
An Incremental Path Towards a Safer OS Kernel
Jialin Li

University ofWashington

Samantha Miller

University ofWashington

Danyang Zhuo

Duke University

Ang Chen

Rice University

Jon Howell

VMware Research

Thomas Anderson

University ofWashington

Abstract
Linux has become the de-facto operating system of our age,

but its vulnerabilities are a constant threat to service availabil-

ity, user privacy, and data integrity. While one might scrap

Linux and start over, the cost of that would be prohibitive due

to Linux’s ubiquitous deployment. In this paper, we propose

an alternative, incremental route to a safer Linux through

proper modularization and gradual replacement module by

module. We lay out the research challenges and potential

solutions for this route, and discuss the open questions ahead.

CCS Concepts
• Software and its engineering→ Software verification;
•Computer systems organization→Reliability.

Keywords
kernel safety, verified systems, reliable systems

ACMReference Format:
Jialin Li, SamanthaMiller, Danyang Zhuo, Ang Chen, Jon Howell,

and Thomas Anderson. 2021. An Incremental Path Towards a Safer

OS Kernel. InWorkshop on Hot Topics in Operating Systems (HotOS
’21), May 31–June 2, 2021, Ann Arbor, MI, USA.ACM, New York, NY,

USA, 8 pages. https://doi.org/10.1145/3458336.3465277

1 Introduction
This is a call to arms to evolve a widely used operating system

into one that is also safer and functionally correct.

Linux, through a commitment to open source and a single

code base, has become the de-facto standard operating system

of our age: the foundation of everything from smart devices

to smart phones to routers to servers.

To accommodate this increasing scope, Linux developers

have been adding over 1.5M lines of new code per year, to

a codebase that already stretches to several tens of millions

of lines. The result is not that surprising: hundreds of new

Permission tomakedigitalorhardcopiesofpartorall of thiswork forpersonal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for third-party components

of this workmust be honored. For all other uses, contact the owner/author(s).

HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8438-4/21/05.

https://doi.org/10.1145/3458336.3465277

LoC
Tens of
Millions

Hundreds of
Thousands

Thousands

Safety
No

Guarantees
Type

Safety
Ownership

Safety
Functional
Verification

Linux
FreeBSD

Singularity
Biscuit

Theseus
RedLeaf seL4

Hyperkernel

Safe Linux
Incremental Progress

Figure 1: Our vision and the current state of systems.

security vulnerabilities are reported each year, and lifetime

analysis suggests that the new code added this year has intro-

duced tens of thousands of more bugs.

While operating systems are far from the only source of se-

curity vulnerabilities, it is hard to envision building trustwor-

thy computer systems without addressing operating system

correctness.

One attractive option is to scrap Linux and start over.Many

past works focus on building more secure and correct op-

erating systems from the ground up: ones based on strong

typing [22, 32, 48, 50], ones based on even stronger models

such as linear types [13, 44], and ones that formally prove cor-

rectness for all or parts of a kernel [19, 35, 46, 51]. These OS

kernelshave significantly fewer features thanLinux (Figure 1),

impeding adoption.

There is another path, enabled by the development of bet-

ter tools, better languages, and better verification systems.

Instead of scrapping Linux, can we improve it incrementally?

The common design patterns used in Linux development

do not make incrementalism easy. Typically, Linux kernel

modules interact through shared data structures with poorly

specified locking constraints. The boundary and functionality

of modules also lack clear separation. These patterns make in-

tegrating safe components difficult. In the following sections,

we first examine the current state of bugs in Linux, and then

propose a roadmap to incrementally make Linux safer. We

then list research challenges implied by these design patterns

and our suggested approaches. Lastly, we discuss the state of

the art in systems verification and other related work.

2 Motivation
As with other commercial systems, Linux tries to strike a

balance between growth and reliability. A typical release cy-

cle consists of a two-week merge window and eight or more

183

https://doi.org/10.1145/3458336.3465277
https://doi.org/10.1145/3458336.3465277


HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA Jialin Li et al.

