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Abstract

We present a new system, KCoFI, that is the first we
know of to provide complete Control-Flow Integrity protection
for commodity operating systems without using heavyweight
complete memory safety. Unlike previous systems, KCoFI
protects commodity operating systems from classical control-
flow hijack attacks, return-to-user attacks, and code segment
modification attacks. We formally verify a subset of KCoFI’s
design by modeling several features in small-step semantics
and providing a partial proof that the semantics maintain
control-flow integrity. The model and proof account for oper-
ations such as page table management, trap handlers, context
switching, and signal delivery. Our evaluation shows that
KCoFI prevents all the gadgets found by an open-source
Return Oriented Programming (ROP) gadget-finding tool in the
FreeBSD kernel from being used; it also reduces the number
of indirect control-flow targets by 98.18%. Our evaluation also
shows that the performance impact of KCoFI on web server
bandwidth is negligible while file transfer bandwidth using
OpenSSH is reduced by an average of 13%, and at worst
27%, across a wide range of file sizes. PostMark, an extremely
file-system intensive benchmark, shows 2x overhead. Where
comparable numbers are available, the overheads of KCoFI
are far lower than heavyweight memory-safety techniques.

I. INTRODUCTION

Despite much research, memory safety attacks are still a
scourge for C/C++ programmers. Worse yet, most commodity
operating systems are written in C/C++ and are therefore
susceptible to memory safety attacks. As the operating system
(OS) is part of the Trusted Computing Base (TCB) in nearly all
commodity systems, a vulnerability in the OS can undermine
the security of an entire system.

Many memory safety attacks work by diverting a pro-
gram’s control flow to instructions of the attackers choosing;
these instructions may be injected by the attacker [1] or
may already exist within the program [2], [3]. Control-flow
integrity (CFI) is a family of security policies that thwart such
attacks. Traditional CFI requires that all computed branches
(e.g., returns from functions and indirect function calls) jump
to virtual addresses that are designated as correct via static
analysis [4]. Additional restrictions to CFI [5], [6] require that
the instructions do not change.

Enforcing CFI on commodity operating system kernel
code could provide protection against control hijack attacks

that is comprehensive, efficient, and straightforward to im-
plement. However, operating systems pose three challenges
for existing CFI techniques. First, not all targets of indirect
control transfers can be determined statically from the kernel
code. Interrupts can occur at any instruction boundary, so the
kernel must be able to transfer control to any interrupted
instruction on a return from interrupt. Second, operating
systems operations affect control flow in complicated ways.
Signal handler dispatch, for example, modifies the program
counter in interrupted program state saved in memory [7], [8],
and efficient user-kernel memory copying functions modify
interrupted kernel state [7] to recover from page protection
faults. Third, operating systems have access to privileged
hardware that invalidate assumptions commonly made by CFI
techniques. As an example, some CFI systems [4], [9] assume
that the code segment is non-writable. Errant DMA and MMU
configurations can invalidate that assumption [5], [6].

Most solutions for enforcing CFI [4], [10], [9] do not
protect commodity operating system code. The few that do
protect system-level code have serious limitations: Hyper-
Safe [6] only protects a hypervisor and does not provide
control-flow integrity for operations found in operating systems
(e.g., signal handler dispatch); it also does not protect against
return to user (ret2usr) attacks [11] that corrupt the program
counter saved on interrupts, traps, and system calls to execute
code belonging to less-privileged software. The kGuard [11]
system, designed to thwart ret2usr attacks, enforces a very
weak CFI variant that only ensures that control-flow is directed
at virtual addresses within the kernel; some of its protection is
probabilistic, and it does not handle attacks that use the MMU
to change the instructions within the code segment. Secure
Virtual Architecture (SVA) [12], [5] provides comprehensive
protection against control hijacking attacks, but it does so with
heavyweight memory-safety techniques that have relatively
high overheads even after being optimized by techniques using
sophisticated whole-program pointer analysis [13].

Furthermore, only the original CFI system [4] formally
proves that it enforces control-flow integrity, and it does not
model features such as virtual memory, trap handlers, context
switching, and signal delivery found in modern operating sys-
tems. Having an approach for enforcing control-flow integrity
on these operations that has been formally verified would
increase confidence that the approach works correctly.

We have built a system named KCoFI (Kernel Control Flow
Integrity, pronounced “coffee”) that aims to provide compre-
hensive, efficient, and simple protection against control flow
attacks for a complete commodity operating system. KCoFI



operates between the software stack and processor. Essentially,
KCoFI uses traditional label-based protection for programmed
indirect jumps [4] but adds a thin run-time layer linked into the
OS that protects some key OS data structures like thread stacks
and monitors all low-level state manipulations performed by
the OS. Our system provides the first comprehensive control-
flow integrity enforcement for commodity OS kernels that
does not rely on slower and more sophisticated memory safety
techniques. Our protection thwarts both classical control flow
attacks as well as ret2usr attacks. To verify that our design
correctly enforces control-flow integrity, we have built a formal
model of key features of our system (including the new
protections for OS operations) using small-step semantics and
provided a partial proof that our design enforces control-flow
integrity. The proofs are encoded in the Coq proof system and
are mechanically verified by Coq.

The contributions of our system are as follows.

• We provide the first complete control-flow integrity
solution for commodity operating systems that does
not rely on sophisticated whole-program analysis or
a much stronger and more expensive security policy
like complete memory safety.

• We have built a formal model of kernel execution with
small-step semantics that supports virtual to physical
address translation, trap handling, context switching,
and signal handler dispatch. We use the model to
provide a partial proof that our design prevents CFI
violations. (We do not verify our implementation.)

• We evaluate the security of our system for the
FreeBSD 9.0 kernel on the x86-64 architecture. We
find that all the Return Oriented Programming (ROP)
gadgets found by the ROPGadget tool [14] become
unusable as branch targets. We also find that our sys-
tem reduces the average number of possible indirect
branch targets by 98.18%.

• We evaluate the performance of our system and find
that KCoFI has far lower overheads than SVA [12],
[5], the only other system which provides full control-
flow integrity to commodity OS kernels. Compared
to an unmodified kernel, KCoFI has relatively low
overheads for server benchmarks but higher overheads
for an extremely file-system intensive benchmark.

The remainder of the paper is organized as follows: Sec-
tion II describes our attack model. Section III provides an
overview of the KCoFI architecture. Section IV presents the
design of KCoFI and how it enforces control-flow integrity,
and Section V presents an overview of our formal control-
flow integrity proof. Section VI describes our implementation
while Section VII evaluates its efficacy at thwarting attacks
and Section VIII describes the performance of our system.
Section IX describes related work, Section X describes future
work, and Section XI concludes.

II. ATTACK MODEL

In our attack model, we assume that the OS is benign
but may contain vulnerabilities; we also assume that the OS
has been properly loaded without errors and is executing. Our
model allows the attacker to trick the kernel into attempting

to modify any memory location. We additionally assume that
the attacker is using such corruption to modify control-data,
including targets that are not of concern to traditional CFI
techniques, e.g., processor state (including the PC and stack
pointer) saved in memory after a context-switch; trap and
interrupt handler tables; invalid pointer values in user-kernel
copy operations; malicious MMU reconfiguration; etc. Non-
control data attacks [15] are excluded from our model.

Notice that external attackers in our model can influence
OS behavior only through system calls, I/O, and traps. For
example, dynamically loaded device drivers are assumed not
to be malicious, but may also be buggy (just like the rest of
the OS kernel), and will be protected from external attack.
We assume that the system is employing secure boot features
such as those found in AEGIS [16] or UEFI [17] to ensure
that KCoFI and the kernel are not corrupted on disk and are
the first pieces of software loaded on boot. We further assume
that the attacker does not have physical access to the machine;
hardware-based attacks are outside the scope of our model.

III. KCOFI INFRASTRUCTURE

KCoFI has several unique requirements. First, it must in-
strument commodity OS kernel code; existing CFI enforcement
mechanisms use either compiler or binary instrumentation [4],
[10], [18]. Second, KCoFI must understand how and when
OS kernel code interacts with the hardware. For example, it
must understand when the OS is modifying hardware page
tables in order to prevent errors like writeable and executable
memory. Third, KCoFI must be able to control modification of
interrupted program state in order to prevent ret2usr attacks.

The Secure Virtual Architecture (SVA) [12], [5] provides
the infrastructure that KCoFI needs. As Figure 1 shows,
SVA interposes a compiler-based virtual machine between the
hardware and the system software (such as an operating system
or hypervisor). All software, including the operating system
and/or hypervisor, is compiled to the virtual instruction set
that SVA provides. The SVA virtual machine (VM) translates
code from the virtual instruction set to the native instruction set
either ahead-of-time (by caching virtual instruction set trans-
lations) or just-in-time while the application is running [19].
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Fig. 1. SVA/KCoFI Architecture

The core SVA virtual instruction set is based on the LLVM
compiler intermediate representation (IR) [20]. This instruction
set is a RISC-like instruction set with an unlimited number of
scalar registers in SSA form, making compiler analysis more
effective and efficient than on binary code [20]. Furthermore,
programs in LLVM IR can be serialized to disk as a self-
contained object code format (called bitcode), permitting link-
time, whole-program analysis and transformation, and also



allowing such programs to be shipped in LLVM bitcode form
for analysis and transformation on the user’s machine, e.g., at
install time or run-time [20].

