start empty, grow, split when they get too large, and
merge when they get too small. Ranges also split based on
load to reduce hotspots and imbalances in CPU usage.

2.1.4 Replication. By default, each Range is replicated three
ways, with each replica stored on a different node. In Sec-
tion 2.2, we describe how the Replication layer ensures dura-
bility of modifications using consensus-based replication.

2.1.5 Storage. This is the bottommost level, and represents
a local disk-backed KV store. It provides efficient writes and
range scans to enable performant SQL execution. At the
time of writing, we rely on RocksDB [54], which is well-
documented elsewhere, and which we treat as a black box
throughout the paper.

2.2 Fault Tolerance and High Availability
CRDB guarantees fault tolerance and high availability

through replication of data (Section 2.2.1), automatic recov-
erymechanisms in case of failure (Section 2.2.2), and strategic
data placement (Section 2.2.3).

2.2.1 Replication using Raft. CRDB uses the Raft consensus
algorithm [46] for consistent replication. Replicas of a Range
form a Raft group, where each replica is either a long-lived
leader coordinating all writes to the Raft group, or a follower.
The unit of replication in CRDB is a command, which repre-
sents a sequence of low-level edits to be made to the storage
engine. Raft maintains a consistent, ordered log of updates
across a Range’s replicas, and each replica individually ap-
plies commands to the storage engine as Raft declares them
to be committed to the Range’s log.
CRDB uses Range-level leases, where a single replica in

the Raft group (usually the Raft group leader) acts as the
leaseholder. It is the only replica allowed to serve authori-
tative up-to-date reads or propose writes to the Raft group
leader. Because all writes go through the leaseholder, reads
can bypass networking round trips required by Raft without
sacrificing consistency. Leases for user Ranges are tied to the
liveness of the node the leaseholder is on; to signal liveness,
nodes heartbeat a special record in a system Range every 4.5
seconds. System Ranges in turn use expiration based leases
which must be renewed every 9 seconds. If a replica detects
that the leaseholder is not live, it tries to acquire the lease.
To ensure that only one replica holds a lease at a time,

lease acquisitions piggyback on Raft; replicas attempting to
acquire a lease do so by committing a special lease acquisition

log entry. To prevent two replicas from acquiring leases
overlapping in time, lease acquisition requests include a copy
of the lease believed to be valid at the time of request. As we
will discuss in Section 4, ensuring disjoint leases is essential
for CRDB’s isolation guarantees.

2.2.2 Membership changes and automatic load (re)balancing.

Nodes can be added to or removed from running CRDB
clusters, and can fail temporarily or even permanently. CRDB
treats all of these scenarios similarly: they all cause load to
be redistributed across the new and/or remaining live nodes.
For short-term failures, CRDB uses Raft to operate seam-

lessly as long as a majority of replicas remain available. Raft
ensures the election of a new leader for the Raft group if
the leader fails so that transactions can continue. Affected
replicas can rejoin their group once back online, and peers
help them catch up on missed updates by either (1) send-
ing a snapshot of the full Range data, or (2) sending a set
of missing Raft log entries to be applied. The method used
is determined based on the number of writes that occurred
while the replica was unavailable.

For longer-term failures, CRDB automatically creates new
replicas of under-replicated Ranges (using the unaffected
replicas as sources), and determines placement as described
in the next section. The node liveness data and clustermetrics
required to make this determination are disseminated across
the cluster using a peer-to-peer gossip protocol.

2.2.3 Replica placement. CRDB has both manual and auto-
matic mechanisms to control replica placement.

To control placement manually, users configure individual
nodes in CRDB with a set of attributes. These attributes may
specify node capability (such as specialized hardware, RAM,
disk type, etc.) and/or node locality (such as country, region,
availability zone, etc.). When creating tables in the database,
users can specify placement constraints and preferences as
part of the schema of the table. For example, users may
include a łregionž column in a table, which can be used to
define the partitioning for the table and also map partitions
to specific geographic regions.

The other mechanism for replica placement is automatic:
CRDB spreads replicas across failure domains (while adher-
ing to the specified constraints and preferences), to tolerate
varying severities of failure modes (disk, rack, data center, or
region failures). CRDB also uses various heuristics to balance
load and disk utilization.

2.3 Data Placement Policies
CRDB’s replica and leaseholder placement mechanisms

allow for a wide range of possible data placement policies
that allow users to complywith data domiciling requirements
and also make trade-offs between performance and fault
tolerance. Some multi-region patterns we support are listed
below.

Industry 3: Cloud and Distributed Databases  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1495



SIGMOD’20, June 14ś19, 2020, Portland, OR, USA R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger et al.

• Geo-Partitioned Replicas For data with geographic ac-
cess locality, tables can be partitioned by access location
with each partition (set of Ranges) pinned to a specific
region. This makes for fast intra-region reads and intra-
region writes, as well as survival of availability zone (AZ)
failures. Region-wide failures result in unavailability for
data localized to the region. This policy can also be used
for enforcing data domiciling requirements.
• Geo-Partitioned Leaseholders Leaseholders for parti-
tions in a geo-partitioned table can be pinned to the region
of access with the remaining replicas pinned to the remain-
ing regions. This policy enables fast intra-region reads and
survival of regional failures, but comes at a cost of slower
cross-region writes.
• Duplicated Indexes Like all other data in CRDB, Indexes
are stored in Ranges that can be pinned to specific regions.
By duplicating indexes on a table and pinning each in-
dex’s leaseholder to a specific region, the database can
serve fast local reads while retaining the ability to survive
regional failures. This comes with higher write amplifica-
tion and slower cross-region writes, but is useful for data
that is infrequently updated or cannot be tied to specific
geographies.

3 TRANSACTIONS
CRDB transactions can span the entire key space, touching

data resident across a distributed cluster while providing
ACID guarantees. CRDB uses a variation of multi-version
concurrency control (MVCC) to provide serializable isolation.
We begin by providing an overview of the transaction

model in Section 3.1. Section 3.2 describes how we guarantee
transactional atomicity. In Sections 3.3 and 3.4, we describe
the concurrency control mechanisms that guarantee serializ-
able isolation. Finally, Section 3.5 gives an overview of how
follower replicas can serve consistent historical reads.

3.1 Overview
A SQL transaction starts at the gateway node for the SQL

connection. This node interactively receives from and re-
sponds to the SQL client and acts as the transaction coor-
dinator (orchestrating and ultimately committing/aborting
the associated transaction). Applications typically connect
to a geographically close gateway to minimize latency. In the
following subsection, we describe the coordinator algorithm.

3.1.1 Execution at the transaction coordinator. Algorithm 1
shows the high-level steps of the transaction from the per-
spective of the coordinator. Over the course of the trans-
action, the coordinator receives a series of requested KV
operations from the SQL layer (Line 2).

SQL requires that a response to the current operation must
be returned before the next operation is issued. To avoid
stalling the transaction while operations are being replicated,

Algorithm 1: Transaction Coordinator

1 inflightOps← ∅, txnTimestamp← now()

2 for op← KV operation received from SQL layer

3 op.ts← txnTimestamp

4 if op.commit

5 op.deps← inflightOps

6 else

7 op.deps← { x ∈ inflightOps | x.key = op.key }

8 inflightOps← (inflightOps − op.deps) ∪ { op }

9 resp← SendToLeaseholder(op)

10 if resp.ts > op.ts

11 if op.key unchanged over (txnTimestamp, resp.ts]

12 txnTimestamp← resp.ts

13 else

14 return transaction failed

15 send resp to SQL layer

16 if op.commit

17 asynchonously notify leaseholder to commit

the coordinator employs two important optimizations:Write

Pipelining and Parallel Commits. Write Pipelining allows re-
turning a result without waiting for the replication of the
current operation, and Parallel Commits lets the commit
operation and the write pipeline replicate in parallel. Com-
bined, they allow many multi-statement SQL transactions to
complete with the latency of just one round of replication.

To enable the aforementioned optimizations, the coordina-
tor tracks operations which may not have fully replicated yet
(Line 1). It also maintains the transaction timestamp, which
is initialized to the current time but may move forward over
the course of the transaction. Since CRDB uses MVCC, the
timestamp selects the point at which the transaction per-
forms its reads and writes (which, thereafter, are visible to
other transactions).