(a) New Linux CVEs (b) Reported ext4 CVEs (c) Number of bugs per LoC in file systems

Figure 2: Bug analysis for Linux and its file systems. (a) The number of newCVEs reported each year. (b) TheCDF ofwhenCVEs
in ext4 were reported after its initial release. (c) The number of bugs per line of code per year in various Linux file systems.

weeks of bug fixes and stabilization. During testing periods,

developers are encouraged to test changes through static anal-

ysis tools for C [2, 9], automated testing frameworks [1, 4, 6],

and continuous integration tests [5, 7]. However, even after

years of rigorous testing and development, hundreds of com-

mon vulnerabilities and exposures (CVEs) are still found in

Linux each year (Figure 2a). One may hope that vulnerabil-

ities come from newer components that become reliable as

they stabilize. However, when we look at ext4, a Linux file

system in wide use for 12 years, 50% of CVEs in ext4 were

found after 7 years ormore of use (Figure 2b). Other Linux file

systems share a similar trend. We show the number of new

bug patches in overlayfs, ext4, and btrfs in Figure 2c since

their initial releases. Even after 10 years, there are still new

bugs (0.5% bugs per line of code each year) in all three file

systems.

Despite efforts in static analysis tools for C and automated

testing frameworks, Linux still struggleswith numerous bugs.

Properties like data race freedom and semantic correctness

are difficult to exhaustively test but can be achieved through

safe languages and formal verification. Over the past decade,

the overhead and limitations of using safe languages and

formal verification have been significantly reduced due to

the development of new programming language designs [26,

49], efficient constraint solvers [56], and increasingly mature

verification toolchains [21, 36, 53].

Webelieve that staticproperties, including typesafety, own-

ershipsafety, and functional correctness, canmakeLinuxsafer

and enable more effective testing. Type safety prevents un-

safe type conversion, such as void pointer casting commonly

found in Linux. Ownership safety is type safety augmented

with an ownership model that guarantees memory safety

and thread safety. Functional correctness guarantees that a

system behaves according to its specification. For example,

a specification for a file system can describe user observable

effects on underlying files for each operation.

Adopting these practices would make a substantial dent in

the prevalence of bugs in released versions of Linux. We ana-

lyzed all Linux CVEs from 2010, categorizing their Common

Weakness Enumeration IDs by which errors can or cannot be

prevented by various techniques. Among the 1475 total CVEs

we examined, roughly 42% CVEs could be prevented with

compile-time type and ownership safety, and an additional

35% with functional correctness verification. The remaining

23% have a variety of causes: improper security designs such

as weak access restriction or overexposing kernel informa-

tion, numeric errors like integer overflow and underflow, and

various other causes. Some of these bugs could be prevented

with programming language techniques such as mandatory

overflow checks, automatic iterators for arrays, andmisuse of

uninitialized variables; others could benefit from better tech-

niques to verify security properties, but which are beyond the

scope of this paper.

Prior work has shown that it is already possible to build

clean-slateoperatingsystemsusing these techniques toachieve

various degrees of safety [35, 37, 44, 46]. Unfortunately, the

cost of switching from Linux to these clean-slate designs is

prohibitive due to the established Linux and Android ecosys-

tems. This raises an important question: can we use modern
safe languages and formal verification techniques to improve
OS kernel safety without resorting to a clean-slate OS design?

3 Our Roadmap
Our high-level approach is to enable incremental safety with
incrementally safer interfaces. Concretely, we propose adding
incremental safety to Linux while retaining compatibility,

along two axes: components can be replaced one at a time, and

each component can be replaced with an incrementally-safer

implementation. This idea has two costs: First, incrementally

replacing modules requires modular interfaces, which can

result in performance cost. Second, incremental changes re-

quire careful movements to be compatible with the existing

code, increasing development effort. The benefit, however, is

that each change adds immediate benefits to the kernel: that

component now has a more robust implementation and can

better support growth by resisting regressions.

Step 1: Modularity.As a first step, we propose introduc-
ing modular interfaces around existing Linux components.

Specifically, callers of any module must only reference the

modular interface and cannot directly depend on any specific

184



An Incremental Path Towards a Safer OS Kernel HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA

implementation. Modular interfaces allow each module to be

improved incrementallywithout affecting others, andprovide

isolation and encapsulation, and enable easier reasoning for

verification.