SVA adds a set of instructions to LLVM called SVA-OS,
which replace the inline assembly code needed in commodity
operating systems to communicate with the hardware and
to do low-level state manipulation [19], [12], [5]. SVA-OS
handles primitive operations such as context switching, signal
handler dispatch, MMU configuration, and I/O reads and
writes. Additionally, the design of the SVA-OS instructions
permits the SVA VM to control their behavior to ensure that
they do not violate any security policies that SVA enforces.

Because the operating system must interface with the
hardware via the SVA-OS instructions, it must be ported to
the SVA virtual instruction set. This is similar to porting the
operating system to a new architecture, but a relatively simple
virtual architecture, and only requires modifying the lowest-
level parts of the kernel. No reorganization of the kernel or
modifications to drivers are needed.

The SVA infrastructure enables KCoFI to enforce a CFI
policy by using the SVA compiler instrumentation capa-
bilities and using the SVA-OS instruction set to identify
and control both OS kernel/hardware interactions and OS
kernel/application interactions. KCoFI requires all OS code,
including kernel extensions, to be compiled to the virtual
instruction set but allows applications to be compiled to either
the virtual or native instruction set.

IV. DESIGN

In this section, we describe the CFI policy that KCoFI en-
forces and the hardware and compiler mechanisms it employs
to enforce the policy.

A. Control-flow Integrity Policy and Approach

KCoFI enforces context-insensitive CFI like that of Abadi
et. al. [4]: calls to functions must jump to the beginning of
some function, and returns must jump back to one of the call
sites that could have called the exiting function. The return
address is not itself protected, so it is possible for a function
to dynamically return to a call site other than the one that
called the function in that specific execution.

To enforce CFI, Abadi et. al. [4] insert special byte
sequences called labels at the targets of indirect control
transfers within the code segment. These labels must not
appear anywhere else within the instruction stream. Their
technique then inserts code before indirect jumps to check
that the address that is the target of the indirect jump contains
the appropriate label. Abadi et. al. provided a formal proof
that their technique enforces control-flow integrity if the code
segment is immutable [4].

The KCoFI VM instruments the code with the needed
labels and run-time checks when translating code from the
virtual instruction set to the processor’s native instruction set.
To avoid complicated static analysis, KCoFI does not attempt
to compute a call graph of the kernel. Instead, it simply
labels all targets of indirect control transfers with a single
label. Our design also uses a jump table optimization [18]
to reduce the number of labels and CFI checks inserted for

switch statements. While our current design effectively uses
a very conservative call graph, note that a more sophisticated
implementation that computes a more precise call graph can
be made without changing the rest of the design. Also, the
MMU protections (discussed in Section IV-C) ensure that the
code segment is not modified by errant writes.

One issue with using CFI labels is that a malicious, native
code user-space application could place CFI labels within its
own code to trick the instrumentation into thinking that its
code contains a valid kernel CFI target [11]. KCoFI solves
this problem by adapting a technique from kGuard [11]; before
checking a CFI label, it masks the upper bits of the address to
force the address to be within the kernel’s address space. This
approach allows KCoFI to safely support legacy, native code
applications that are not compiled to the virtual instruction set.

Similarly, the SVA-OS instructions described later in this
section are implemented as a run-time library that is linked
into the kernel. This run-time library is instrumented with a
disjoint set of CFI labels for its internal functions and call sites
to ensure that indirect branches in the kernel do not jump into
the middle of the implementation of an SVA-OS instruction.
In this way, the run-time checks that these library functions
perform cannot be bypassed.

B. Protecting KCoFI Memory with Software Fault Isolation

The original CFI technique of Abadi et al. [4] is stateless
in that the only data used are constant labels embedded in
the code segment of the application being protected, either as
immediate operands to checking instructions or as constant
labels at control transfer targets.1 KCoFI, however, needs to
maintain some additional state to protect privileged kernel
behaviors, which do not occur in userspace code. This state
includes hardware trap vector tables, page mapping informa-
tion, interrupted program state (as described in Section IV-F),
and other state that, if corrupted, could violate control-flow
integrity. While the MMU can protect code memory because
such memory should never be writeable, KCoFI will need to
store this state in memory that can be written by KCoFI but
not by errant operating system and application writes. KCoFI
uses lightweight instrumentation on kernel store instructions
to protect this memory: essentially a version of software-
fault isolation [21]. (An alternative would be to use MMU
protections on KCoFI data pages as well, but that would incur
additional numerous TLB flushes.)

As Figure 2 shows, our design calls for a reserved portion
of the address space called KCoFI memory which will contain
the KCoFI VM’s internal memory. KCoFI uses the MMU to
prevent user-space code from writing into KCoFI memory. To
prevent access by the kernel, KCoFI instruments all instruc-
tions in the kernel that write to memory; this instrumentation
uses simple bit-masking that moves pointers that point into
KCoFI memory into a reserved region of the address space
(marked “Reserved” in Figure 2). This reserved region can
either be left unmapped so that errant writes are detected and
reported, or it can have a single physical frame mapped to
every virtual page within the region so that errant writes are
silently ignored. Note that only stores need instrumentation;

1One variant of their design uses x86 segmentation registers to protect
application stack frames containing return addresses.



TABLE I. KCOFI MMU INSTRUCTIONS

Name Description
sva.declare.ptp (void * ptp, unsigned level) Zeroes the physical page mapped to the direct map pointer ptp and marks it

as a page table page at level level.
sva.remove.ptp (void * ptp) Checks that the physical page pointed to by direct map pointer ptp is no longer

used and marks it as a regular page.
sva.update.l1.mapping (void * ptp, unsigned trans) If ptp is a direct map pointer to an L1 page, validate that the translation trans

does not violate any security policies and store it into ptp.
sva.update.l2.mapping (void * ptp, unsigned trans) If ptp is a direct map pointer to an L2 page, validate that the translation trans

maps an L1 page and store trans into ptp.
sva.update.l3.mapping (void * ptp, unsigned trans) If ptp is a direct map pointer to an L3 page, validate that the translation trans

maps an L2 page and store trans into ptp.
sva.update.l4.mapping (void * ptp, unsigned trans) If ptp is a direct map pointer to an L4 page, validate that the translation trans

maps an L3 page and store trans into ptp.
sva.load.pagetable (void * ptp) Check that the physical page mapped to the direct map pointer ptp is an L4

page and, if so, make it the active page table.

none of the KCoFI internal data needs to be hidden from the
kernel, and, as a result, can be freely read by kernel code.
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Fig. 2. KCoFI Address Space Organization

C. MMU Restrictions

As previous work has shown [5], [6], MMU configuration
errors can lead to violations of security policies enforced
by inline reference monitors. As KCoFI’s CFI mechanism
must keep code read-only and the store instrumentation makes
assumptions about the address space layout, KCoFI must be
able to restrict how the operating system configures the MMU.

The SVA infrastructure forces hardware page table pages
to be read-only and requires the OS to use special instructions
to make changes to the page table pages [5]. KCoFI simplifies
and enhances the original SVA-OS MMU instructions; these
instructions are shown in Table I.

The KCoFI VM maintains a structure within its portion
of the address space called the direct map. The direct map
is a one-to-one mapping between virtual addresses within the
direct map and physical frames of memory. All pages in the
direct map will be read-only. The purpose of the direct map
is to provide the KCoFI VM and the OS kernel with a known
virtual address for every physical address. When the OS asks
the KCoFI VM to make page table updates, it will identify
page table pages by their direct map virtual address.

The sva.declare.ptp() instruction informs the
KCoFI VM of which frames will be used for hardware page

table pages and at which level of the page table hierarchy
these frames will be used. The KCoFI VM will only permit
pages that are not in use to be declared for use as page
table pages, and it will zero the page’s contents to ensure
that no stale virtual to physical page translations remain in
the page. When the system wishes to stop using a frame as
a page table page, it can call sva.remove.ptp(). When
called, sva.remove.ptp() verifies that the frame is no
longer referenced by any page table pages; if the check passes,
it allows the frame to be mapped read/write into the virtual
address space and used for kernel or user-space data.

The sva.update.l<n>.mapping() instructions
write a new page table entry into a page table page previously
declared using the sva.declare.ptp() instruction. The
KCoFI VM will first vet the mapping before inserting it into
the page table page at the specified offset. For example, if
the mapping should insert an L2 page table page, the checks
ensure that the physical address specified in the translation is
a page previously declared as an L2 page. The instructions
will also keep count of how many references there are to each
physical page frame.

Switching from one page table to another is done by the
sva.load.pagetable() instruction which requires that it
be given the address of a level 4 page table page.

There are two ways in which reconfiguration of the MMU
can allow the operating system to bypass the protections
provided by the compiler instrumentation. First, an errant op-
erating system may reconfigure the virtual addresses used for
KCoFI memory or the code segment so that they either permit
write access to read-only data or map new physical frames to
the virtual pages, thereby modifying their contents. Second,
an errant operating system might create new virtual page
mappings in another part of the address space to physical pages
that are mapped into KCoFI memory or the code segment.
Since the CFI and store instrumentation makes assumptions
about the location of the code segment and KCoFI memory
within the address space, the MMU instructions must ensure
that those assumptions hold. If these assumptions were to be
broken, then both the code segment and KCoFI’s internal data
structures could be modified, violating control-flow integrity.