Write Pipelining. Each operation includes the key that
must be read or updated, as well as metadata indicating if
the transaction should commit with the current operation.
In case an operation does not attempt to commit (Line 6),
it’s possible to execute it immediately if it does not overlap
any earlier operation (Line 7). In this way, multiple opera-
tions on different keys can be łpipelinedž. If an operation
depends on an earlier in-flight operation, execution must
wait for the earlier operation to be replicated; such depen-
dencies introduce a łpipeline stallž. The pipelining logic is
outlined in Algorithm 2 (discussed below), but relies on the
dependencies calculated here. Additionally, the coordinator
tracks the current operation as in-flight (Line 8).
Next the coordinator sends the operation to the lease-

holder for execution and waits for a response (Line 9). The
response may contain an incremented timestamp (Line 10),
which indicates that another transaction’s read forced the

Industry 3: Cloud and Distributed Databases  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1496



CockroachDB: The Resilient Geo-Distributed SQL Database SIGMOD’20, June 14ś19, 2020, Portland, OR, USA

0

500

1000

1500

T
h

ro
u

g
h

p
u

t
(t

x
n

s/
s)

Parallel Commits Two− Phase Commit

0

50

100

150

0 1 2 3 4 5

Number of Secondary Indexes

L
a
te

n
cy

(m
s)

Figure 2: Performance impact of Parallel Commits

leaseholder to adjust the operation timestamp. The coordina-
tor then tries to adjust the transaction timestamp to match.
This is achieved by verifying (via a round of RPCs) that re-
peating the previous reads in the transaction at the new
timestamp will return the same value (Lines 11 and 12). If
not, the transaction fails (Lines 13 and 14) and may have to be
retried. This mechanism is described in detail in Section 3.4.
Parallel Commits.Nowwe considerwhat happenswhen

the transaction wants to commit. Naively, it can only do so
once all of its writes are known to have replicated, requiring
at least two sequential rounds of consensus. Instead, the Par-
allel Commits protocol employs a staging transaction status
which makes the true status of the transaction conditional
on whether all of its writes have been replicated. This avoids
the extra round of consensus because the coordinator is free
to initiate the replication of the staging status in parallel
with the verification of the outstanding writes, which are
also being replicated (Line 5). Assuming both succeed, the
coordinator can immediately acknowledge the transaction
as committed to the SQL layer (Line 15). Before terminating,
the coordinator asynchronously records the transaction sta-
tus as being explicitly committed (Lines 16 and 17). This is
done for performance reasons, and is discussed in Section 3.2,
where we also explain how a staging record is resolved after
an untimely crash of the coordinator.

We formally verified the safety properties of Parallel Com-
mits using TLA+ [36, 38]. Specifically we verified atomicity
by asserting that every staging transaction was eventu-
ally either explicitly committed or aborted, regardless of
coordinator failure, and no clients were told otherwise. We
also verified durability by asserting that committed transac-
tions stayed committed. The verification code is available on
GitHub [14].

To demonstrate the benefits of Parallel Commits empir-
ically, we run a microbenchmark on three servers spread
across three regions. The workload consists of single-row
writes to a table with ten columns and a variable number
of secondary indexes on those columns. Fig. 2 shows that
for this workload, Parallel Commits improves throughput
by up to 72% and reduces p50 latency by up to 47% when

Algorithm 2: Leaseholder

1 Function Handle(op)

2 verify lease

3 wait for latches on keys of { op } ∪ op.deps

4 verify writes in op.deps are replicated

5 if op is not read-only

6 push op.ts past highest read timestamp for op.key

7 command, response← evaluate op

8 response.ts← op.ts

9 if not op.commit then

10 send response to coordinator

11 if op is not read-only

12 replicate and apply command

13 release latches

14 if op.commit

15 send response to coordinator

the table has one or more secondary indexes, since index
updates require multi-Range transactions. This shows that
even as transactions require cross-Range coordination, their
latency profiles remain constant.

3.1.2 Execution at the leaseholder. When the leaseholder
receives an operation from the coordinator (Algorithm 2),
it first checks that its own lease is still valid (Line 2). Then
it acquires latches on the keys of op and all the operations
op depends on (Line 3), thus providing mutual exclusion be-
tween concurrent, overlapping requests. Next it verifies that
the operations op depends on have succeeded (Line 4). If it is
performing a write, it also ensures that the timestamp of op
is after any conflicting readers, incrementing it if necessary
(Lines 5 and 6), so as not to invalidate those transactions.

Once the initial checks are complete, the leaseholder eval-
uates the operation to determine what data modifications
are needed in the storage engine without actually making
the changes (Line 7). This results in a low level command

detailing the necessary changes, as well as a response for the
client (e.g., success in case of a write, or the value in case of a
read). If this operation is not committing the transaction, the
leaseholder can respond to the coordinator without waiting
for replication (Lines 9 and 10). Write operations are then
replicated. After consensus is reached, each replica applies
the command to its local storage engine (Lines 11 and 12).
Finally, the leaseholder releases its latches and responds to
the coordinator if it hasn’t already done so (Lines 13 to 15).

Note that Algorithm 2 does not delve into any details about
the various scenarios that may occur during the evaluation
phase (Line 7). This is the period of time when a transaction
may encounter uncommitted writes from other transactions
or writes so close in time to the transaction’s read timestamp
that it is not possible to determine the correct order of trans-
actions. The next sections discuss these scenarios, and how
CRDB guarantees both atomicity and serializable isolation.

Industry 3: Cloud and Distributed Databases  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1497



SIGMOD’20, June 14ś19, 2020, Portland, OR, USA R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger et al.

3.2 Atomicity Guarantees
An atomic commit for a transaction is achieved by consid-

ering all of its writes provisional until commit time. CRDB
calls these provisional values write intents. An intent is a
regular MVCC KV pair, except that it is preceded by meta-
data indicating that what follows is an intent. This metadata
points to a transaction record, which is a special key (unique
per transaction) that stores the current disposition of the
transaction: pending, staging, committed or aborted. The
transaction record serves to atomically change the visibility
of all the intents at once, and is durably stored in the same
Range as the first write of the transaction (see Section 3.1
for the protocol details). For long-running transactions, the
coordinator periodically heartbeats the transaction record
in the pending state to assure contending transactions that
it is still making progress.

Upon encountering an intent, a reader follows the indirec-
tion and reads the intent’s transaction record. If the record
indicates that the transaction is committed, the reader con-
siders the intent as a regular value (and additionally deletes
the intent metadata). If the transaction is aborted, the in-
tent is ignored (and cleanup is performed to remove it). If
the transaction is found to be pending (indicating that the
transaction is still ongoing), then the reader blocks, waiting
for it to finalize. If the coordinator node fails, contending
transactions eventually detect that the transaction record
has expired, and mark it aborted. If the transaction is in
the staging state (which indicates that the transaction has
either been committed or aborted, but the reader is unsure
which), the reader attempts to abort the transaction by pre-
venting one of its writes from being replicated. If all writes
are already replicated, the transaction is in fact committed,
and is updated to reflect that.

3.3 Concurrency Control
As discussed in Section 3.1, CRDB is an MVCC system and

each transaction performs its reads and writes at its commit
timestamp. This results in a total ordering of all transactions
in the system, representing a serializable execution.
However, conflicts between transactions may require ad-

justments of the commit timestamp. We describe the situ-
ations in which they arise below, and note that whenever
the commit timestamp does change, the transaction typically
tries to prove that its prior reads remain valid at the new
timestamp (Section 3.4), in which case it can simply continue
forward at the updated timestamp.

3.3.1 Write-read conflicts. A read running into an uncom-
mitted intent with a lower timestamp will wait for the ear-
lier transaction to finalize. Waiting is implemented using
in-memory queue structures. A read running into an uncom-
mitted intent with a higher timestamp ignores the intent and
does not need to wait.

3.3.2 Read-write conflicts. A write to a key at timestamp
ta cannot be performed if there’s already been a read on the
same key at a higher timestamp tb >= ta . CRDB forces the
writing transaction to advance its commit timestamp past tb .

3.3.3 Write-write conflicts. A write running into an uncom-
mitted intent with a lower timestamp will wait for the earlier
transaction to finalize (similar to write-read conflicts). If it
runs into a committed value at a higher timestamp, it ad-
vances its timestamp past it (similar to read-write conflicts).
Write-write conflicts may also lead to deadlocks in cases
where different transactions have written intents in differ-
ent orders. CRDB employs a distributed deadlock-detection
algorithm to abort one transaction from a cycle of waiters.

3.4 Read Refreshes
Certain types of conflicts described above require advanc-

ing the commit timestamp of a transaction. To maintain seri-
alizability, the read timestamp must be advanced to match
the commit timestamp.

Advancing a transaction’s read timestamp from ta to tb >
ta is possible if we can prove that none of the data that the
transaction read at ta has been updated in the interval (ta, tb ].
If the data has changed, the transaction needs to be restarted.
If no results from the transaction have been delivered to the
client, CRDB retries the transaction internally1. If results
have been delivered, the client is informed to discard them
and restart the transaction.
To determine whether the read timestamp can be ad-

vanced, CRDB maintains the set of keys in the transaction’s
read set (up to a memory budget). A łread refreshž request
validates that the keys have not been updated in a given
timestamp interval (Algorithm 1, Lines 11 to 14). This in-
volves re-scanning the read set and checking whether any
MVCC values fall in the given interval. This process is equiv-
alent to detecting the rw-antidependencies that PostgreSQL
tracks for its implementation of SSI [8, 49]. Similar to Post-
greSQL, our implementation may allow false positives (forc-
ing a transaction to abort when not strictly necessary) to
avoid the overhead of maintaining a full dependency graph.
Advancing the transaction’s read timestamp is also re-

quired when a scan encounters an uncertain value: a value
whose timestamp makes it unclear if it falls in the reader’s
past or future (see Section 4.2). In this case we also attempt
to perform a refresh. Assuming it is successful, the value will
now be returned by the read.

3.5 Follower Reads
CRDB allows non-leaseholder replicas to serve requests

for read-only queries with timestamps sufficiently in the

1CRDB increases the likelihood that a restarted transaction will succeed by

deferring the restart so the original transaction can first place write locks

(in the form of write intents) on the keys it intends to write to.