Step 2: Type safety. The second step is to introduce type
safety to prevent type errors. A module is rewritten without

the use of void pointers or casting values to incompatible

types, such as casting error values to pointers. This can be

accomplished bywritingmodules inC++ or another language

with stronger-than-C typing.

Step 3: Ownership safety. Next, type safe modules are

enhancedwith ownership safety. Ownership safety is a multi-

threaded version of memory safety. Where memory safety

requires that there are no accesses to invalid memory, such

as NULL pointer dereferences or use-after-free bugs, own-

ership safety adds that concurrent access to memory is also

protected. Type safety plus ownership safety allows the mod-

ule to know both that it is interpreting memory correctly and

that it has the rights to access, mutate, or free that memory.

Moduleswritten in a type- and ownership-safe language such

as Safe Rust are immune to entire classes of bugs, from NULL

pointer dereferences to buffer overruns to memory leaks to

data races, and are still able to perform complicatedworkwith

competitive performance [44].

Step 4: Functional correctness. Finally, a module is en-

hanced with partial or complete functional correctness ver-

ification. This requires developing a specification for some

or all of the modules and ensuring that a module matches its

specification. Functional correctness depends on ownership

safety since module semantics is undefined under undefined

memory access behavior. Functional correctness checks are

able to prevent wide varieties of bugs, limited only by the

depth of the specification.

Summary. Each step imposes greater restrictions on a

module, and thus imposes different requirements on the in-

terfaces that module must implement. Modular components

need interfaces that abstract component behavior and isolate

all functionality to themodule.Typesafetycannotbeprovided

if void pointers are passed to the module. Memory safety re-

quires that the caller grants memory rights to the callee and

that the interface defines those rights. Functional correctness

checks explicitly require specifications of expected interface

behavior and can become intractable if interfaces are too com-

plicated [31]. Each requirement strengthens the previous, so

the interface for one step informs the interface for the next.

4 Research Challenges
The Linux kernel prioritizes flexibility and performance in its

interface design. Static safety checks require human-writable

and machine-understandable contracts at the interfaces. We

analyze how this leads to four challenges for our roadmap

and present proposed blueprints for interface designs.

4.1 Modularity
Challenge: Monolithic Structure. Because of its focus on
performance, Linux often lacks strict module boundaries be-

tween components. Some Linux interfaces do enforce mod-

ularity; for example, VFS provides an abstract file system

interface; other components like the network stack aren’t

cleanly separated. Extracting modular interfaces and fixing

call sites is a necessary precondition for integrating statically

checked modules.

Approach:ModularInterfaces.Amodular interfaceshould

provide an abstract representation of module behavior but

isolate its internals from other parts of the kernel. The kernel

must explicitly call the module through the interface rather

than arbitrarily. It would support various underlying imple-

mentations as long as they have the same interface. New

implementations can be dropped in without changing other

parts of the kernel. Such refactoring is not only beneficial

for integrating safer modules, but also for allowing modules

that provide other interesting properties, such as specialized

performance goals or use of specialized hardware features.

As an example, VFS didn’t just happen; VFS was a response to

the need to support new functionality–network file systems–

alongside the existing native file system.

We recognize that modular interfaces can potentially pre-

vent performance optimizations that rely on cross-module

co-operation and can be difficult to introduce for subsystems

that are not designed with modularity in mind. For example,

while Linux sockets support multiple protocol families and

multiple protocols within those families, references to TCP

state can be found throughout generic socket code and data

structures. Adding support for modular interfaces to subsys-

tems like this will pose a challenge but could benefit both this

project and others that propose alternative implementations

for modules such as TCP stacks [34, 38, 42], to meet emerging

demands and make efficient use of recent hardware advances.

This raises some interesting research questions: how do

we retrofit modularity into subsystems that aren’t designed

for it? How do we introduce modularity while maintaining

efficient and flexible interfaces?

4.2 Type Safety
Challenge: Type Confusion. Linux is written in C with no

check to disallow arbitrary pointer casting. Casting pointers

to incompatible types is common, with developers relying

on assumptions or manual runtime checks to determine the

correct types. For example, VFS allows a file system to pass

custom data between write_begin and write_end by pass-
ing void pointers to the two functions. In write_end the file
system assumes that the pointer was from its write_begin
function and casts the pointer to the relevant type.Many func-

tions, such as VFS lookup, return a pointer on success or an

185



HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA Jialin Li et al.

error value on failure. To achieve this in C, the error value is

cast to a pointer, and the caller must manually check that the

pointer is valid before dereferencing it. Similar type confu-

sion errors can be seen throughout the network stack: custom

data gets wrongly casted and leads to denial of service [3].