The KCoFI MMU instructions enforce the following re-
strictions on MMU configuration in order to protect the native
code generated by the KCoFI VM:



TABLE II. KCOFI INTERRUPT CONTEXT INSTRUCTIONS

Name Description
sva.icontext.save (void) Push a copy of the most recently created Interrupt Context on to the thread’s

Saved Interrupt Stack within the KCoFI VM internal memory.
sva.icontext.load (void) Pop the most recently saved Interrupt Context from the thread’s Saved Interrupt

Context stack and use it to replace the most recently created Interrupt Context
on the Interrupt Stack.

sva.ipush.function (int (*f)(...), ...) Modify the state of the most recently created Interrupt Context so that function
f has been called with the given arguments. Used for signal handler dispatch.

sva.init.icontext (void * stackp, unsigned len, int (*f) (...), ...) Create a new Interrupt Context with its stack pointer set to stackp + len. Also
create a new thread that can be swapped on to the CPU and return its identifier;
this thread will begin execution in the function f. Used for creating new kernel
threads, application threads, and processes.

sva.reinit.icontext (int (*f) (...), void * stackp, unsigned len) Reinitialize an Interrupt Context so that it represents user-space state. On a
return from interrupt, control will be transferred to the function f, and the
stack pointer will be set to stackp.

1) No virtual addresses permitting write access can be
mapped to frames containing native code translations.

2) The OS cannot create additional translations mapping
virtual pages to native code frames.

3) Translations for virtual addresses used for the code
segment cannot be modified.

Additional restrictions prevent the operating system from
using the MMU to bypass the instrumentation on store instruc-
tions:

1) Translations for virtual addresses in KCoFI memory
cannot be created, removed, or modified.

2) Translations involving the physical frames used to
store data in KCoFI memory cannot be added, re-
moved, or modified.

D. DMA and I/O Restrictions

Memory writes issued by the CPU are not the only memory
writes that can corrupt the code segment or internal KCoFI
memory. I/O writes to memory-mapped devices and external
DMA devices can also modify memory. The KCoFI VM must
control these memory accesses also.

The KCoFI design, like the original SVA design [5], uses
an I/O MMU to prevent DMA operations from overwriting the
OS kernel’s code segment, the KCoFI memory, and frames that
have been declared as page table pages.

Protecting KCoFI memory from I/O writes is identical to
the instrumentation for memory writes; pointers are masked
before dereference to ensure that they do not point into the
KCoFI memory. Additionally, the KCoFI VM prevents recon-
figuration of the I/O MMU. KCoFI instruments I/O port writes
to prevent reconfiguration for I/O MMUs configured using I/O
port writes; memory-mapped I/O MMUs are protected using
the MMU. The KCoFI VM can therefore vet configuration
changes to the I/O MMU like it does for the MMU.

E. Thread State

The KCoFI VM provides a minimal thread abstraction
for representing the processor state. This structure is called
a thread structure and is referenced by a unique identifier.
Internally, as shown in Figure 3, a thread structure contains
the state of the thread when it was last running on the CPU

(including its program counter) and two stacks of Interrupt
Contexts (described in Section IV-F).

Interrupt	  Context	  

Interrupt	  Context	  

Interrupt	  Context	  

Interrupt	  Context	  

Interrupt	  Context	  

Interrupt	  Context	  

Interrupt Stack Saved Interrupt Stack 

Processor	  State	  

Fig. 3. KCoFI Thread Structure

Thread structures are stored within the KCoFI memory to
prevent direct modification by application or OS kernel code.
The next few subsections will describe how the thread structure
and the KCoFI instructions that manipulate them are used
to provide interrupt, thread creation, and context switching
operations that cannot violate control-flow integrity.

F. Protecting Interrupted Program State

When an interrupt, trap, or system call occurs, both the
Linux and BSD operating systems store the interrupted pro-
gram’s state on the kernel stack [7], [8]. This state includes
the return address at which execution should resume when the
OS kernel decides to return from the interrupt, trap, or system
call. Since it is stored in memory, this program counter value
is vulnerable to corruption by memory safety errors.

Unlike other targets of indirect control transfers, the return
address for a return-from-interrupt cannot be usefully deter-
mined via static analysis. Interrupts are allowed to occur at
any time; any valid instruction location, in both application
and kernel code, is permitted to be a valid return-from-interrupt
target. The memory holding the return address must therefore
be protected from corruption.

KCoFI saves the interrupted program state, called the
Interrupt Context, on the Interrupt Context stack within the



currently active thread’s thread structure within the KCoFI
memory. KCoFI then switches the stack pointer to a pre-
determined kernel stack and transfers control to the OS kernel.
Since the thread structure and stack of Interrupt Contexts are
stored in KCoFI memory, the same bit-masking instrumenta-
tion used to protect the KCoFI memory is also used to protect
the return address for interrupts, traps, and system calls.

OS kernels need to make controlled modifications to inter-
rupted program state in order to dispatch signal handlers [7],
[8], efficiently recover from page faults when copying data
between user and kernel space [7], or restart interrupted system
calls [7]. The SVA infrastructure provides instructions for
making such controlled changes [5]; KCoFI provides new
implementations of these instructions that do not rely on
tracking memory object locations and sizes. These instructions
are listed in Table II.

The sva.ipush.function() instruction modifies in-
terrupted program state to push a function call frame on to the
interrupted program’s stack; it is used for signal handler dis-
patch. Our design, like the original SVA [5], only permits this
modification to be made to an Interrupt Context representing
user-space state.

Signal handler dispatch uses sva.icontext.save()
and sva.icontext.load() to save and restore inter-
rupted program state before and after signal handler dispatch.
The Saved Interrupt Stack is used to save a copy of an
original interrupt context before the original (on the Inter-
rupt Stack) is modified to dispatch a signal. In particular,
the sva.icontext.save() instruction makes a copy of
the Interrupt Context at the top of the Interrupt Stack and
pushes this copy on to the Saved Interrupt Stack within
the thread structure. The sva.icontext.load() instruc-
tion will pop an Interrupt Context off the Saved Interrupt
Context stack and replace the top-most element on the In-
terrupt Stack with this previously saved Interrupt Context,
ensuring that the correct state is resumed on the next return
from interrupt. Unlike sva.icontext.save(), we restrict
sva.icontext.load() so that it can only load user-space
interrupted program state back into the Interrupt Context (since
signals in a commodity kernel are generally never dispatched
to interrupted kernel code, only to userspace code).

Exception handling within the kernel is done using the
LLVM invoke and unwind instructions. The invoke in-
struction is just a call instruction with an additional label
to identify an exception handler. invoke transfers control
flow to the called function; if that function (or one of its
callees) throws an exception, it uses the unwind instruction to
unwind control-flow on the stack to the most recently executed
invoke instruction [20].

The sva.iunwind instruction can modify interrupted
privileged state; it is equivalent to forcing the interrupted
program to execute an unwind instruction. This behavior
cannot cause control flow to deviate from the compiler’s
precomputed call graph and is therefore safe to use.

G. Thread Creation

When a commodity operating system creates threads, it
performs two tasks that can affect control flow. First, it

allocates and initializes a kernel stack and places data on
the new stack to contain the state that, when restored on a
return from system call, will start running the new user-space
thread [7]. Second, it creates new kernel state that will be
placed on to the processor on a context switch [7]; after the
context switch, the new state will return from the system call,
loading the new interrupted program state and returning back
to the application.

KCoFI provides the sva.init.icontext() instruc-
tion for creating new threads and processes. This instruction
first creates a new thread structure which can be swapped on
to the CPU using the sva.swap() instruction discussed in
Section IV-H. This native processor state within the new thread
structure is initialized so that it will begin execution in the
function passed to sva.init.icontext(); the supplied
function pointer is checked to ensure that it points to the
beginning of a function.

The sva.init.icontext() instruction also creates
empty Interrupt and Saved Interrupt stacks within the new
thread structure. It then creates a new Interrupt Context that
is identical to the top-most Interrupt Context in the current
thread’s Interrupt Stack; it then pushes this new Interrupt
Context on to the top of the Interrupt Stack in the new thread
structure. This new Interrupt Context is then modified to use
the stack specified in the call to sva.init.icontext().

Finally, sva.init.icontext() verifies that the spec-
ified stack does not overlap with KCoFI memory. If the
check passes, it initializes the new stack so that a return
from the specified function will return into the KCoFI VM
system call dispatching code. The configuration of the Interrupt
Context will ensure that if the function returns that control-flow
integrity is not violated. When the function returns, control
flow will return to the KCoFI VM which will attempt to return
from a system call, trap, or interrupt. If the new Interrupt
Context was cloned from the initial Interrupt Context from
the first thread executing at system boot, the Interrupt Context
will have a program counter value of zero and will therefore
fault, preventing a CFI violation. Otherwise, the new Interrupt
Context will have a valid program counter value from the
Interrupt Context from which it was duplicated, and therefore,
the return from interrupt will succeed.