Industry 3: Cloud and Distributed Databases  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1498



CockroachDB: The Resilient Geo-Distributed SQL Database SIGMOD’20, June 14ś19, 2020, Portland, OR, USA

past through a special ‘AS OF SYSTEM TIME’ query modifier.
To enable this functionality safely, a non-leaseholder replica
asked to perform a read at a given timestampT needs to know
that no future writes can invalidate the read retroactively. It
also needs to ensure that it has all the data necessary to serve
the read. These conditions mean that if a follower read at
timestamp T is to be served, the leaseholder must no longer
be accepting writes for timestamps T ′ ≤ T , and the follower
must have caught up on the prefix of the Raft log affecting
the MVCC snapshot at T .
To this end, each leaseholder tracks the timestamps of

all incoming requests and periodically emits a closed times-

tamp, the timestamp below which no further writes will be
accepted. Closed timestamps, alongside Raft log indexes at
the time, are exchanged periodically between replicas. Fol-
lower replicas use the state built up from received updates to
determine if they have all the data needed to serve consistent
reads at a given timestamp. For efficiency reasons the closed
timestamp and the corresponding log indexes are generated
at the node level (as opposed to the Range level).
Every node keeps a record of its latency with all other

nodes in the system. When a node in the cluster receives a
read request at a sufficiently old timestamp (closed times-
tamps typically trail current time by ~2 seconds), it forwards
the request to the closest node with a replica of the data.

4 CLOCK SYNCHRONIZATION
CRDB does not rely on specialized hardware for clock syn-

chronization, so it can run on off-the-shelf servers in public
and private clouds with software-level clock synchronization
services such as NTP or Amazon Time Sync Service.

In this section, we introduce the hybrid-logical clock scheme
CRDB uses to talk about timestamp ordering (Section 4.1).We
then discuss how this clock scheme allows loosely synchro-
nized clocks to efficiently provide single-key linearizability
between transactions (Section 4.2). Finally, we explore the
behavior of CRDB when configurable clock synchronization
bounds are violated (Section 4.3).

4.1 Hybrid-Logical Clocks
Each node within a CRDB cluster maintains a hybrid-

logical clock (HLC) [20], which provides timestamps that are
a combination of physical and logical time. Physical time is
based on a node’s coarsely-synchronized system clock, and
logical time is based on Lamport’s clocks [37].
HLCs within a CRDB deployment are configured with

a maximum allowable offset between their physical time
component and that of other HLCs in the cluster. This offset
configuration defaults to a conservative value of 500 ms.
Hybrid-logical clocks provide a few important properties:

(1) HLCs provide causality tracking through their logical
component upon each inter-node exchange. Nodes attach

HLC timestamps to each message that they send and use
HLC timestamps from each message that they receive to
update their local clock.

Capturing causal relationships between events on dif-
ferent nodes is critical for enforcing invariants within
CRDB. The most important of these is a lease disjoint-
ness invariant similar to that in Spanner: for each Range,

each lease interval is disjoint from every other lease inter-

val. This is enforced on cooperative lease handoff with
causality transfer through the HLC and is enforced on
non-cooperative lease acquisition through a delay equal
to the maximum clock offset between lease intervals.

(2) HLCs provide strict monotonicity within and across
restarts on a single node. Within a continuous process,
providing this property is trivial. Across restarts, this
property is enforced by waiting out the maximum clock
offset upon process startup before serving any requests.

Strictly monotonic timestamp allocation ensures that
two causally dependent transactions originating from
the same node are given timestamps that reflect their
ordering in real time.

(3) HLCs provide self-stabilization in the presence of iso-
lated transient clock skew fluctuations. As stated above, a
node forwards its HLC upon its receipt of a network mes-
sage. The effect of this is that given sufficient intra-cluster
communication, HLCs across nodes tend to converge and
stabilize even if their individual physical clocks diverge.
This provides no strong guarantees but can mask clock
synchronization errors in practice.

4.2 Uncertainty Intervals
We have already discussed how the transaction model in

CRDB provides serializable isolation between transactions.
However, serializability on its own says nothing about how
transaction ordering in the system relates to the ordering in
real time. For that, we must talk about the consistency level
that CRDB offers.
Under normal conditions, CRDB satisfies single-key lin-

earizability for reads and writes. This means that every oper-
ation on a given key appears to take place atomically and in
some total linear order consistent with the real-time ordering
of those operations. Under single-key linearizability, stale
read anomalies are not possible. This is true evenwith loosely
synchronized clocks, as long as those clocks stay within the
configured maximum clock offset from one another.

Note that CRDB does not support strict serializability be-
cause there is no guarantee that the ordering of transactions
touching disjoint key sets will match their ordering in real
time. In practice, this is not a problem for applications un-
less there is an external low-latency communication channel
between clients that could potentially impact activity on the
DBMS.

Industry 3: Cloud and Distributed Databases  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1499



SIGMOD’20, June 14ś19, 2020, Portland, OR, USA R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger et al.

The single-key linearizability property is satisfied in CRDB
by tracking an uncertainty interval for each transaction,
within which the causal ordering between two transactions
is indeterminate. Upon its creation, a transaction is given a
provisional commit timestamp commit_ts from the transac-
tion coordinator’s local HLC and an uncertainty interval of
[commit_ts, commit_ts +max_offset].

When a transaction encounters a value on a key at a times-
tamp below its provisional commit timestamp, it trivially
observes the value during reads and overwrites the value
at a higher timestamp during writes. This alone would sat-
isfy single-key linearizability if transactions had access to a
perfectly synchronized global clock.

Without global synchronization, the uncertainty interval
is needed because it is possible for a transaction to receive a
provisional commit timestamp up to the cluster’smax_offset

earlier than a transaction that causally preceded this new
transaction in real time. When a transaction encounters a
value on a key at a timestamp above its provisional commit
timestamp but within its uncertainty interval, it performs an
uncertainty restart, moving its provisional commit timestamp
above the uncertain value but keeping the upper bound of
its uncertainty interval fixed.
This corresponds to treating all values in a transaction’s

uncertaintywindow as past writes. As a result, the operations
on each key performed by transactions take place in an order
consistent with the real time ordering of those transactions.

4.3 Behavior under Clock Skew
To this point, we have only considered the behavior of

CRDB when the configured maximum clock offset bounds
are respected. It is worth also considering the behavior of
the system when these clock offset bounds are violated.

Within a single Range, consistency is maintained through
Raft. Raft does not have a clock dependency, so the order-
ing of changes it constructs for a single Range will remain
linearizable regardless of clock skew. If all reads and writes
were written to the Raft log, this would be enough to ensure
consistency under arbitrary clock skew. However, Range
leases allow reads to be served from a leaseholder without
going through Raft. This causes complications because under
sufficient clock skew, it is possible for multiple nodes to think
they each hold the lease for a given Range. Without extra
protection, this could lead to conflicting operations being
permitted on the two leaseholders, resulting in client-visible
isolation anomalies.
CRDB employs two safeguards to ensure that such situa-

tions do not affect transaction isolation.

(1) Range leases contain a start and an end timestamp. A
leaseholder cannot serve reads for MVCC timestamps
above its lease interval or writes for MVCC timestamps
outside its lease interval. The lease disjointness invariant

discussed earlier ensures that within a Range, each lease
interval is disjoint from every other lease interval.

(2) Each write to a Range’s Raft log includes the sequence
number of the Range lease that it was proposed under.
Upon successful replication, the sequence number is
checked against the currently active lease. If they do
not match, the write is rejected. Because lease changes
for a Range are themselves written to the Range’s Raft
log, only a single leaseholder is ever able to make changes
to a Range at a time. This is true even if multiple nodes
believe they hold a valid lease simultaneously.

These two safeguards ensure that a pair of leaseholders
that are active concurrently cannot serve requests that would
violate serializable isolation. The first safeguard ensures that
an incoming leaseholder cannot serve a write that invali-
dates a read served by an outgoing leaseholder. The second
safeguard ensures that an outgoing leaseholder cannot serve
a write that invalidates a read or a write served by an incom-
ing leaseholder. Together, these safeguards ensure that even
under severe clock skew that violates maximum clock offset
bounds, CRDB provides serializable isolation.
While isolation is maintained regardless of clock skew,

clock skew outside of the configured clock offset bounds
can result in violations of single-key linearizability between
causally-dependent transactions. This is possible if the trans-
actions are issued through different gateway nodes whose
clocks are skewed by more than the clock offset bounds. If
the gateway node for the second transaction is assigned a
commit_tsmore thanmax_offset below the timestamp of the
first transaction, it is possible for values written by the first
transaction to be outside of the uncertainty interval of the
second. This would allow the second transaction to read keys
overlapping the write set of the first without actually observ-
ing the writes. Stale reads represent a violation of single-key
linearizability and are only prevented when clocks remain
within offset bounds.

To reduce the likelihood of stale reads, nodes periodically
measure their clock’s offset from other nodes. If any node
exceeds the configured maximum offset by more than 80%
compared to a majority of other nodes, it self-terminates.

5 SQL
So far we have discussed the technical details of the Trans-

actional KV layer and layers below, but all user interac-
tion with the database passes through the SQL layer. CRDB
supports much of the PostgreSQL dialect of ANSI standard
SQL [51] with some extensions (e.g., needed to support the
geo-distributed nature of the database).
This section describes the SQL data model and how it

maps to the layers below (Section 5.1), the technical details
of SQL planning and execution (Sections 5.2 and 5.3), and
schema changes (Section 5.4).