Interfaces for type safemodulesmust bewritten so they don’t

require these types of unsafe casting.

Approach: Eliminate Unsafe Interfaces. The void point-
ers used to pass custom data structures can be replaced with

pointers to a generic type using language-level techniques

such as C++ templates or Rust generics. To eliminate the need

for casting error values to pointers, type safe interfaces either

pass a pointer argument for the error value to be written to or

require functions to return a union type that can hold either

valid data or an error, such as Rust’s Error. Practical type
confusion detection is another open research question.While

type detection frameworks exist for languages like C++ [28],

there is nothing robust and low overhead for Linux yet.

4.3 Ownership Safety

Challenge: ComplexOwnership Sharing. The Linux ker-
nelpasses informationbetweencomponentsbypassingshared-

memorydatastructuresacross the interfaceboundaries.These

data structures are accessed concurrently bydifferent sections

of the kernel, often with complicated specifications on which

fields can be accessed when, by which functions, and when

which locks need to be held. These data structures are often

passed as non-const pointers, so the only thing preventing
incorrect access is vigilant code review.

For example, the kernel’s generic inode data structure is

passed from the VFS layer to the file system onmost file sys-

tem calls.Many of the inode’s fields aren’t associatedwith any

inode-level synchronization mechanism since they’re only

modified on specific, known code paths protected by other

synchronization mechanisms. Three fields are explicitly pro-

tected by the i_lock field, but one of those three, the i_size
field, is onlymaybe protected, according to the relevant com-

ment. File systems are responsible for updating i_size, so
they must be able to determine the correct synchronization

behavior. Additionally, only some code paths in the VFS layer

will lock i_lock before calling into the file system, so the

synchronization requirements are different depending on the

function in the file system.

Since the kernel’s interfaces don’t include any informa-

tion about the ownership rights, they can’t be directly used

to write modules with static ownership safety checks. Addi-

tionally, the complexity make it difficult to know what the

correct ownership contract is for a shared data structure, and

field-by-field ownership definitions that can change by call

are difficult to encode in a framework for statically checked

ownership safety.

Approach: Restricted and Explicit Ownership Sharing.
We identify two key ideas for ownership safe module inter-

faces: restricted and explicit ownership sharing.

Restricted Ownership Sharing. Ownership safe modules

should restrict the ways that memory is shared across module

boundaries to enforce simple contracts that are easy to encode.

We are inspired by message passing interfaces used for strict

memory separation, such as in microkernels and across the

kernel/userspace boundary. However, message passing inter-

facesarestronger thannecessaryandcan imposeperformance

overhead caused by memory copies. We propose interfaces

that are semantically equivalent tomessagepassing interfaces

but sharememory for performance reasons. Threemodels are:

(1) Memory ownership is passed. The caller can no longer

access the memory. The callee must free the memory.

(2) Exclusive rights to thewholememory regionarepassed.

The caller cannot access the memory until the call re-

turns. The callee can mutate the memory but not free

it and cannot access the memory after the call returns.

(3) Non-exclusive rights to the whole memory region are

passed. The caller, callee, and others can read the mem-

ory, but none can mutate the memory until the call

returns. Again, the callee cannot free the memory and

cannot access the memory after the call returns.

In prior work, Bento allows Linux kernel file systems to be

written in safeRust by leveraging theFUSE low-levelAPIwith

limited ownership sharing [43]. The FUSE API is designed

to function across the kernel/userspace boundary, so Bento’s

interface is sufficient to satisfy the proposed interface model

but is somewhat stronger than necessary.

ExplicitOwnershipSharing.Ownershipcontracts toprevent
unsafe access and resource allocation contracts to prevent

memory leaks must be able to be statically checked, so must

bemade explicit in someway that the checker can understand

and validate. Bento encodes this information in type defini-

tions. The ownership contracts are represented as passing

data structure ownership ormutable or immutable references,

and resource allocation contracts are enforced by objects that

provide safe abstractions around other kernel components,

freeing the developer from manual resource management.