H. Context Switching

Context switching requires saving the current processor
state into memory and loading new state on to the processor.
The state, including the stack pointer and program counter, are
vulnerable while residing in memory.

As Table III shows, KCoFI provides an instruction called
sva.swap() that saves the current processor state into the
thread structure within KCoFI memory and loads new state
that has been saved by a previous call to sva.swap() or
created by sva.init.icontext(). State is represented
by opaque identifiers returned by the sva.swap() and
sva.init.icontext() instructions. This prevents the
sva.swap() instruction from loading invalid program state.
By saving state inside the KCoFI VM memory, the program
counter within the saved state cannot be corrupted by memory
safety errors. The sva.swap() instruction disables interrupts



TABLE III. KCOFI CONTEXT SWITCHING INSTRUCTIONS

Name Description
sva.swap (unsigned newID, unsigned * oldID) Save the current processor native state and store an identifier representing it into oldID

and then load the state represented by newID.

TABLE IV. KCOFI NATIVE CODE TRANSLATION INSTRUCTIONS

Name Description
sva.translate (void * buffer, char * funcname, bool kmode) Translate the SVA bitcode starting at buffer into native code. If kmode is

true, then native code is generated for use in the processor’s privileged mode.
Otherwise, native code will be generated for use in the processor’s unprivileged
mode. The address to the function funcname will be returned.

sva.disable.privcode (void) Disable further translation of SVA bitcode for use as native code in the
processor’s privileged state.

while it is executing, so that it cannot be interrupted and will
never load inconsistent state.

The original SVA provides a similar instruction called
sva.swap.integer() [5]. The primary difference be-
tween the SVA instruction and the KCoFI version is that
KCoFI does not split the native processor state into individual
components; it saves integer registers, floating point registers,
and vector registers. While not necessary for control-flow in-
tegrity, it does ensure that the correct floating point and vector
state is restored on context switching, providing applications
with a more secure context switch.

I. Code Translation

Any OS code (e.g., the core kernel or a driver) to be loaded
for execution must start out in SVA bitcode form, whereas a
user program can be SVA bitcode or native code. When the
OS needs to load and execute any piece of software, it first
passes the code to the sva.translate intrinsic shown in
Table IV. The intrinsic takes a Boolean argument indicating
whether the code should be translated for use in user-space or
kernel-space mode. If this flag is true, the intrinsic verifies that
the code is in SVA bitcode form. If the code is SVA bitcode,
sva.translate will translate the bitcode into native code
and cache it offline for future use. sva.translate returns
a pointer to the native code of function funcname.

If the function pointer points to kernel code, the ker-
nel can call the function directly; this permits the use of
dynamically loaded kernel modules. If the function pointer
points to user-mode code, then the kernel must use the
sva.reinit.icontext() instruction to set up a user-
space Interrupt Context that will begin execution of the ap-
plication code when the Interrupt Context is loaded on to the
processor on the next return from interrupt. These mechanisms
provide a way of securely implementing the exec() family
of system calls.

While KCoFI already prevents traditional native code in-
jection (because the KCoFI VM prevents bad control-transfers
and disallows executable and writable memory), it must also
prevent virtual code injection attacks. A virtual code injection
attack uses a memory safety error to modify some SVA bitcode
before it is passed to the sva.translate() intrinsic to
trick the kernel into adding new, arbitrary code into the kernel.

To prevent such an attack, our design provides the
sva.disable.privcode() instruction, which turns off

code generation for the kernel. This will allow the kernel to
dynamically load bitcode files for drivers and extend its native
code section during boot but prevent further driver loading after
boot. A kernel that loads all of its drivers during boot would
use this instruction immediately before executing the first user
process to limit the time at which it would be vulnerable to
virtual code injection attacks. (Note that the OS feature to hot-
swap devices that require loading new device drivers might be
precluded by this design.)

J. Installing Interrupt and System Call Handlers

Operating systems designate functions that should be called
when interrupts, traps, and system calls occur. Like SVA [5],
KCoFI provides instructions that allow the OS kernel to specify
a function to handle a given interrupt, trap, or system call.
These instructions first check that the specified address is
within the kernel’s virtual address space and has a CFI label.
If the function address passes these checks, the instruction
records the function address in a table that maps interrupt
vector/system call numbers to interrupt/system call handling
functions.

The hardware’s interrupt vector table resides in KCoFI
memory and directs interrupts into KCoFI’s own interrupt and
system call handling code. This code saves the interrupted
program state as described in Section IV-F and then passes
control to the function that the kernel designated.

V. FORMAL MODEL AND PROOFS

In order to demonstrate that key features of our design are
correct, we built a model of the KCoFI virtual machine in the
Coq proof assistant [22] and provide a partial proof that our
design enforces control-flow integrity. The model and proofs
comprise 2,008 non-comment lines of Coq code. Our proofs
are checked mechanically by Coq.

As we are primarily interested in showing that our design
in Section IV is correct, we model a simplified version of
the KCoFI VM. While our model is simpler than and not
proven sound with respect to the full implementation, it models
key features for which formal reasoning about control-flow
integrity has not previously been done; these features include
virtual to physical address translation, trap entry and return,
context switching, and signal handler dispatch.



TABLE V. SUMMARY OF FORMAL MODEL SUPPORT FUNCTIONS

Function Description
valid (v, pc, istack, sistack) → v
swapOn (v, n, istack, sistack) × pc → (true, pc, istack, sistack)
swapOff (v, pc, istack, sistack) → (false, 0, istack, sistack)
ipush (v, pc, istack, sistack) × ic → (v, pc, ic :: istack, sistack)
ipop (v, pc, ic :: istack, sistack) → (v, pc, istack, sistack)
itop (v, pc, ic :: istack, sistack) → ic
saveIC (v, pc, ic :: istack, sistack) → (v, pc, ic :: istack, ic :: sistack)
loadIC (v, pc, ic1 :: istack, ic2 :: sistack) → (v, pc, ic2 :: istack, sistack)
getIPC (R, pc) → pc
getIReg (R, pc) → R

Instructions ::= loadi n
| load n
| store n
| add n
| sub n
| map n tlb
| jmp
| jeq n
| jneg n
| trap
| iret
| svaSwap
| svaRegisterTrap
| svaInitIContext f
| svaSaveIContext
| svaLoadIContext
| svaPushFunction n

Fig. 4. Instructions in KCoFI Model. Most instructions take the single
register, R, as an implicit operand.

In this section, we describe our model of the KCoFI virtual
machine, our formal definition of control-flow integrity for
operating system code, and our control-flow integrity proofs.

A. KCoFI Virtual Machine Model

Our machine model is a simplified version of the KCoFI
virtual machine with the instruction set shown in Figure 4.
To simplify the language and its semantics, we opted to use a
simple assembly language instruction set for basic computation
instead of the SSA-based SVA instruction set. Operations such
as context switching and MMU configuration are performed
using instructions similar to those described in Section IV.
Our model does not include all the KCoFI features and does
not model user-space code. However, it does include an MMU,
traps, context switching, and the ability to modify and restore
Interrupt Contexts as described in Section IV-F (which is used
to support signal handler dispatch).

The physical hardware is modeled as a tuple called the
configuration that represents the current machine state. The
configuration contains:

• the value of a single hardware register R

• a program counter PC

• a memory (or store) σ that maps physical addresses
to values

• a software TLB µ that maps virtual addresses to TLB
entries. A TLB entry is a tuple containing a physical
address and three booleans that represent read, write,
and execute permission to the physical address. The
function ρ returns the physical address within a TLB
entry while the functions RD(), WR(), and EX() return
true if the TLB entry permits read, write, and execute
access, respectively. Unlike real hardware, our model’s
MMU maps virtual to physical addresses at byte
granularity.

• a set of virtual addresses CFG to which branches and
traps may transfer control flow. All new threads must
begin execution at a virtual address within CFG.

• a pair (cs, ce) marking the first and last physical
address of the kernel’s code segment

• a current thread identifier T

• a new thread identifier NT

• a function τ that maps a thread identifier to a thread.
A thread is a tuple (v, pc, istack, sistack) in which
v is a boolean that indicates whether a thread can
be context switched on to the CPU and pc is the
program counter at which execution should resume
when the thread is loaded on to the CPU. The istack
is the Interrupt Context stack in Figure 3 used when
traps and returns from traps occur. The sistack is the
Saved Interrupt Stack in Figure 3 and stores Interrupt
Contexts that are saved by svaSaveIContext.

• a virtual address T H that is the address of the trap
handler function

Since the configuration is large, we will replace one or
more elements with an ellipsis (i.e., ...) as necessary to keep
the text concise.

An Interrupt Context is a tuple that represents a subset of
the configuration. It contains a copy of the machine’s single
register and the program counter. Interrupt Contexts are stored
in stacks with standard push/pop semantics. The special value
nil represents an empty stack; attempting to pop or read the
top value of an empty stack results in an Interrupt Context
with zero values.