Industry 3: Cloud and Distributed Databases  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1500



CockroachDB: The Resilient Geo-Distributed SQL Database SIGMOD’20, June 14ś19, 2020, Portland, OR, USA

5.1 SQL Data Model
Every SQL table and index is stored in one or more Ranges,

as described in Section 2.1. Furthermore, all user data is
stored in one or more ordered indexes, of which one is desig-
nated as the łprimaryž index. The primary index is keyed on
the primary key, and all other columns are stored in the value
(primary keys are automatically generated if not explicitly
specified by the schema). Secondary indexes are keyed on
the index key, and store the primary key columns as well
as any number of additional columns specified by the index
schema. CRDB also supports hash indexes, which can help
avoid hot spots by distributing load across multiple Ranges.

5.2 Query Optimizer
SQL query planning is performed by a Cascades-style [27]

query optimizer that uses over 200 transformation rules to
explore the space of possible query execution plans.

5.2.1 Optgen, a DSL for query transformations. Transforma-
tion rules in CRDB are written in a domain-specific language
(DSL) called Optgen that provides an intuitive syntax for
defining, matching, and replacing operators in a query plan
tree. Optgen compiles to Go so that the transformation rules
can integrate seamlessly with the rest of the CRDB code-
base (all of CRDB, with the exception of the storage layer, is
implemented in Go).

For example, consider a simple Optgen rule EliminateNot:

[ E l im ina t eNot , Normal i ze ]

( Not ( Not $ i npu t : ∗ ) ) => $ inpu t

It matches scalar expressions containing two nested NOT

operators, and replaces them with the input to the inner NOT.
Transformation rules for relational expressions are more
complex (e.g. they can call out to arbitrary Go methods), but
all have the same structure with a łmatch patternž and a
logically equivalent łreplace patternž separated by an arrow.
EliminateNot is an example of a Normalization (rewrite)

rule, in which the source expression is replaced with the
transformed expression. Exploration rules (such as join re-
ordering and join algorithm selection) preserve both expres-
sions so that the optimizer can select whichever one has a
lower estimated cost. Consistent with the Cascades model,
CRDB’s optimizer uses a unified search in which application
of Normalization and Exploration rules are interleaved. The
generated code ensures that minimal memory is allocated
for an operator until all applicable normalization rules have
been applied.

5.2.2 Optimizer is distribution-aware. Many of CRDB’s trans-
formation rules can be found in other state-of-the-art query
optimizers, but some are specific to the geo-distributed and
partitioned nature of CRDB. For example, the optimizer can
use information about a table’s partitioning to infer addi-
tional filters and enable more selective index scans. Consider

Figure 3: Physical plan for a distributed hash join

an index idx(region, id) on a table t partitioned across
two regions, east and west. In this case, the query SELECT

* FROM t WHERE id = 5 can be rewritten as SELECT *

FROM t WHERE id = 5 AND (region = ’east’ OR region

= ’west’), thus enabling use of the index. This is similar
to Oracle’s index skip scan [29], but filters are determined
statically from the schema rather than from histograms.

The optimizer also takes data distribution into account as
part of its cost model. For some workloads, it may be ben-
eficial to replicate a secondary index such that each region
has its own copy (see Duplicated Indexes in Section 2.3). The
optimizer minimizes cross-region data shuffling by assigning
a cost to each index replica based on how close it is to the
gateway node of a query.

5.3 Query Planning and Execution
SQL query execution in CRDB is executed in one of two

modes: (1) gateway-onlymode, inwhich the node that planned
the query is responsible for all SQL processing for the query,
or (2) distributed mode, in which other nodes in the cluster
participate in SQL processing. At the time of writing, only
read-only queries can execute in distributed mode.
Since the Distribution layer presents the abstraction of

a single, monolithic key space, the SQL layer can perform
read and write operations for any Range on any node. This
allows SQL operators to behave identically whether planned
in gateway-only or distributed mode.
The decision to distribute is made by a heuristic estimat-

ing the quantity of data that would need to be sent over the
network. Queries that only read a small number of rows are
executed in gateway-only mode. To produce a distributed
query plan when necessary, CRDB performs a physical plan-
ning stage that transforms the query optimizer’s plan into a
directed acyclic graph (DAG) of physical SQL operators.

Physical planning splits logical scan operations into mul-
tiple TableReader operators, one for each node containing a
Range read by the scan. Once the scans are segmented, the
remaining logical operators are scheduled on the same nodes
as the TableReaders, thus pushing down filters, joins, and
aggregations as close to the physical data as possible.

Industry 3: Cloud and Distributed Databases  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1501



SIGMOD’20, June 14ś19, 2020, Portland, OR, USA R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger et al.

Fig. 3 shows an example of a distributed hash join across
the primary indexes of two tables, a and b, on a 3 node cluster
in which node 2 holds the requested Ranges of b, but the
Ranges of a are split between nodes 1 and 3. The scanned
data is shuffled by hash to all nodes involved in the scan,
joined with a node-local hash join operator, and sent back
to the gateway node, which unions the results and returns
them to the SQL client. This kind of figure can be produced
by the database for any query using the EXPLAIN(distsql)
command on the query.
Within a data stream, CRDB uses one of two different

execution engines depending on input cardinality and plan
complexity: a row-at-a-time engine or a vectorized engine.

5.3.1 Row-at-a-time execution engine. CRDB’s primary ex-
ecution engine is based on the Volcano [26] iterator model
and processes a single row at a time. Every supported SQL
feature in CRDB is implemented in this execution engine,
including joins, aggregations, sorts, window functions, etc.

5.3.2 Vectorized execution engine. CRDB can execute a sub-
set of SQL queries using a vectorized execution engine that
was inspired by MonetDB/X100 [7]. The vectorized engine
operates on column-oriented batches of data instead of rows.

If the vectorized engine is chosen, data from disk is trans-
posed from row to column format as it is being read from
CRDB’s KV layer, and transposed again from column to row
format right before it is sent back to the end user. The over-
head of this process is minimal.
In contrast to the row-at-a-time engine, operators imple-

mented in the vectorized engine are monomorphized on all
SQL data types that they support to drastically reduce the
interpreter overhead inherent in the row-at-a-time iterator
model. Since CRDB is written in Go, which does not support
generics with specialization, this monomorphization is done
using templated code generation.
All of CRDB’s vectorized operators can handle the pres-

ence of a selection vector, a tightly-packed array of indices
into the data columns that have not yet been filtered out
by previous operators. The selection vector is used to avoid
expensive physical removal of data after selection operators.
Complex operators such as merge joins use monomorphiza-
tion to generate multiple inner loops depending on whether
a selection vector is present or not.

The optimizations described above result in a speedup of
over two orders of magnitude for individual operators, and
up to 4x on queries in the TPC-H [69] benchmark.

5.4 Schema Changes
CRDB performs schema changes, such as the addition of

columns or secondary indexes, using a protocol that allows
tables to remain online (i.e., able to serve reads and writes)
during the schema change, and allows different nodes to

●
● ● ● ● ● ● ● ●

Vertical Scaling Horizontal Scaling

0
1000
2000
3000
4000
5000

6 12 24 48 108 216 432 864 1728

vCPUs (log scale)

T
h

ro
u

g
h

p
u

t 
p

er
 v

C
P

U
(t

x
n

s/
s/

v
C

P
U

)

● OLTP Inserts OLTP Point Selects

Figure 4: Maximum throughput per vCPU for Sys-

bench workloads with varying number of vCPUs

asynchronously transition to a new table schema at different
times.

CRDB implements the solution used by F1 [52] by follow-
ing a protocol that decomposes each schema change into a
sequence of incremental changes. In this protocol, the addi-
tion of a secondary index requires two intermediate schema
versions between the initial and final ones to ensure that the
index is being updated on writes across the entire cluster
before it becomes available for reads. If we enforce the in-
variant that there are at most two successive versions of a
schema used in the cluster at all times, then the database will
remain in a consistent state throughout the schema change.

6 EVALUATION
This section evaluates the performance of CRDB along a

number of axes. We begin by examining the scalability of
CRDB with various workload characteristics (Section 6.1).
We follow with a study of CRDB’s performance in a multi-
region deployment under various disaster scenarios (Sec-
tion 6.2). Next, we compare the performance of CRDB to
Spanner (Section 6.3). We conclude with several examples of
external CRDB usage (Section 6.4). Unless otherwise noted,
we use CRDB v19.2.2 in all experiments.

6.1 Scalability of CockroachDB

6.1.1 Vertical and horizontal scalability. We evaluate the
vertical and horizontal scalability of CRDB on łembarrass-
ingly parallelž workloads by running two benchmarks from
the Sysbench OLTP suite [33]. Fig. 4 shows that throughput
per vCPU (for both reads and writes) stays nearly constant
as the number of vCPUs increases. The left-hand side of the
chart demonstrates vertical scalability, with experiments run
on a three node cluster with varying AWS instance types
(c5d.large, c5d.xlarge, c5d.2xlarge, c5d.4xlarge, and
c5d.9xlarge with 2, 4, 8, 16, and 36 vCPUs respectively).
The right-hand side of the chart demonstrates horizontal
scalability, with experiments run on c5d.9xlarge instances
with the cluster size varying from 3 to 48 nodes. All clusters
span three AZs in us-east-1, and each point represents the
average over three runs. Each experiment uses 4 tables per
node and 1,000,000 rows per table, resulting in ~38 GB of
data on the 48 node cluster.