Other techniques could be used to represent these contracts

for other methods of static checking, such as including anno-

tations on interfaces.

One potential concern is that these interface requirements

will impose some nontrivial performance cost from copies

or reduced ability to implement optimizations. While

this concern is valid, Rust is generally able to perform

similarly to C code, and existing projects have been able

to develop Safe Rust operating systems and components

that are performance-competitive with Linux. The Bento

file system and the RedLeaf [44] and Theseus [13] Rust

186



An Incremental Path Towards a Safer OS Kernel HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA

operating systems all perform competitively to their Linux

counterparts. More research is needed to fully understand

the extent to which these proposed interface requirements

impose unavoidable performance overhead.

4.4 Functional Correctness
Challenge: Complex Interface Semantics. The Linux

kernel often introducesnew interfaceswith complicatedprop-

erties and usages for performance reasons. For themonolithic

kernel, introducing new functions is easy and adding function

calls is cheap, so there’s benefit to increasingly complicated

interfaces even if the performance gains are corner cases.

The buffer_head struct, used to expose disk blocks to

file systems through the buffer cache, includes 16 state

flags that describe whether the buffer is mapped, dirty, etc.

These flags are set independently, resulting in many possible

combinations of states. Not all of the combinations are valid,

but even determining which are can be complicated. Since

these flags control if, when, and how buffers are written to

the storage device, they must be set correctly and at the right

point in the code to prevent data loss or corruption. If the

file system uses an external journal module, such as ext4’s

jbd2, both need to manage this state and must coordinate

with each other and with the buffer cache.

A functionally correct file system interacting with the

buffer cache relies on having a correct specification for

the buffer_head state, but precisely capturing a complex,

heavily-coupled implementation entails complex modeling,

substantially increasing the proof burden of verification.

Some automation techniques also wilt under complex

interfaces. Capturing a specification is doubly difficult when

two components can modify shared state that affects both

components’ behavior.

Furthermore, the bottom up approach of specifying indi-

vidual modules and later composing them into a larger mean-

ingful kernel specification is challenging. We believe that it

is almost impossible to know the right interfaces for com-

posed verification before anything is built, therefore, we may

need to revisit the interface exported by eachmodule tomake

composition more feasible. Specifying an end-to-end verified

kernel in this manner remains an open question.

Approach: Correctness Guarantees. The ultimate stan-

dard in robustness is functional verification: replacing

components with ones whose behavior has been shown to

meet a precise specification [18, 19, 29–31, 35, 45, 46, 51].

Functional verification excludes all undefined behavior.

Supporting verified modules and their functionally-

specified interfaces requires four features: an appropriate

interface modeling language, axiomatic models of unverified

components, decoupled modules, and ownership specifica-

tion. Ownership specification is discussed above; we discuss

the others next.

Modeling language. A functionally-specified interface

unambiguously and abstractly models the behavior of the

component behind it. For example, a file system can be

modeled as a map from path strings to file content bytes.

Similarly, a crash-safe file system can be modeled as a map of

path strings to file content bytes that is guaranteed to recover

to the last synced version given any crash.

Abstract means exploiting math shorthand to hide imple-

mentation details. For example, the directory-rename opera-

tion may be modeled as a relation between old and newmaps

inwhich every path keywith a given prefix is substitutedwith

a new prefix. The specification can freely describe the content

of all keys, making it straightforward for users to understand

what’s expected after each operation. Thismay sound “expen-

sive”, as we are addressing the content of each key in every

operation, but since the specification is purely mathematical,

this doesn’t imply that the implementation is expensive.

Unambiguous means that the model captures all the behav-

ior of the component that client code needs to rely on. Bugs

often stem from the author of client code misunderstanding

the contract explained in notoriously ambiguous English

comments.

Such a model is most easily expressed in a mathematical

language with immutable objects (whose meanings don’t

change as the system evolves) and functions and relations

over them. The implementation explains how to “interpret”

its efficient, complex, mutable data structure as an instance of

the model. Verification shows that each operation performed

by the implementation (for example, swinging a pointer

in the inode tree to implement rename) is a valid relation

between the before- and after- model interpretations.