There are several support functions, summarized in Ta-
ble V, that help make our semantics easier to read. The valid
function takes a thread T and returns the value of its boolean
flag. The swapOn function takes a thread T and an integer and



returns an identical thread with its boolean flag set to true and
its program counter set to the specified integer. Conversely,
the swapOff function takes a thread and returns a thread that
is identical except for its boolean being set to false and its
program counter being set to zero. The ipush function takes
a thread and an Interrupt Context and returns a thread with
the Interrupt Context pushed on to the istack member of the
thread tuple. The ipop function is similar but pops the top-
most Interrupt Context off the thread’s istack. The saveIC
function takes a thread and returns an identical thread in which
the top-most element of the istack member is pushed on
to the sistack member. The loadIC function pops the top-
most Interrupt Context from the sistack member and uses that
value to replace the top-most member of the istack member.
The itop function takes a thread and returns the top-most
Interrupt Context on its istack. Finally, the getIPC and getIReg
functions take an Interrupt Context and return the program
counter and register value stored within the Interrupt Context,
respectively.

One feature of our configuration is that the KCoFI VM’s in-
ternal data structures are not stored in memory; they are instead
part of the configuration and can therefore not be modified by
the store instruction. An advantage of this approach is that
our proofs demonstrate that CFI is enforced regardless of the
mechanism employed to protect these data structures (i.e., it
shows that if these data structures are protected, then the proof
holds). The disadvantage of this approach is that it does not
prove that our sandoxing instrumentation on stores is designed
correctly. However, given the simplicity of our instrumentation,
we believe that having a simpler, more general proof is the
better tradeoff.

B. Instruction Set and Semantics

The instruction set is shown in Figure 4. The loadi
instruction loads the constant specified as its argument into the
register; the load instruction loads the value in the virtual
address given as its argument into the register. The store
instruction stores the value in the register to the specified
virtual memory address. The add (sub) instruction adds
(subtracts) a constant with the contents of the register and
stores the result in the register. The map instruction modifies
a virtual to physical address mapping in the software-managed
TLB. The jmp instruction unconditionally transfers control to
the address in the register while the jeq and jneg instructions
transfer control to the specified address if the register is equal
to zero or negative, respectively.

A subset of the KCoFI instructions are also included in
the instruction set. Some of the instructions differ from their
KCoFI implementations because our formal model does not
have an implicit stack whereas the KCoFI instruction set
does. Our model also has trap and iret instructions for
generating traps and returning from trap handlers.

The semantic rules for each instruction are specified as a
state transition system. The transition relation c1 ⇒ c2 denotes
that the execution of an instruction can move the state of the
system from configuration c1 to configuration c2.

Figure 5 shows the semantic rules for each instruction.
Each rule has a brief name describing its purpose, the con-

ditions under which the rule can be used, and then the actual
transition relation.

Each rule essentially fetches an instruction at the address of
the program counter, checks for safety conditions (given as part
of the premise of the implication), and then generates a new
state for the machine to reflect the behavior of the instruction.

All instructions require that the program counter point to
a virtual address with execute permission. Loads and stores to
memory require read or write access, respectively. The jump
instructions always check that the destination is a valid target.
The map instruction is allowed to change a virtual to physical
page mapping if the virtual address given as an argument is
not already mapped to a location within the code segment and
it does not permit a new virtual address to map to an address
within the code segment.

C. Control-Flow Integrity Theorems

We now outline our control-flow integrity proofs for this
system. Our first two proofs ensure that each transition in the
semantics (i.e., the execution of a single instruction) maintains
control-flow integrity.

There are several invariants that must hold on a config-
uration if the transition relation is to maintain control-flow
integrity. For example, the system must not start in a state with
a writeable code segment. We therefore define five invariants
that should hold over all configurations:

Invariant 1. VC(c): For configuration c = (..., cs, ce, ...), 0
< cs ≤ ce.

Invariant 2. TNW(c): For configuration c = (µ, σ, Reg, ...,
cs, ce, ...), ∀ n : cs ≤ ρ(µ(n)) ≤ ce, ¬ WR(µ(n))

Invariant 3. TMAP1(c): For configuration c = (µ, σ, ..., cs,
ce, ...), ∀ n m : cs ≤ ρ(µ(n)) ≤ ce ∧ n 6= m, ρ(µ(n)) 6= ρ(µ(m))

Invariant 4. TH(c): For configuration c = (..., T H), T H ∈
CFG

Invariant 5. THR(c): For configuration c = (µ, σ, ..., CFG,
..., τ , ...), ∀ (v, pc, istack, sistack) ∈ τ : pc ∈ CFG ∨ σ(ρ(µ
(pc - 1))) = svaSwap

Invariant 1 states that the start of the code segment must
be non-zero and less than or equal to the end of the code
segment. Invariant 2 asserts that there are no virtual-to-physical
address mappings that permit the code segment to be written.
Invariant 3 asserts that there is at most one virtual address that
is mapped to each physical address within the code segment.
Invariant 4 ensures that the system’s trap handler is an address
that can be targeted by a branch instruction.

Invariant 5 restricts the value of the program counter in
saved thread structures. A newly created thread needs to have
an address at which to start execution; Invariant 5 restricts
this value to being an address within CFG. A thread that has
been swapped off the CPU should have a program counter
that points to the address immediately following the svaSwap
instruction. The second half of the disjunction in Invariant 5
permits this.

Control-flow integrity in our system covers two key prop-
erties. First, each instruction should transfer control to one of



LoadImm: EX(µ(PC)) ∧ σ(ρ(µ(PC))) = loadi n →
(µ, σ, R, PC, CFG, cs, ce, T , NT , τ , T H) ⇒ (µ, σ, n, PC + 1, CFG, cs, ce, T , NT , τ , T H)

Load: EX(µ(PC)) ∧ σ(ρ(µ(PC))) = load n ∧ RD(µ(n)) ∧ σ(ρ(µ(n))) = val v →
(µ, σ, R, PC, CFG, cs, ce, T , NT , τ , T H) ⇒ (µ, σ, v, PC + 1, CFG, cs, ce, T , NT , τ , T H)

Store: EX(µ(PC)) ∧ σ(ρ(µ(PC))) = store n ∧ WR(µ(n)) →
(µ, σ, R, PC, CFG, cs, ce, T , NT , τ , T H) ⇒ (µ, σ[ρ(µ(n)) ← (val R)], R, PC + 1, CFG, cs, ce, T , NT , τ , T H)

Add: EX(µ(PC)) ∧ σ(ρ(µ(PC))) = add n →
(µ, σ, R, PC, CFG, cs, ce, T , NT , τ , T H) ⇒ (µ, σ, R + n, PC + 1, CFG, cs, ce, T , NT , τ , T H)

Sub: EX(µ(PC)) ∧ σ(ρ(µ(PC))) = sub n →
(µ, σ, R, PC, CFG, cs, ce, T , NT , τ , T H) ⇒ (µ, σ, R - n, PC + 1, CFG, cs, ce, T , NT , τ , T H)

Jump: EX(µ(PC)) ∧ σ(ρ(µ(PC))) = jmp ∧ R ∈ CFG →
(µ, σ, R, PC, CFG, cs, ce, T , NT , τ , T H) ⇒ (µ, σ, R, R, CFG, cs, ce, T , NT , τ , T H)

JumpEq1: EX(µ(PC)) ∧ σ(ρ(µ(PC))) = jeq v ∧ v ∈ CFG →
(µ, σ, 0, PC, CFG, cs, ce, T , NT , τ , T H) ⇒ (µ, σ, 0, v, CFG, cs, ce, T , NT , τ , T H)

JumpEq2: EX(µ(PC)) ∧ σ(ρ(µ(PC))) = jeq v ∧ R 6= 0 →
(µ, σ, R, PC, CFG, cs, ce, T , NT , τ , T H) ⇒ (µ, σ, R, PC + 1, CFG, cs, ce, T , NT , τ , T H)

JumpNeg1: EX(µ(PC)) ∧ σ(ρ(µ(PC))) = jneg v ∧ v ∈ CFG ∧ R < 0 →
(µ, σ, R, PC, CFG, cs, ce, T , NT , τ , T H) ⇒ (µ, σ, R, v, CFG, cs, ce, T , NT , τ , T H)

JumpNeg2: EX(µ(PC)) ∧ σ(ρ(µ(PC))) = jneg v ∧ R ≥ 0 →
(µ, σ, R, PC, CFG, cs, ce, T , NT , τ , T H) ⇒ (µ, σ, R, PC + 1, CFG, cs, ce, T , NT , τ , T H)

Map: EX(µ(PC)) ∧ σ(ρ(µ(PC))) = map v tlb ∧ ¬ (cs ≤ ρ(tlb) ≤ ce) ∧ ¬ (cs ≤ ρ(µ(v)) ≤ ce) →
(µ, σ, R, PC, CFG, cs, ce, T , NT , τ , T H) ⇒ (µ[v ← tlb], σ, R, PC + 1, CFG, cs, ce, T , NT , τ , T H)

Swap: EX(µ(PC)) ∧ σ(ρ(µ(PC))) = svaSwap ∧ valid(τ (R)) →
(µ, σ, R, PC, CFG, cs, ce, T , NT , τ , T H) ⇒ (µ, σ, T , getPC(τ (R)), CFG, cs, ce, R, NT , τ [T ← swapOn(τ (T ), PC + 1)] [R ← swapOff(τ (R))], T H)