Industry 3: Cloud and Distributed Databases  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1502



CockroachDB: The Resilient Geo-Distributed SQL Database SIGMOD’20, June 14ś19, 2020, Portland, OR, USA

●
●

●

●

●
●

●

●

●
●

●

●

0

25,000

50,000

75,000

100,000

1 3 6 12 24 48
Nodes

M
a
x
im

u
m

 t
p

m
C

Replication Factor
●

1
3
5

Percentage of Remote
New Order Transactions

0%
10%
100%

Figure 5: Maximum tpmC with varying % of remote

transactions, cluster sizes, and replication factors

Warehouses

1,000 10,000 100,000

CockroachDB

Max tpmC 12,474 124,036 1,245,462

Efficiency 97.0% 96.5% 98.8%

NewOrder p90 latency 39.8 ms 436.2 ms 486.5 ms

Machine type (AWS) c5d.4xlarge c5d.4xlarge c5d.9xlarge

Node count 3 15 81

Amazon Aurora [55]

Max tpmC 12,582 9,406 -

Efficiency 97.8% 7.3% -

Latency, machine type, and node count not reported

Table 1: TPC-C benchmark environment and results

6.1.2 Scalability with cross-node coordination. To evaluate
the scalability of CRDB with varying amounts of cross-node
coordination, we run TPC-C [68] with a variable percent-
age of remote warehouses in New Order transactions. Since
replication also causes cross-node coordination, we addition-
ally vary the replication factor. Fig. 5 shows that in these
experiments, the overhead of replication can reduce through-
put by up to 48% for three replicas or 57% for five replicas,
and distributed transactions may further reduce through-
put by up to 46%. Despite these overheads, all workloads
scale linearly with increasing cluster sizes. This experiment
uses n1-standard-4 GCP machines [25] (4 vCPUs each).
Each point represents the average over three runs, where
each run finds the maximum tpmC sustained for at least ten
minutes. Since throughput in TPC-C scales with data size,
the largest experiments shown here use 10,000 warehouses,
corresponding to 800 GB of data.

6.1.3 TPC-C performance comparison with Amazon Aurora.

To demonstrate scalability on an industry-standard bench-
mark, we run TPC-C with 1,000, 10,000 and 100,000 ware-
houses on CRDB v19.2.0. As shown in Table 1, CRDB scales
to support up to 100,000 warehouses, corresponding to 50
billion rows and 8 TB of data, at near-maximum efficiency.
All experiments comply with the TPC-C spec (including wait
times and the use of foreign keys).

6000

9000

12000

tp
m

C

Geo− Part. Leaseholders
Geo− Part. Replicas

Geo− Part. Replicas w/  Dup. Index
Unpartit ioned

500

2000

8000

0 20 40 60

Elapsed time (minutes)

p
9

0
 L

a
te

n
cy

(m
s,

 l
o

g
 s

ca
le

)

Figure 6: Multi-region cluster performance with vari-

ous placement policies and AZ/region failures

Amazon Aurora is a commercial database for OLTP work-
loads that is also designed to be scalable and fault toler-
ant [72]. In contrast to CRDB, single-master Aurora only
achieves 7.3% efficiency with 10,000 warehouses [55]. AWS
has not published TPC-C numbers for multi-master Au-
rora [3].

6.2 Multi-region Availability and

Performance
To illustrate the trade-offs made between performance

and fault tolerance by different data placement policies (Sec-
tion 2.3), we measure TPC-C 1,000 performance against a
multi-region CRDB cluster as we induce AZ and region fail-
ures. This experiment uses 9 n1-standard-4 GCP machines
deployed across three regions in the US, in addition to work-
load generators per region.
The periods between the dashed lines in Fig. 6 represent,

in order, an AZ failure and recovery, and a region-wide fail-
ure and recovery. On failure, requests are routed to fallback
AZs (either in the same region or another, depending on the
policy). Tables and indexes are partitioned by warehouse for
partitioned policies. For the duplicated indexes policy, the
read-only items table is replicated to every region.
We verify that all policies are able to tolerate AZ fail-

ures. The slight performance degradation during an AZ fail-
ure is due to the remaining AZs being overloaded. Of the
four policies, only geo-partitioned leaseholders is tolerant
to region-wide failures. This translates to a higher sustained
throughput during region-wide failures, but comes at a cost
of higher p90 latencies during stable operation and recov-
ery (compared to the geo-partitioned replicas variants). The
slower recovery period is due to the primary region catching
up on missed writes. The performance degradation during
region failures, depending on the policy, can be attributed
to either blocked remote warehouse transactions, or clients
having to cross region boundaries to issue queries. Under
stable conditions, the duplicated indexes policy maintains
the lowest p90 latencies.

Industry 3: Cloud and Distributed Databases  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1503



SIGMOD’20, June 14ś19, 2020, Portland, OR, USA R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger et al.

3
 S

erv
ers

1
5

 S
erv

ers

A B C D E F

0

20,000

40,000

60,000

0

100,000

200,000

YCSB Workload

T
h

ro
u

g
h

p
u

t 
(t

x
n

s/
s)

CRDB 4 vCPUs
CRDB 8 vCPUs

CRDB 16 vCPUs
Spanner

Reads Updates

CRD
B

Span
ner

CRD
B

Span
ner

0
2
4
6
8

10

L
a
te

n
cy

 (
m

s)

Average
95th Percentile
99th Percentile

Figure 7: Throughput of CRDB and Spanner on YCSB

A-F, Latency of CRDB and Spanner under light load

6.3 Comparison with Spanner
Fig. 7 compares CRDB’s performance against Cloud Span-

ner’s on the YCSB [16] benchmark suite2. As Spanner is a
managed service, it does not reveal its hardware configura-
tion. We therefore compare against several CRDB configu-
rations (4, 8 and 16 vCPUs per node). For reference, three
n2-standard-8 GCP VMs (8 vCPUs each) with local storage
cost within 0.2% of a one łnodež Spanner instance (consisting
of three replicas). In all tests, replicas are spread across three
AZs in a single region.

Formost YSCBworkloads, CRDB shows significantly higher
throughput. Both systems demonstrate horizontal scalability
as the cluster size increases. One exception is Workload A
(update-heavy, zipfian distribution of keys), on which CRDB
does not scale well because of theworkload’s high contention
profile3. We also include a test of the latency of reads and
writes performed by YCSB under light load. CRDB shows
significantly lower latencies at all percentiles, which we at-
tribute in part to Spanner’s commit-wait. Latency results
under heavy load are noisy but show a similar trend, so we
omit them due to space constraints.

6.4 Usage Case Studies
CRDB is used by thousands of organizations. In this sec-

tion we outline two specific case studies of CRDB usage.

6.4.1 Virtual customer support agent for a telecom provider.

A US-based telecom provider wanted to reduce its customer
service costs by building a virtual agent to provide 24/7 sup-
port to their customers. The agent relied on recording cus-
tomer conversation metadata in a sessions database. The
team chose CRDB for this system due to its strong consis-
tency, regional failure tolerance, and performance for geo-
distributed clusters.
For financial reasons, the team deployed a multi-region

CRDB cluster split across their own on-prem data center
and AWS regions. CRDB’s support for hybrid deployments

2We use the official YCSB generator[76] with Spanner and JDBC clients.
3We expect significant improvement for such workloads with optional read

locking upcoming in the 20.1 release.

made this feasible. To survive regional failure, they opted
for the geo-partitioned leaseholders policy. Writes would
need to cross region boundaries to achieve quorum, but read
performance would be local.

6.4.2 Global platform for an online gaming company. An
online gaming company processing 30-40 million financial
transactions per day was looking for a database for their
global platform. They had strict requirements on data com-
pliance, consistency, performance and service availability.
With their core user base in Europe and Australia, and a fast
growing user base in the US, they sought to isolate failure do-
mains and pin user data to specific localities for compliance
and low latencies.

CRDB’s architecture was a good fit for their requirements,
and is now a strategic component in their long term roadmap.
Fig. 1 shows the vision for their CRDB deployment.

7 LESSONS LEARNED
This section details some lessons learned over the last five

years of building CRDB and hardening it as a production-
grade system.

7.1 Raft Made Live
We initially chose Raft as the consensus algorithm for

CRDB due to its supposed ease of use and the precise de-
scription of its implementation [46]. In practice, we have
found there are several challenges in using Raft in a complex
system like CRDB.

7.1.1 Reducing the Chatter. Raft leaders send periodic heart-
beats to each follower to maintain their leadership. As a
large CRDB deployment may need to maintain hundreds of
thousands of consensus groups (one per Range), this commu-
nication becomes expensive. To mitigate this overhead, we
made two changes to the basic protocol: (1) we coalesce the
heartbeat messages into one per node to save on the per-RPC
overhead, and (2) we pause Raft groups which have seen no
recent write activity.

7.1.2 Joint Consensus. Raft’s default membership change
protocol is simple to implement but allows for only a sin-
gle addition or removal of a member at a time. It turns out
that this is problematic for availability guarantees during
rebalancing operations (i.e. moving a replica from one node
to another). For example, in a three-region deployment con-
strained to one replica per region, rebalancing requires either
(1) temporarily dropping down to two replicas, or (2) tem-
porarily increasing to four replicas, with two in one region.
Both intermediate configurations lose availability during a
single region outage.