Verification research has demonstrated that functional lan-

guages (immutable data structures, side-effect-freemathemat-

ical functions) are better for modeling than repurposed im-

perative languages (e.g. Dafny’s functional subset vs Spec#’s

use of C#).

Here we use “functionally correct” to refer to safety prop-

erties excluding liveness and performance, but of course per-

formance is necessary for adoption. Verified modules form

a foundation for safe performance optimization, especially

complex designs that are difficult to implement correctly.

Axiomatic model of unverified code. Since we are concerned
with incremental movement, what happens at the boundaries

between verified and unverified components? The boundary

must provide assumptions (axioms) about the behavior of the

unverifiedmodule. For example, averifiedfile systemmayrely

on thebehavior of anunverifiedblock I/O layermodeled at the

interface. The verified file system will appear buggy if either

the block I/O layer is buggy or the model erroneous. Hence,

theseaxiomsshouldbewrittenwithminimalassumptionsand

only cover the basic functionality. In the case of block I/O, the

data structure buffer_headmay be abstracted away, and the

187



HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA Jialin Li et al.

axioms can be defined in terms of bytes. A shim layer is then

needed to bridge the communication gap between the verified

modules and unverified components. Similarly, this type of

shim layer is needed between every incremental boundary.

Note that one can write models of interfaces with

unverified code on both sides; this evolution can occur before

verification is complete. The process of modeling an interface

helps expose poor structuring and tight coupling among

ad-hoc modules, misfeatures that need to be refactored

before verification can be achieved. While difficult, writing

axiomatic models of Linux’s complicated interfaces is

essential, for if we cannot describe a module’s functionality

at a high level, then we do not understand its functionality.

This is a problem even outside of the context of verification.

Decoupled modules. If a client component employs two

subcomponents A and B, it will have models of each. If

the behavior of those two subcomponents is coupled, their

interfaces cannot be unambiguously described in isolation.

That is, calling a function in B may change the interpretation

of a data structure retrieved from A, thus the interface to

A depends on B. This kind of coupling is common in Linux,

where structures are shared across several components for

reasons of performance or code accretion. Factoring such

data structures into separate per-component data structures

makes modeling much more feasible.

Performance-motivated coupling introduces inherent

design tension. While the systems verification community

has built big multi-component systems [30], we have little

experience yet with such multi-component optimizations.

Identifying design patterns that balance decoupling and good

performance is an open question.

Performant Verified Components. Verification is a compile-

time check, and hence in theory presents no inherent limit to

code performance. In practice, however, verification often cre-

ates a trade-off between programmer ease and performance

constraints. For example, some verification frameworks

model functional code and extract imperative code [55],

such as through a functional language implementation

[19]. Even systems that directly model memory-mutating

imperative code make assumptions about memory models

such as garbage collection [17] or linear ownership [29]. Such

assumptions simplify reasoning, but constrain the structure

of the code in ways that may exclude faster implementations.

Performant OS Rust systems [43, 44] suggest that ownership

reasoning is not a barrier to performance. The opposite may

even be true: system developers have avoided complex opti-

mizations, such as soft updates [25], thatmay become feasible

with verification. It is worth noting that there has been signifi-

cant progress on verification techniques and tooling, enabling

us to build more and more performant and verified systems.

We believe large scale verification has a promising future.

Concurrent Verified Components.With few exceptions [15,

16, 27, 33, 40, 52, 57], few systems verification methodologies

reason about shared-memory concurrency. There are simple

ways to safely layer concurrent reasoning on top of a single-

threaded verification. For example, outsourcing a side-effect-

free computation by passing a reference to an immutable data

structure is ameta-logically safe extension of a sequential ver-

ification result.Moreprogress is needed, however, in proof au-

tomation for shared-memory concurrent programs, as exploit-

ing concurrency is essential for good performance. We note

that thevarious stepswehaveproposedcanoperate inparallel.

By the time clean type and ownership interfaces exist within

Linux, the research community may well have made signifi-

cant progress at someof these seemingly intractable problems.