Trap: EX(µ(PC)) ∧ σ(ρ(µ(PC))) = trap →
(µ, σ, R, PC, CFG, cs, ce, T , NT , τ , T H) ⇒ (µ, σ, R, T H, CFG, cs, ce, T , NT , τ [T ← ipush(τ (T ),(R,PC + 1))], T H)

IRet: EX(µ(PC)) ∧ σ(ρ(µ(PC))) = iret →
(µ, σ, R, PC, CFG, cs, ce, T , NT , τ , T H) ⇒ (µ, σ, getIReg(itop(τ (T ))), getIPC(itop(τ (T ))), CFG, cs, ce, T , NT , τ [T ← ipop(τ (T ))], T H)

RegisterTrap: EX(µ(PC)) ∧ σ(ρ(µ(PC))) = svaRegisterTrap ∧ R ∈ CFG →
(µ, σ, R, PC, CFG, cs, ce, T , NT , τ , T H) ⇒ (µ, σ, R, PC + 1, CFG, cs, ce, T , NT , τ , R)

InitIContext: EX(µ(PC)) ∧ σ(ρ(µ(PC))) = svaInitIContext f ∧ f ∈ CFG →
(µ, σ, R, PC, CFG, cs, ce, T , NT , τ , T H) ⇒ (µ, σ, NT , PC + 1, CFG, cs, ce, T , NT + 1, τ [NT ← (true, f, itop(τ (T )) :: nil, nil)], T H)

SaveIContext: EX(µ(PC)) ∧ σ(ρ(µ(PC))) = svaSaveIContext →
(µ, σ, R, PC, CFG, cs, ce, T , NT , τ , T H) ⇒ (µ, σ, R, PC + 1, CFG, cs, ce, T , NT , τ [T ← saveIC(τ (T ))], T H)

LoadIContext: EX(µ(PC)) ∧ σ(ρ(µ(PC))) = svaLoadIContext →
(µ, σ, R, PC, CFG, cs, ce, T , NT , τ , T H) ⇒ (µ, σ, R, PC + 1, CFG, cs, ce, T , NT , τ [T ← loadIC(τ (T ))], T H)

PushIContext: EX(µ(PC)) ∧ σ(ρ(µ(PC))) = svaPushFunction a →
(µ, σ, R, PC, CFG, cs, ce, T , NT , τ , T H) ⇒ (µ, σ, R, PC + 1, CFG, cs, ce, T , NT , τ [T ← ipush(τ (T ), (a, R))], T H)

Fig. 5. KCoFI Instruction Semantics



four locations: the virtual address of the subsequent instruction,
a valid target within the pre-computed control-flow graph, an
instruction following an svaSwap instruction, or the program
counter value stored in the top-most interrupt context of the
current thread (which cannot be corrupted since it does not
reside in memory). Theorem 1 states this more formally:

Theorem 1. ∀ c1 = (µ1, σ1, ..., PC1, ..., CFG, ..., T1, ..., τ1),
c2 = (µ2, σ2, ..., PC2, ..., CFG, ..., T2, ..., τ2) : (c1 ⇒ c2)
∧ TH(c1) ∧ THR(c1) → PC2 = PC1 + 1 ∨ PC2 ∈ CFG ∨
σ2(ρ(µ2(PC2 - 1))) = svaSwap ∨ PC2 = getIPC(itop(τ1(T1)))

Second, we want to ensure that the instruction stream read
from the code segment does not change due to writes by the
store instruction or by reconfiguration of the MMU. In other
words, we want to ensure that reading from a virtual address
that maps into the code segment reads the same value after
executing an instruction as it held before execution of the
instruction. Theorem 2 states this formally as:

Theorem 2. ∀ v, c1 = (µ1, σ1, ..., cs, ce, ...), c2 =(µ2, σ2,
...) : (c1 ⇒ c2) ∧ VC(c1) ∧ TNW(c1) ∧ TMAP1(c1) ∧ cs ≤
ρ(µ1(v)) ≤ ce → σ1(ρ(µ1(v))) = σ2(ρ(µ2(v)))

We proved that both Theorem 1 and 2 hold true in the
Coq proof assistant. Intuitively, Theorem 1 is true because
all the jump instructions check the target address against the
precomputed control-flow graph while the svaSwap instruc-
tion always saves and loads the correct program value from
saved processor state. The intuition behind Theorem 2 is that
the checks on the map instruction prevent a) addresses that
are already mapped into code segment from being remapped
to different addresses, and b) new virtual-to-physical address
mapping from making parts of the code segment writable.

While proving Theorems 1 and 2 shows that the restrictions
on the instructions maintain control-flow integrity for single
instruction executions, a full control-flow integrity proof will
demonstrate that control-flow integrity is maintained on the
transitive closure of the transition relation (in other words, if
the system starts in a state satisfying the required invariants,
then control-flow integrity is maintained after executing an
arbitrary number of instructions). We therefore also need to
prove that the transition relation preserves the invariants. We
have therefore proven the following additional theorems:

Theorem 3. ∀ c1, c2: (c1 ⇒ c2) ∧ VC(c1) → VC(c2)

Theorem 4. ∀ c1, c2: (c1 ⇒ c2) ∧ TNW(c1) → TNW(c2)

Theorem 5. ∀ c1, c2: (c1 ⇒ c2) ∧ TMAP1(c1)→ TMAP1(c2)

Theorem 6. ∀ c1, c2: (c1 ⇒ c2) ∧ TH(c1) → TH(c2)

Proving that Invariant 5 holds across the transition relation
requires additional invariants to hold on the configuration.
These new invariants are:

Invariant 6. CFGT(c): For configuration c = (µ, ..., CFG, cs,
ce, ...), ∀ v: v ∈ CFG → cs ≤ ρ(µ(v)) ≤ ce.

Invariant 7. PCT(c): For configuration c = (µ, ..., PC, ..., cs,
ce, ...), cs < ρ(µ(PC)) ≤ ce.

Invariant 8. tlText(c): For configuration c = (µ, ..., CFG, cs,
ce, ..., τ , ...), ∀ (v, pc, istack, sistack) ∈ τ : cs ≤ ρ(µ(pc)) ≤
ce ∧ ((pc ∈ CFG) ∨ cs ≤ ρ(µ(pc - 1)) ≤ ce)

Invariants 6 and 7 state that the list of valid indirect branch
targets and the machine’s program counter are all virtual
addresses that are mapped to the code segment. Invariant 8
states that all swapped-off threads also have program counters
that are within the code segment; it also ensures that threads
with program counters that are not within the valid list of
indirect branch targets have their previous program counter
within the code segment (i.e., the svaSwap instruction that
swapped the thread off the CPU is also in the code segment).

Invariants 6, 7, and 8 suffice for showing that each
swapped-off thread has a valid program counter value. We
have therefore formally proven using Coq that Invariant 5 holds
across all instruction executions:

Theorem 7. ∀ c1, c2: (c1 ⇒ c2) ∧ VC(c1) ∧ TNW(c1) ∧
TMAP1(c1) ∧ PCT(c1) ∧ CFGT(c1) ∧ tlText(c1) ∧ THR(c1)
→ THR(c2)

We have proved using Coq that Invariant 6 holds across
the transition relation:

Theorem 8. ∀ c1, c2: (c1 ⇒ c2) ∧ CFGT(c1) → CFGT(c2)

Proving that Invariants 7 and 8 hold across the transition
relation and completing the proof that control-flow integrity
is maintained across the transitive closure of the transition
relation is left to future work. However, Theorems 3, 4, and 5
permit us to prove that the code segment is not modified over
the reflexive and transitive closure of the transition relation,
denoted ⇒∗. We have therefore proven the following theorem
using Coq:

Theorem 9. ∀ v, c1 = (µ1, σ1, ..., cs, ce, ...), c2 = (µ2, σ2,
...) : (c1 ⇒∗ c2) ∧ VC(c1) ∧ TNW(c1) ∧ TMAP1(c1) ∧ cs ≤
ρ(µ1(v)) ≤ ce → σ1(ρ(µ1(v))) = σ2(ρ(µ2(v)))

VI. IMPLEMENTATION

We implemented a new version of the SVA-OS instructions
and run-time for 64-bit x86 processors. The implementation
runs 64-bit code only. This new implementation reuses code
from the original 32-bit, single-core implementation [12], [5].
This new implementation only supports a single CPU system at
present, but that is mainly due to needing to find a good locking
discipline for the MMU instructions; all the other features
maintain per-CPU data structures to permit multi-processor
and multi-core functionality.

We ported FreeBSD 9.0 to the SVA-OS instruction set. We
chose FreeBSD over Linux because the Clang/LLVM compiler
can compile an unmodified FreeBSD kernel.

We used the sloccount tool [23] from the FreeBSD ports
tree to measure the size of our TCB. Excluding comments
and white space, our system contains 4,585 source lines of
code for the KCoFI run-time library linked into the kernel and
an additional 994 source lines of code added to the LLVM
compiler to implement the compiler instrumentation. In total,
our TCB is 5,579 source lines of code.

A. Instrumentation

The CFI and store instrumentation is implemented in
two separate LLVM passes. The CFI instrumentation pass



is a version of the pass written by Zeng et. al. [18] that
we updated to work on x86 64 code with LLVM 3.1. The
store instrumentation pass is an LLVM IR level pass that
instruments store and atomic instructions that modify memory;
it also instruments calls to LLVM intrinsic functions such as
llvm.memcpy.