To solve this problem, we implemented atomic replication
changes (called Joint Consensus) as detailed in [46]. In Joint
Consensus, an intermediate configuration exists, but requires
instead the quorum of both the old and new majority for

Industry 3: Cloud and Distributed Databases  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1504



CockroachDB: The Resilient Geo-Distributed SQL Database SIGMOD’20, June 14ś19, 2020, Portland, OR, USA

writes; this means unavailability will result only if either the
old or new majority fails. The reconfiguration protocol used
by Apache ZooKeeper [59] is similar.
We found that implementation of Joint Consensus was

not significantly more complex than the default protocol, so
we recommend that all production-grade Raft-based systems
use Joint Consensus instead.

7.2 Removal of Snapshot Isolation
CRDB originally offered two isolation levels, SNAPSHOT

and SERIALIZABLE. We made SERIALIZABLE the default be-
cause we believe that application developers should not have
to worry about write skew anomalies, and in our implemen-
tation the performance advantage of the weaker isolation
level was small. Still, we wanted to make the option of snap-
shot isolation available for users who wanted to use it to
minimize the need for transaction retries.
Since CRDB was primarily designed for SERIALIZABLE,

we initially expected that offering just snapshot isolation by
removing the check for write skews would be simple. How-
ever, this proved not to be the case. The only safe mechanism
to enforce strong consistency under snapshot isolation is pes-
simistic locking, via the explicit locking modifiers FOR SHARE

and FOR UPDATE on queries. To guarantee strong consistency
across concurrent mixed isolation levels, CRDB would need
to introduce pessimistic locking for any row updates, even
for SERIALIZABLE transactions. To avoid this pessimization
of the common path, we opted to eschew true support for
SNAPSHOT, keeping it as an alias to SERIALIZABLE instead.

7.3 Postgres Compatibility
We chose to adopt PostgreSQL’s SQL dialect and network

protocol in CRDB to capitalize on the ecosystem of client dri-
vers. This choice initially boosted adoption and still results
today in enhanced focus and decision-making in the engi-
neering team [50]. However, CRDB behaves differently from
PostgreSQL in ways that require intervention in client-side
code. For example, clients must perform transaction retries
after an MVCC conflict and configure result paging. Reusing
PostgreSQL drivers as-is requires us to teach developers how
to deploy CRDB-specific code at a higher level, anew in every
application. This is a recurring source of friction which we
had not anticipated. As a result, we are now considering the
gradual introduction of CRDB-specific client drivers.

7.4 Pitfalls of Version Upgrades
A clear upgrade path between versions with near-zero-

downtime is an indispensable property of a system that
prides itself on its operational simplicity. In CRDB, an up-
grade consists of a rolling restart into the new binary. Run-
ning a mixed-version cluster introduces additional complex-
ity into an already complex system and can potentially in-
troduce serious bugs.

Early versions of CRDB replicated requests received via
the KV API directly and evaluated them locally on each
peer. That is, each request was: (1) proposed to raft (on the
leaseholder), (2) evaluated (on each replica), and (3) applied
(on each replica).

To maintain consistency, a Range’s replicas must contain
identical data. Unfortunately, code changes in (2) and (3) were
likely to introduce divergences between replicas running on
old and new versions of the system. To address this class
of problems, we moved the evaluation stage first, and now
propose the effect of an evaluated request, rather than the
request itself.

7.5 Follow the Workload
łFollow theWorkloadž is amechanismwe built to automat-

ically move leaseholders physically closer to users accessing
the data. It was designed for workloads with shifting access
localities where CRDB would attempt to dynamically opti-
mize read latency, but we’ve found it to be rarely used in
practice. CRDB’s manual controls over replica placement
prove sufficient for most operators who can fine tune ac-
cess patterns for expected workloads. Adaptive techniques
in databases [47] are difficult to get right for a general pur-
pose system, and are either too aggressive or too slow to
respond. Operators favor consistency in performance; the
unpredictability in this dynamic scheme hindered adoption.

8 RELATEDWORK
Distributed transactionmodels.There has been a great

deal of work both in industry and in the literature to support
distributed transactions with varying levels of consistency
and scalability. Over the years, many systems with reduced
consistency levels have been proposed with the goal of over-
coming the scalability challenges of traditional relational
database systems [5, 15, 19, 32, 35, 44, 61, 64, 71]. For many
applications, however, isolation levels below serializable per-
mit dangerous anomalies, which may manifest as security
vulnerabilities [73]. CRDB was designed with the philosophy
that it is better to eliminate these anomalies altogether than
expect developers to handle them at the application level.

Spanner [4, 17] is a SQL system that provides the strongest
isolation level, strict serializability [30]. It achieves this by ac-
quiring read locks in all read-write transactions and waiting
out the clock uncertainty window (the maximum clock offset
between nodes in the cluster) on every commit. CRDB’s trans-
action protocol is significantly different from Spanner’s; it
uses pessimistic write locks, but otherwise it is an optimistic
protocol with a łread refreshž mechanism that increases the
commit timestamp of a transaction if it observes a conflicting
write within the clock uncertainty window. This approach
provides serializable isolation and has lower latency than
Spanner’s protocol for workloads with low contention. It

Industry 3: Cloud and Distributed Databases  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1505



SIGMOD’20, June 14ś19, 2020, Portland, OR, USA R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger et al.

may require more transaction retries for highly contended
workloads, however, and for this reason future versions of
CRDB will include support for pessimistic read locks. Note
that Spanner’s protocol is only practical in environments
where specialized hardware is available to bound the un-
certainty window to a few milliseconds. CRDB’s protocol
functions in any public or private cloud.

Calvin [66], FaunaDB [22] and SLOG [53] provide strict se-
rializability, but because their deterministic execution frame-
work requires the read/write sets up front, they do not sup-
port conversational SQL. H-Store [31] and VoltDB [63] are
main-memory databases that support serializable isolation
and are optimized for partitionable workloads, but perform
poorly on workloads with many cross-partition transac-
tions since distributed transactions are processed by a sin-
gle thread [79]. L-Store [39] and G-Store [18] alleviate this
problem by committing all transactions locally, but require
relocating data on-the-fly if it is not already colocated.
Recent work has explored minimizing the commit time

of geo-distributed transactions [21, 28, 34, 41ś43, 75, 78].
Similar to many of these approaches, CRDB can commit
transactions in one round-trip between data centers in the
common case, corresponding to one round-trip of distributed
consensus. Unlike systems that require global consensus or
a single master region for ordering multi-partition trans-
actions [22, 53, 66], CRDB requires consensus only from
partitions written in the transaction.

Distributed data placement. Several papers have con-
sidered how to place data in a geo-distributed cluster. Some [2,
9, 48, 58, 77] minimize transaction latency while maximizing
availability, adhering to fault tolerance requirements, and/or
balancing load. Others [40, 74] minimize cost while adhering
to latency SLOs. CRDB gives users control by supporting
different data placement policies.

Another body ofwork considers load-based re-partitioning
and placement of data. Slicer [1] performs range partitioning
of hashed keys, and splits/merges ranges based on load. Other
systems [56, 57, 65] support fine-grained repartitioning to
alleviate hot spots and/or colocate frequently co-accessed
data. Similar to that work, CRDB range-partitions based on
the original keys, resulting in better locality for range scans
than Slicer, but susceptibility to hot spots. To alleviate hot
spots, it can also partition on hashed keys. Like Slicer, CRDB
splits, merges, and moves Ranges to balance load.

Commercial Distributed OLTP DBMSs. CRDB is one
of many distributed DBMS offerings on the market today
for OLTP workloads, each providing different features and
consistency guarantees. Spanner, FaunaDB, and VoltDB, as
well as the various NoSQL systems were discussed above.
Amazon Aurora [72] is a distributed SQL DBMS which repli-
cates by writing the database’s redo log to shared storage. It
supports high availability of read requests with six replicas

spanning three AZs, but until recently [3], a single failure
could cause the database to become temporarily unavailable
for writes. It can only be deployed on AWS. F1 [52, 60] is a
federated SQL query processing platform from Google, and
was a source of inspiration for CRDB’s distributed execution
engine and online schema change infrastructure. F1 is not
publicly available on GCP, but is used internally through-
out Google. TiDB [67] is an open-source distributed SQL
DBMS that is compatible with the MySQL wire protocol and
is designed to support HTAPworkloads. NuoDB [45] is a pro-
prietary NewSQL database that scales storage independently
from the transaction and caching layer. Unlike CRDB, these
systems are not optimized for geo-distributed workloads
and only support snapshot isolation. FoundationDB [24] is
an open-source key-value store from Apple that supports
strictly serializable isolation. Apple’s FoundationDB Record
Layer [10] supports a subset of SQL.