4.5 Practical Challenges
RateofChange.TheLinuxkernel continues togrowat a rate

of millions of lines of code per year. Catching up to and then

maintaining safety in such a quickly evolving code base re-

mains a challenge. For example, changesmust prove that they

don’t violate existing safety guarantees. For compiler checked

properties, such as type safety or ownership safety, this just

means that all new code must compile. For verification, ex-

isting proofs must be adapted to match new code. Doing this

while keeping up with Linux’s rate of change requires that

local changes to code require similarly local changes to proofs.

It is unclear how far we are for knowing how to provide this

property or how difficult it will be to engineer systems that

do. More experience with verification tools is necessary to

ensure that proofs can evolve rapidly with code.

Incentives.Our guiding principle is incremental benefit

for incremental work. Society should not have to wait for

Linux to be completely verified end-to-end to begin to see

benefits in stability and security. In fact, the Linux community

has just taken amajor step at introducing Rust into the kernel

leaf modules [8]. Though there are concerns and integration

issues to be solved, the Linux community itself would benefit

from a safer Linux. With safe languages, patch reviewers can

focus on code functionality, as whole classes of bugs are pre-

vented by safety checks. With verified modules, maintainers

can specify the functionality of each interface, and developers

are then responsible for the code and proof.

5 RelatedWork
Linux bug analysis. Chou et al. [20] showed that device

drivers are the most error-prone components in Linux (up to

2.4). Palix et al. [47] looked at Linux up to 2.6 and showed that
the total number of new bugs continued to rise. However,

the errors per line of code in device drivers was significantly

reduced, and the hardware abstraction layer and various file

systems became the components with a high fault rate. Our

analysis is based on CVE and bug patches in Linux (up to

188



An Incremental Path Towards a Safer OS Kernel HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA

5.10). Our analysis shows that bugs are being found even in

mature modules, such as ext4.

Safe languages or software verification in kernel
development. Using safe languages or software verification
in kernel development has been extensively studied in the

literature. Pilot [48], SPIN [12], Singularity [32], Tock [37],

Biscuit [22], and Redleaf [44] are all written in high-level safe

languages. SeL4 [35], Hyperkernel [46], and CertiKOS [27]

are verified OS kernels. These are clean-slate designs, and

it is difficult to directly use their components in Linux.

Yggdrasil [51] and FSCQ [18, 19] verify file systems, but they

run at userspace using FUSE. Our goal is to complement this

line of work by supporting kernel components, developed

in safe languages or verified, to run inside Linux. Bento [43]

allows developers to write file systems in Rust and load the

file systems into the kernel. Our goal is more general: the

interface design patterns for modular kernel components

written in a safe language or formally verified. Today, Linux

already supports loading eBPF, but its expressiveness is

limited, and it does not support complex kernel components.

Othermechanisms towards a safe kernel.An alterna-
tive method to prevent kernel bugs is to move kernel features

into userspace [10, 11, 23, 39, 42]. Kernel components can run

as stand-alone services or as part of the application libraries,

but this is no magic bullet–bugs that used to be inside the

kernel will also move to userspace. Software fault isola-

tion [14, 24, 41, 54] and control flow integrity are also ways to

improve kernel safety through runtime checks. This allows

memory errors in one kernel component to be isolated from

the rest of the kernel. Our goal is both cross and intra-module

bug prevention as well as functional verification.

6 Conclusion
We propose an incremental route to a safer Linux through

modularization and gradual replacement module by module.

The existing Linux design pattern of widely shared data

structures with poorly specified module interactions and

constraints poses a major barrier to progress. We believe

the research community can help push forward this vision

by creating alternative, better implementations of major

Linux functions, by developing cleaner APIs for kernel

functions (such as a new network or virtual memory stack)

that support type and/or ownership safety, and attempting

partial verification in the context of performance-critical

concurrent systems with large codebases.

Acknowledgments
Wewould like to thank our anonymous reviewers for their

valuable comments and helpful feedback. This work is par-

tially supported by the National Science Foundation grant

CNS-1856636 AM04 and DGE-1762114. This work was also

supported by Google and Huawei.

References

[1] Autotest - Fully automated testing under linux. https://autotest.github.

io/.

[2] Coccinelle: A ProgramMatching and Transformation Tool for Systems

Code. https://coccinelle.gitlabpages.inria.fr/website/.