We modified the Clang/LLVM 3.1 compiler to utilize these
instrumentation passes when compiling kernel code. To avoid
the need for whole-program analysis, we use a very conser-
vative call graph: we use one label for all call sites (i.e., the
targets of returns) and for the first address of every function.
While conservative, this callgraph allows us to measure the
performance overheads and should be sufficient for stopping
advanced control-data attacks.

Unlike previous work [18], [9], we use the sequence xchg
%rcx, %rcx ; xchg %rdx, %rdx to create a 32-bit la-
bel. We found that this sequence is both easy to implement
(since they are NOPs, these instructions do not overwrite any
register values) and much faster than a 64-bit version of the
prefetchnta sequence used in previous work [18].

B. KCoFI Instruction Implementation

The KCoFI instructions described in Section IV are imple-
mented in a run-time library that is linked into the kernel at
compile-time. The semantics for the instructions given in Sec-
tion V assume that the KCoFI instructions execute atomically.
For that reason, the run-time library implementations disable
hardware interrupts when they start execution and re-enable
them upon exit as the original SVA implementation did [5].

C. Interrupt Context Implementation

To place the Interrupt Context within the KCoFI VM
internal memory, we use the Interrupt Stack Table (IST) feature
of the x86 64 [24], as was done in Virtual Ghost [25]. This
feature causes the processor to change the stack pointer to a
specific location on traps or interrupts regardless of whether
a processor privilege mode change has occurred. The KCoFI
VM uses this feature to force the processor to save state within
KCoFI’s internal memory before switching to the real kernel
stack.

Unlike previous versions of SVA [12], [5], KCoFI saves all
native processor state on every interrupt, trap, and system call.
This includes the x86 64 general purpose registers, the x87
FPU registers, and the XMM and SSE registers. We believe
an improved implementation can save the floating point and
vector state lazily as the native FreeBSD 9.0 kernel does, but
that improvement is left to future work.

D. Unimplemented Features

Our implementation does not yet include the protections
needed for DMA. However, we believe that I/O MMU con-
figuration is rare, and therefore, the extra protections for
DMA should not add noticeable overhead. Our implementation
also lacks the ability to translate SVA bitcode (or to look
up cached translations for bitcode) at run-time. Instead, our
current implementation translates all OS components to native
code ahead-of-time, and runs only native-code applications.

For ease of implementation, we add the same CFI labels to
both kernel code and the SVA-OS run-time library. While this
deviates from the design, it does not change the performance
overheads and makes the security results more conservative
(no better and possibly worse).

VII. SECURITY EVALUATION

We performed two empirical evaluations to measure the se-
curity of our approach. Since KCoFI does not permit memory
to be both readable and executable, we focus on return-oriented
programming attacks.

Our first evaluation examines how well KCoFI removes
instructions from the set of instructions that could be used in
a return-oriented programming attack (which can work with
or without return instructions [26]). We compute a metric that
summarizes this reduction called the average indirect target
reduction (AIR) metric [10].

Since not all instructions are equally valuable to an attacker,
we performed a second evaluation that finds instruction se-
quences (called gadgets [3]) that can be used in an ROP attack
and determines whether they can still be used after KCoFI has
applied its instrumentation.

A. Average Indirect Target Reduction

Return oriented programming attacks work because of
the plethora of instructions available within a program. To
get a sense of how many instructions we removed from an
attacker’s set of usable instructions, we used Zhang and Sekar’s
AIR metric [10]; this metric computes the average number
of machine code instructions that are eliminated as possible
targets of indirect control transfers. The AIR metric quantifies
the reduction in possible attack opportunities in a way that
is independent of the specific CFI method employed, the
compiler used, and the architecture.

Equation 1 from Zhang and Sekar [10] provides the general
form for computing the AIR metric for a program. n is the
number of indirect branch instructions in the program, S is
the total number of instructions to which an indirect branch
can direct control flow before instrumentation, and |Ti| is the
number of instructions to which indirect branch i can direct
control flow after instrumentation:

1

n

n∑
j=1

1− |Tj |
S

(1)

Since all indirect branch instructions instrumented by
KCoFI can direct control-flow to the same set of addresses,
Equation 1 can be simplified into Equation 2 (with |T | being
the number of valid targets for each indirect branch):

1− |T |
S

(2)

We measured the AIR metric for the KCoFI native code
generated for the FreeBSD kernel. Our compiler identified
106,215 valid native code targets for indirect control flow
transfers (|T |) out of 5,838,904 possible targets in the kernel’s
code segment (S) before instrumentation. The native code
generated by KCoFI contains 21,635 indirect control flow
transfers (n). The average reduction of targets (AIR metric) for



these transfers is therefore 98.18%, implying that nearly all the
possible indirect control transfer targets have been eliminated
as feasible targets by KCoFI.

As a point of comparison, our AIR result is nearly as
good as the average AIR metrics for several different CFI
variants reported for the SPEC CPU 2006 benchmarks and the
namd benchmark (which range between 96% to 99.1%) [10].
Since these numbers are obtained for very different workloads
– SPEC and the FreeBSD kernel – the comparison is only
intended to show that the results are roughly similar; the
differences in the exact numbers are not meaningful.

B. ROP Gadgets

To measure the impact on return-oriented-programming
opportunities more specifically, we used the open-source ROP-
Gadget tool [14] version 4.0.4 to automatically find ROP
gadgets in both the original FreeBSD kernel compiled with
GCC and our identically configured KCoFI FreeBSD kernel.
We ran the tool on both the kernel and drivers using the default
command-line options.

ROPGadget found 48 gadgets in the original FreeBSD ker-
nel and 21 gadgets in the KCoFI FreeBSD kernel. We manually
analyzed the 21 gadgets found in the KCoFI FreeBSD kernel.
None of the gadgets follow a valid control-flow integrity label.
Therefore, none of these gadgets can be “jumped to” via an
indirect control transfer in an ROP attack.

VIII. PERFORMANCE EVALUATION

We evaluated the performance impact of KCoFI on a Dell
Precision T1650 workstation with an Intel R© CoreTM i7-3770
processor at 3.4 GHz with 8 MB of cache, 16 GB of RAM,
an integrated PCIE Gigabit Ethernet card, a 7200 RPM 6 Gb/s
SATA hard drive, and a Solid State Drive (SSD) used for the
/usr partition. For experiments requiring a network client,
we used an iMac with a 4-core hyper-threaded Intel R© CoreTM

i7 processor at 2.6 GHz with 8 GB of RAM. Our network
experiments used a dedicated Gigabit ethernet network.

Since network applications make heavy use of operating
system services, we measured the performance of the thttpd
web server and the remote secure login sshd server. These
experiments also allow us to compare the performance of
KCoFI to the original SVA system [5] which enforces more
sophisticated memory safety that implies control-flow integrity.

To measure file system performance, we used the Postmark
benchmark [27]. We used the LMBench microbenchmarks [28]
to measure the performance of individual system calls.

For each experiment, we booted the Dell machine into
single-user mode to avoid having other system processes
affect the performance of the system. Our baseline is a native
FreeBSD kernel compiled with the LLVM 3.1 compiler, with
the same compiler options and the same kernel options as the
KCoFI FreeBSD kernel.

A. Web Server Performance

We used a statically linked version of the thttpd web
server [29] to measure how much the KCoFI run-time checks

reduce the server’s bandwidth. To measure bandwidth, we used
ApacheBench [30].

For the experiments, we transferred files between 1 KB
and 2 MB in size. Using larger file sizes is not useful because
the network saturates at about 512KB file sizes. This range
of sizes also subsumes the range used in the original SVA
experiments [5]. We generated each file by collecting random
data from the /dev/random device; this ensures that the file
system cannot optimize away disk reads due to the file having
blocks containing all zeros. We configured each ApacheBench
client to make 32 simultaneous connections and to perform
10,000 requests for the file; we ran four such ApacheBench
processes in parallel for each run of the experiment to simulate
multiple clients. We ran each experiment 20 times.

Figure 6 shows the mean performance of transferring a file
of each size. The average bandwidth reduction across all file
sizes is essentially zero. This is far better performance than the
SVA system which incurs about a 25% reduction in bandwidth
due to its memory safety checks [5].
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B. Secure Shell Server Performance

In addition to a web server, we also measured the band-
width of transferring files using the OpenSSH Secure Shell
server [31]. We ran the OpenSSH server on our test machine
and used the Mac OS X OpenSSH scp client (based on
OpenSSH 5.2p1) to measure the number of bytes received per
second when transferring the file. We repeated each experiment
20 times.

Figure 7 plots the mean bandwidth for the baseline system
and KCoFI with standard deviation error bars (the standard
deviations are too small to be discernible in the diagram).
On average, the bandwidth reduction was 13% with a worst
case reduction of 27%. Transferring files between 1 KB and 8
KB showed the most overhead at 27%. Transferring files that
are 1 MB or smaller showed an average overhead of 23%;
the average is 2% for files of larger size, indicating that the
network becomes the bottleneck for larger file transfers.