9 CONCLUSION AND FUTURE OUTLOOK
CockroachDB is a source-available, scalable SQL database

designed to łmake data easyž. Our novel transaction proto-
col achieves serializable isolation at scale without the use
of specialized hardware. Consensus-based replication pro-
vides fault tolerance and high availability, as well as per-
formance optimizations for local reads from both the lease-
holder (leader) and follower replicas. Geo-partitioning and
follow-the-workload features ensure that data is located clos-
est to the users accessing it, minimizing latency due to WAN
round trip requests. Finally, CockroachDB’s SQL layer pro-
vides users the flexibility and familiarity of SQL, while still
taking advantage of the distributed nature of CockroachDB
for scalability and performance.
CockroachDB is already providing value to thousands of

organizations, but we are continuing to iterate on the design
and improve the software with each release. Our upcom-
ing releases will include a completely redesigned storage
layer, geo-aware query optimizations, and numerous im-
provements to other parts of the system. Looking further
ahead, we plan to improve support for operational automa-
tion, paving the way for a future in which databases can
be truly łserverlessž from a user’s perspective. We have al-
ready released a fully managed service [11], but much work
remains to insulate users from the operational details. Dis-
aggregated storage, on-demand scaling, and usage-based
pricing are just some of the areas we will need to develop.
Making a geo-distributed database perform well in such an
environment is a problem ripe for independent research.
We look forward to supporting and participating in it, and
furthering our mission to łmake data easyž.

Industry 3: Cloud and Distributed Databases  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1506



CockroachDB: The Resilient Geo-Distributed SQL Database SIGMOD’20, June 14ś19, 2020, Portland, OR, USA

REFERENCES
[1] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek,

Vishesh Khemani, Stefan Fulger, Pan Gu, Lakshminath Bhuvanagiri,

Jason Hunter, et al. 2016. Slicer: Auto-sharding for datacenter appli-

cations. In 12th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 16). 739ś753.

[2] Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, AlecWol-

man, and Habinder Bhogan. 2010. Volley: Automated data placement

for geo-distributed cloud services. (2010).

[3] Amazon Aurora Multi-Master. 2019. https://aws.amazon.com/about-

aws/whats-new/2019/08/amazon-aurora-multimaster-now-

generally-available/.

[4] David F Bacon, Nathan Bales, Nico Bruno, Brian F Cooper, Adam

Dickinson, Andrew Fikes, Campbell Fraser, Andrey Gubarev, Milind

Joshi, Eugene Kogan, et al. 2017. Spanner: Becoming a SQL system. In

Proceedings of the 2017 ACM International Conference on Management

of Data. 331ś343.

[5] Peter Bailis, Ali Ghodsi, Joseph M Hellerstein, and Ion Stoica. 2013.

Bolt-on causal consistency. In Proceedings of the 2013 ACM SIGMOD

International Conference on Management of Data. ACM, 761ś772.

[6] Itzik Ben-Gan. 2012. Microsoft SQL Server 2012 T-SQL Fundamentals.

Pearson Education.

[7] Peter Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100:

Hyper-Pipelining Query Execution. Cidr 5 (2005), 225ś237.

[8] Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. 2008. Serializable Iso-

lation for Snapshot Databases. In Proceedings of the 2008 ACM SIGMOD

International Conference on Management of Data (SIGMOD ’08). ACM,

NewYork, NY, USA, 729ś738. https://doi.org/10.1145/1376616.1376690

[9] Aleksey Charapko, Ailidani Ailijiang, and Murat Demirbas. 2018.

Adapting to Access Locality via Live Data Migration in Globally Dis-

tributed Datastores. In 2018 IEEE International Conference on Big Data

(Big Data). IEEE, 3321ś3330.

[10] Christos Chrysafis, Ben Collins, Scott Dugas, Jay Dunkelberger,

Moussa Ehsan, Scott Gray, Alec Grieser, Ori Herrnstadt, Kfir Lev-Ari,

Tao Lin, et al. 2019. FoundationDB Record Layer: AMulti-Tenant Struc-

tured Datastore. In Proceedings of the 2019 International Conference on

Management of Data. 1787ś1802.

[11] CockroachCloud. [n.d.]. https://www.cockroachlabs.com/product/

cockroachcloud.

[12] CockroachDB. [n.d.]. https://github.com/cockroachdb/cockroach.

[13] CockroachDB. 2019. Business Source License. https://github.com/

cockroachdb/cockroach/tree/v19.2.0/licenses.

[14] CockroachDB. 2019. TLA+ Verification of Parallel Commits.

https://github.com/cockroachdb/cockroach/tree/master/docs/tla-

plus/ParallelCommits.

[15] Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Sil-

berstein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel

Weaver, and Ramana Yerneni. 2008. PNUTS: Yahoo!’s hosted data

serving platform. Proceedings of the VLDB Endowment 1, 2 (2008),

1277ś1288.

[16] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. 2010. Benchmarking cloud serving systems with

YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.

143ś154.

[17] James C. Corbett, Jeffrey Dean,Michael Epstein, Andrew Fikes, Christo-

pher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christo-

pher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak,

Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David

Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Ya-

sushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and

DaleWoodford. 2012. Spanner: Google’s Globally-distributed Database.

In Proceedings of the 10th USENIX Conference on Operating Systems De-

sign and Implementation (OSDI’12). USENIX Association, Berkeley, CA,

USA, 251ś264. http://dl.acm.org/citation.cfm?id=2387880.2387905

[18] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2010. G-store:

a scalable data store for transactional multi key access in the cloud.

In Proceedings of the 1st ACM Symposium on Cloud Computing. ACM,

163ś174.

[19] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan

Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-

manian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: amazon’s

highly available key-value store. In ACM SIGOPS operating systems

review, Vol. 41. ACM, 205ś220.

[20] Murat Demirbas, Marcelo Leone, Bharadwaj Avva, Deepak Madeppa,

and Sandeep Kulkarni. 2014. Logical physical clocks and consistent

snapshots in globally distributed databases. (2014).

[21] Hua Fan andWojciech Golab. 2019. Ocean vista: gossip-based visibility

control for speedy geo-distributed transactions. Proceedings of the

VLDB Endowment 12, 11 (2019), 1471ś1484.

[22] FaunaDB. [n.d.]. https://fauna.com/.

[23] Steven Feuerstein and Bill Pribyl. 2005. Oracle pl/sql Programming.

ł O’Reilly Media, Inc.ž.

[24] FoundationDB. [n.d.]. https://www.foundationdb.org.

[25] Google Cloud. 2020. Machine Types. https://cloud.google.com/

compute/docs/machine-types.

[26] Goetz Graefe. 1994. Volcano/spl minus/an extensible and parallel

query evaluation system. IEEE Transactions on Knowledge and Data

Engineering 6, 1 (1994), 120ś135.

[27] Goetz Graefe. 1995. The cascades framework for query optimization.

IEEE Data Eng. Bull. 18, 3 (1995), 19ś29.

[28] Rachid Guerraoui and Jingjing Wang. 2017. How fast can a distributed

transaction commit?. In Proceedings of the 36th ACM SIGMOD-SIGACT-

SIGAI Symposium on Principles of Database Systems. ACM, 107ś122.

[29] Tim Hall. [n.d.]. https://oracle-base.com/articles/9i/index-skip-

scanning.

[30] Maurice P Herlihy and Jeannette M Wing. 1990. Linearizability: A

correctness condition for concurrent objects. ACM Transactions on

Programming Languages and Systems (TOPLAS) 12, 3 (1990), 463ś492.

[31] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo,

Alexander Rasin, Stanley Zdonik, Evan PC Jones, Samuel Madden,

Michael Stonebraker, Yang Zhang, et al. 2008. H-store: a high-

performance, distributed main memory transaction processing system.

Proceedings of the VLDB Endowment 1, 2 (2008), 1496ś1499.

[32] Rusty Klophaus. 2010. Riak core: Building distributed applications

without shared state. In ACM SIGPLAN Commercial Users of Functional

Programming. ACM, 14.

[33] Alexey Kopytov. 2012. SysBench manual. http://imysql.com/wp-

content/uploads/2014/10/sysbench-manual.pdf. MySQL AB (2012).

[34] Tim Kraska, Gene Pang, Michael J Franklin, Samuel Madden, and Alan

Fekete. 2013. MDCC: Multi-data center consistency. In Proceedings of

the 8th ACM European Conference on Computer Systems. ACM, 113ś

126.

[35] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decen-

tralized structured storage system. ACM SIGOPS Operating Systems

Review 44, 2 (2010), 35ś40.

[36] Leslie Lamport. [n.d.]. The TLA+ Home Page. http://lamport.

azurewebsites.net/tla/tla.html

[37] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a

distributed system. Commun. ACM 21, 7 (1978), 558ś565.

[38] Leslie Lamport. 1994. The temporal logic of actions. ACM Transactions

on Programming Languages and Systems (TOPLAS) 16, 3 (1994), 872ś

923.

Industry 3: Cloud and Distributed Databases  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1507



SIGMOD’20, June 14ś19, 2020, Portland, OR, USA R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger et al.

[39] Qian Lin, Pengfei Chang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan,

and Zhengkui Wang. 2016. Towards a non-2pc transaction manage-

ment in distributed database systems. In Proceedings of the 2016 Inter-

national Conference on Management of Data. ACM, 1659ś1674.

[40] Guoxin Liu and Haiying Shen. 2017. Minimum-cost cloud storage

service across multiple cloud providers. IEEE/ACM Transactions on

Networking (TON) 25, 4 (2017), 2498ś2513.

[41] Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant

Agrawal, and Amr El Abbadi. 2013. Low-latency multi-datacenter

databases using replicated commit. Proceedings of the VLDB Endow-

ment 6, 9 (2013), 661ś672.

[42] Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. 2018. Dpaxos:

Managing data closer to users for low-latency and mobile applications.

In Proceedings of the 2018 International Conference on Management of

Data. ACM, 1221ś1236.

[43] Faisal Nawab, Vaibhav Arora, Divyakant Agrawal, and Amr El Abbadi.

2015. Minimizing commit latency of transactions in geo-replicated

data stores. In Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data. ACM, 1279ś1294.

[44] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-

man Lee, Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek,

Paul Saab, et al. 2013. Scaling memcache at facebook. In Presented as

part of the 10th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 13). 385ś398.

[45] NuoDB. [n.d.]. https://www.nuodb.com.

[46] Diego Ongaro and John Ousterhout. 2014. In search of an understand-

able consensus algorithm. In 2014 USENIX Annual Technical Conference

(USENIX ATC 14). 305ś319.

[47] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin

Ma, Prashanth Menon, Todd C Mowry, Matthew Perron, Ian Quah,

et al. 2017. Self-Driving Database Management Systems.. In CIDR,

Vol. 4. 1.

[48] Fan Ping, Jeong-HyonHwang, XiaoHu Li, ChrisMcConnell, and Rohini

Vabbalareddy. 2011. Wide area placement of data replicas for fast and

highly available data access. In Proceedings of the fourth international

workshop on Data-intensive distributed computing. ACM, 1ś8.

[49] Dan RK Ports and Kevin Grittner. 2012. Serializable snapshot isolation

in PostgreSQL. Proceedings of the VLDB Endowment 5, 12 (2012), 1850ś

1861.

[50] Raphael ‘kena’ Poss. 2018. The łPostgreSQLž in CockroachDB ÐWhy?

(May 2018). https://dr-knz.net/postgresql-cockroachdb-why.html

[51] PostgreSQL. [n.d.]. https://www.postgresql.org/.

[52] Ian Rae, Eric Rollins, Jeff Shute, Sukhdeep Sodhi, and Radek Vingralek.

2013. Online, Asynchronous Schema Change in F1. VLDB 6, 11 (2013),

1045ś1056.

[53] Kun Ren, Dennis Li, and Daniel J Abadi. 2019. SLOG: serializable,

low-latency, geo-replicated transactions. Proceedings of the VLDB

Endowment 12, 11 (2019), 1747ś1761.

[54] RocksDB. [n.d.]. https://rocksdb.org/.

[55] Debanjan Saha, Gurmit Singh Ghatore, and Brandon O’Brien.

2017. DAT202: Getting started with Amazon Aurora.

https://www.slideshare.net/AmazonWebServices/dat202getting-

started-with-amazon-aurora/14. AWS re:Invent.

[56] Marco Serafini, Essam Mansour, Ashraf Aboulnaga, Kenneth Salem,

Taha Rafiq, and Umar Farooq Minhas. 2014. Accordion: Elastic scala-

bility for database systems supporting distributed transactions. Pro-

ceedings of the VLDB Endowment 7, 12 (2014), 1035ś1046.

[57] Marco Serafini, Rebecca Taft, Aaron J Elmore, Andrew Pavlo, Ashraf

Aboulnaga, andMichael Stonebraker. 2016. Clay: Fine-grained adaptive

partitioning for general database schemas. Proceedings of the VLDB

Endowment 10, 4 (2016), 445ś456.

[58] Artyom Sharov, Alexander Shraer, Arif Merchant, and Murray Stokely.

2015. Take me to your leader!: online optimization of distributed

storage configurations. Proceedings of the VLDB Endowment 8, 12

(2015), 1490ś1501.

[59] Alexander Shraer, Benjamin Reed, Dahlia Malkhi, and Flavio P Jun-

queira. 2012. Dynamic Reconfiguration of Primary/Backup Clusters.

In Presented as part of the 2012 USENIX Annual Technical Conference

(USENIX ATC 12). 425ś437.

[60] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whip-

key, Eric Rollins, Mircea Oancea, Kyle Littlefield, David Menestrina,

Stephan Ellner, et al. 2013. F1: A distributed SQL database that scales.

Proceedings of the VLDB Endowment 6, 11 (2013), 1068ś1079.

[61] Kristina Spirovska, Diego Didona, and Willy Zwaenepoel. 2018. Wren:

Nonblocking reads in a partitioned transactional causally consistent

data store. In 2018 48th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN). IEEE, 1ś12.

[62] Michael Stonebraker. 1986. The case for shared nothing. IEEE Database

Eng. Bull. 9, 1 (1986), 4ś9.

[63] Michael Stonebraker and Ariel Weisberg. 2013. The VoltDB Main

Memory DBMS. IEEE Data Eng. Bull. 36, 2 (2013), 21ś27.

[64] Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Feinberg, Chinmay Soman,

and Sam Shah. 2012. Serving large-scale batch computed data with

project voldemort. In Proceedings of the 10th USENIX conference on File

and Storage Technologies. USENIX Association, 18ś18.

[65] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J

Elmore, Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker.

2014. E-store: Fine-grained elastic partitioning for distributed trans-

action processing systems. Proceedings of the VLDB Endowment 8, 3

(2014), 245ś256.

[66] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren,

Philip Shao, and Daniel J Abadi. 2012. Calvin: fast distributed trans-

actions for partitioned database systems. In Proceedings of the 2012

ACM SIGMOD International Conference on Management of Data. ACM,

1ś12.

[67] TiDB. [n.d.]. https://pingcap.com/en/.

[68] TPC-C. [n.d.]. http://www.tpc.org/tpcc/.

[69] TPC-H. [n.d.]. http://www.tpc.org/tpch/.

[70] Benjamin Treynor Sloss. 2019. An update on Sunday’s service dis-

ruption. https://cloud.google.com/blog/topics/inside-google-cloud/an-

update-on-sundays-service-disruption.

[71] Misha Tyulenev, Andy Schwerin, Asya Kamsky, Randolph Tan, Alyson

Cabral, and JackMulrow. 2019. Implementation of Cluster-wide Logical

Clock and Causal Consistency in MongoDB. In Proceedings of the 2019

International Conference on Management of Data. ACM, 636ś650.

[72] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmade-

sam, Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Mau-

rice, Tengiz Kharatishvili, and Xiaofeng Bao. 2017. Amazon aurora:

Design considerations for high throughput cloud-native relational

databases. In Proceedings of the 2017 ACM International Conference on

Management of Data. ACM, 1041ś1052.

[73] Todd Warszawski and Peter Bailis. 2017. ACIDRain: Concurrency-

related attacks on database-backed web applications. In Proceedings of

the 2017 ACM International Conference on Management of Data. ACM,

5ś20.

[74] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and

Harsha V Madhyastha. 2013. Spanstore: Cost-effective geo-replicated

storage spanning multiple cloud services. In Proceedings of the Twenty-

Fourth ACM Symposium on Operating Systems Principles. ACM, 292ś

308.

[75] Xinan Yan, Linguan Yang, Hongbo Zhang, Xiayue Charles Lin, Bernard

Wong, Kenneth Salem, and Tim Brecht. 2018. Carousel: low-latency

transaction processing for globally-distributed data. In Proceedings

Industry 3: Cloud and Distributed Databases  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1508



CockroachDB: The Resilient Geo-Distributed SQL Database SIGMOD’20, June 14ś19, 2020, Portland, OR, USA

of the 2018 International Conference on Management of Data. ACM,

231ś243.

[76] YCSB. [n.d.]. https://ycsb.site.

[77] Victor Zakhary, Faisal Nawab, Divy Agrawal, and Amr El Abbadi.

2018. Global-Scale Placement of Transactional Data Stores.. In EDBT.

385ś396.

[78] Irene Zhang, Naveen Kr Sharma, Adriana Szekeres, Arvind Krishna-

murthy, and Dan RK Ports. 2018. Building consistent transactions

with inconsistent replication. ACM Transactions on Computer Systems

(TOCS) 35, 4 (2018), 12.

[79] Tao Zhu, Zhuoyue Zhao, Feifei Li, Weining Qian, Aoying Zhou, Dong

Xie, Ryan Stutsman, Haining Li, and Huiqi Hu. 2018. Solar: towards a

shared-everything database on distributed log-structured storage. In

2018 USENIX Annual Technical Conference (USENIX ATC 18). 795ś807.

Industry 3: Cloud and Distributed Databases  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1509


	Abstract
	1 Introduction
	2 System Overview
	2.1 Architecture of CockroachDB
	2.2 Fault Tolerance and High Availability
	2.3 Data Placement Policies

	3 Transactions
	3.1 Overview
	3.2 Atomicity Guarantees
	3.3 Concurrency Control
	3.4 Read Refreshes
	3.5 Follower Reads

	4 Clock Synchronization
	4.1 Hybrid-Logical Clocks
	4.2 Uncertainty Intervals
	4.3 Behavior under Clock Skew

	5 SQL
	5.1 SQL Data Model
	5.2 Query Optimizer
	5.3 Query Planning and Execution
	5.4 Schema Changes

	6 Evaluation
	6.1 Scalability of CockroachDB
	6.2 Multi-region Availability and Performance
	6.3 Comparison with Spanner
	6.4 Usage Case Studies

	7 Lessons Learned
	7.1 Raft Made Live
	7.2 Removal of Snapshot Isolation
	7.3 Postgres Compatibility
	7.4 Pitfalls of Version Upgrades
	7.5 Follow the Workload

	8 Related Work
	9 Conclusion and Future Outlook
	References