The original SVA system only measured SSH bandwidth
for files that were 8 MB or larger [5]; this is beyond the point
at which the network hardware becomes the bottleneck. This
comparison, therefore, is inconclusive: it does not show any
difference between the two systems, but it does not include
cases where overheads might be expected.
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C. Microbenchmarks

In order to understand how our system affects the per-
formance of core operating system services, we used LM-
Bench [28] to measure the latency of various system calls.
(We present these before discussing Postmark because the
latter is largely explained by the LMBench measurements.)
Some test programs can be configured to run the test for
a specified number of iterations; those were configured to
use 1,000 iterations. We ran each benchmark 10 times. We
configured file I/O benchmarks to use files on the SSD. This
ensures that we’re measuring the highest relative latency that
KCoFI can add by using the fastest disk hardware available.

TABLE VI. LMBENCH RESULTS. TIME IN MICROSECONDS.

Test Native KCoFI Overhead SVA Overhead [5]
null syscall 0.091 0.22 2.50x 2.31x
open/close 2.01 4.96 2.47x 11.0x
mmap 7.11 23.4 3.30x -
page fault 31.6 35.2 1.11x -
signal handler
install

0.168 0.36 2.13x 5.74x

signal handler
delivery

1.27 1.17 0.92x 5.34x

fork + exit 62.9 222 3.50x -
fork + exec 101 318 3.10x -
select 3.05 4.76 1.60x 8.81x
pipe latency 1.94 4.01 2.10x 13.10x

TABLE VII. LMBENCH: FILES CREATIONS PER SECOND

File Size Native KCoFI Overhead
0 KB 155771 68415 2.28x
1 KB 97943 39615 2.47x
4 KB 97192 39135 2.48x
10 KB 85600 35982 2.38x

As Tables VI and VII show, our system can add consider-
able overhead to individual operations. Most of the operations
we tested showed overhead between 2x and 3.5x. The KCoFI
file creation overheads are uniformly about 2.3-2.5x for all
file sizes tested by LMbench. Although these overheads are
fairly high, most applications only experience these overheads
during kernel CPU execution, which explains why the impact
on performance observed for thttpd and sshd is far lower.

We also compared these results to similar benchmarks
from the full memory-safety version of SVA [5], shown in
the last column of Table VI. The missing numbers for SVA
are because some kernel operations were not tested in the
SVA experiments. On these microbenchmarks, KCoFI clearly
performs much better than SVA, as much as 5x in some cases.
Again, the SVA experiments used a different kernel and so
it is not meaningful to compare the detailed differences in
the numbers, but the magnitudes of the differences clearly
highlight the performance benefit of using CFI instead of full
memory safety.

D. Postmark Performance

To further examine file system performance, we ran Post-
mark [27] which mimics a mail server’s file system behavior.

TABLE VIII. POSTMARK RESULTS

Native (s) Native
StdDev

KCoFI (s) KCoFI
StdDev

Overhead

12.7 0.48 24.8 0.40 1.96x

We configured Postmark to use 500 base files with sizes
ranging from 500 bytes to 9.77 KB with 512 byte block sizes.
The read/append and create/delete biases were set to 5, and we
configured Postmark to use buffered file I/O. We ran Postmark
on the SSD since it has lower latency and less variability in
its latency than the hard disk. Each run of the experiment
performed 500,000 transactions. We ran the experiment 20
times on both the native FreeBSD kernel and the KCoFI
system. Table VIII shows the average results.

As Table VIII shows, the Postmark overheads are close to
the LMBench file creation overheads.

IX. RELATED WORK

Abadi et. al. [4] introduced the definition of control-flow
integrity and proved that their approach enforced context-
insensitive control-flow integrity. Our proof for the KCoFI
design uses a similar approach but also demonstrates how
control-flow integrity is preserved during OS operations that
can have complex, often unanalyzable, impact on control
flow, including context switching, MMU configuration, signal
handler dispatch, and interrupts.

Zhang and Sekar’s BinCFI [10] and Zhang et. al.’s CC-
FIR [32] transform binary programs to enforce CFI. Similarly,
Strato [9] modifies the LLVM compiler to instrument code
with CFI checks similar to those used by KCoFI. None of
these techniques can protect against ret2usr attacks since they
find the targets of control-flow transfers via static analysis.
KCoFI does not verify that its instrumentation is correct like
Strato does [9]. However, KCoFI can incorporate Strato’s
instrumentation verification techniques.

RockSalt [33] is a verified verifier for Google’s Native
Client [34]; the verifier ensures that Native Client x86 machine
code enforces sandboxing and control-flow integrity properties
and has been proven correct via formal proof. Native Client’s
CFI policy [34] only requires that the x86 segment registers be
left unmodified and that branches jump to aligned instructions;
its CFI policy is therefore less restrictive than KCoFI’s policy,



and it does not permit code to perform the myriad of operations
that an OS kernel must be able to perform.

The Secure Virtual Architecture [12], [5] provides strong
control-flow integrity guarantees. However, it also enforces
very strong memory safety properties and sound points-to
analysis; this required the use of whole-program pointer anal-
ysis [13] which is challenging to implement. SafeDrive [35]
also enforces memory safety on commodity OS kernel code.
However, SafeDrive requires the programmer to insert annota-
tions indicating where memory object bounds information can
be located. These annotations must be updated as the code is
modified or extended.

HyperSafe [6] enforces control-flow integrity on a hy-
pervisor. Like SVA [5], HyperSafe vets MMU translations
to protect the code segment and interrupt handler tables; it
also introduces a new method of performing indirect function
call checks. HyperSafe, however, does not protect the return
address in interrupted program state, so it does not fully
implement CFI guarantees and does not prevent ret2usr attacks.
Furthermore, HyperSafe only protects a hypervisor, which
lacks features such as signal handler delivery; KCoFI protects
an entire commodity operating system kernel.

kGuard [11] prevents ret2usr attacks by instrumenting
kernel code to ensure that indirect control flow transfers
move control flow to a kernel virtual address; it also uses
diversification to prevent attacks from bypassing its protection
and to frustrate control-flow hijack attacks. KCoFI uses similar
bit-masking as kGuard to prevent user-space native code from
forging kernel CFI labels. kGuard also uses diversification
to prevent their instrumentation from being bypassed, which
provides probabilistic protection against ROP attacks (with
relatively low overhead), whereas KCoFI provides a CFI
guaranty and ensures that the kernel’s code segment is not
modified.

Giuffrida et. al. [36] built a system that uses fine-grained
randomization of the kernel code to protect against memory
safety errors. Their system’s security guarantees are prob-
abilistic while our system’s security guarantees are always
guaranteed. Additionally, their prototype has only been applied
to Minix while ours has been applied to a heavily used, real-
world operating system (FreeBSD).

SecVisor [37] prevents unauthorized code from executing
in kernel space but does not protect loaded code once it is
executing. Returnless kernels [38] modify the compiler used
to compile the OS kernel so that the kernel’s binary code does
not contain return instructions. Such kernels may still have
gadgets that do not utilize return instructions [26].

The seL4 [39] microkernel is written in a subset of C and
both the design and implementation are proven functionally
correct, using an automated proof assistant. The proof ensures
that the code does not have memory safety errors that alter
functionality [39]. While seL4 provides stronger security guar-
antees than KCoFI, it only provides them to the microkernel
while KCoFI provides its guarantees to a commodity OS kernel
of any size. Changes to the seL4 code must be correct and
require manual updates to the correctness proof [39] while
KCoFI can automatically reapply instrumentation after kernel
changes to protect buggy OS kernel code.

Several operating systems provide control-flow integrity
by virtue of being written in a memory-safe programming
language [40], [41], [42], [43], [44]. Verve [44], the most
recent, is a kernel written in a C#-like language that sits upon
a hardware abstraction layer that has been verified to maintain
the heap properties needed for memory safety. While KCoFI
can enforce control-flow integrity, its implementation is not
verified like Verve’s hardware abstraction layer.

X. FUTURE WORK

There are several plans for future work. First, we plan
to investigate improvements to KCoFI’s speed and efficacy.
For example, using separate stacks for control-data and local
variables could both improve performance and enforce a more
restrictive context-sensitive CFI policy. We also plan to do
much more low-level tuning of the system’s performance than
we have done; there is room for extensive improvement.

Second, we plan to finish the control flow integrity proof
in Section V so that it proves that control flow integrity
is maintained across the transitive closure of the transition
relation. Furthermore, we plan to enhance the formal model to
include more features (such as user-space application support).

Third, we plan to investigate building a verified implemen-
tation of KCoFI. Similar work has been done with operating
systems written in safe languages [44]; while an ambitious
goal, doing the same for existing commodity operating systems
could help uncover implementation bugs and would increase
confidence in the system’s security.

XI. CONCLUSIONS

In this paper, we presented KCoFI: a system which pro-
vides comprehensive control flow integrity to commodity oper-
ating systems. We have shown that KCoFI provides protection
to OS kernel code similar to that found for user-space code
with better overheads than previously developed techniques
for commodity OS kernels. Essentially, KCoFI uses traditional
label-based protection for programmed indirect jumps but adds
a thin run-time layer linked into the OS that protects key OS
kernel data like interrupted program state and monitors all
low-level state manipulations performed by the OS. We have
provided a partial proof that KCoFI’s design correctly enforces
CFI, adding confidence in the correctness of our system.
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