[3] CVE-2020-12351kernel: net: bluetooth: typeconfusionwhileprocessing

AMP packets. https://bugzilla.redhat.com/show_bug.cgi?id=1886521.

[4] Kernel self-test. https://kselftest.wiki.kernel.org/.

[5] KernelCI. https://kernelci.org/.

[6] ktest. https://elinux.org/Ktest.

[7] LKFT - Linaro’s Linux Kernel Functional Test framework. https://lkft.

linaro.org/.

[8] [PATCH 00/13] [RFC] Rust support. https://lkml.org/lkml/2021/4/14/

1023.

[9] Smatch: pluggable static analysis for C. https://lwn.net/Articles/

691882/.

[10] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard

Rashid, Avadis Tevanian, and Michael Young. Mach: A New Kernel

Foundation For UNIX Development. In Summer USENIX, 1986.
[11] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,

Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and

Akhilesh Singhania. The Multikernel: A New OS Architecture for

Scalable Multicore Systems. In SOSP, 2009.
[12] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,

D. Becker, C. Chambers, and S. Eggers. Extensibility Safety and

Performance in the SPIN Operating System. In SOSP, 1995.
[13] Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin Zhong. Theseus:

an Experiment in Operating System Structure and State Management.

InOSDI, 2020.
[14] Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado,

Periklis Akritidis, Austin Donnelly, Paul Barham, and Richard Black.

Fast Byte-granularity Software Fault Isolation. In SOSP, 2009.
[15] Tej Chajed, Frans Kaashoek, Butler Lampson, and Nickolai Zeldovich.

Verifying concurrent software using movers in CSPEC. InOSDI, 2018.
[16] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai

Zeldovich. Verifying Concurrent, Crash-Safe Systems with Perennial.

In SOSP, 2019.
[17] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zel-

dovich. Verifying concurrent Go code in Coq with Goose. CoqPL, 2020.
[18] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay

undefinedleri, Adam Chlipala, M. Frans Kaashoek, and Nickolai

Zeldovich. Verifying a High-Performance Crash-Safe File System

Using a Tree Specification. In SOSP, 2017.
[19] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans

Kaashoek, and Nickolai Zeldovich. Using Crash Hoare Logic for

Certifying the FSCQ File System. In SOSP, 2015.
[20] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson

Engler. An Empirical Study of Operating Systems Errors. In SOSP, 2001.
[21] Coq development team. The Coq Proof Assistant Reference Manual, Ver-

sion 8.5pl2. INRIA, July 2016. http://coq.inria.fr/distrib/current/refman/.

[22] CodyCutler,M. Frans Kaashoek, and Robert T.Morris. The benefits and

costs of writing a POSIX kernel in a high-level language. In OSDI, 2018.
[23] D. R. Engler,M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: AnOperating

System Architecture for Application-level Resource Management. In

SOSP, 1995.
[24] Úlfar Erlingsson, Martín Abadi, Michael Vrable, Mihai Budiu, and

George C. Necula. XFI: Software Guards for System Address Spaces.

InOSDI, 2006.

189

https://autotest.github.io/
https://autotest.github.io/
https://coccinelle.gitlabpages.inria.fr/website/
https://bugzilla.redhat.com/show_bug.cgi?id=1886521
https://kselftest.wiki.kernel.org/
https://kernelci.org/
https://elinux.org/Ktest
https://lkft.linaro.org/
https://lkft.linaro.org/
https://lkml.org/lkml/2021/4/14/1023
https://lkml.org/lkml/2021/4/14/1023
https://lwn.net/Articles/691882/
https://lwn.net/Articles/691882/
http://coq.inria.fr/distrib/current/refman/


HotOS ’21, May 31–June 2, 2021, Ann Arbor, MI, USA Jialin Li et al.

[25] Gregory R. Ganger, Marshall Kirk McKusick, Craig A. N. Soules, and

Yale N. Patt. Soft Updates: A Solution to the Metadata Update Problem

in File Systems. ACM TOCS, 2000.
[26] Go is an open source programming language that makes it easy to

build simple, reliable, and efficient software. https://golang.org/.

[27] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman)Wu, Jieung

Kim,VilhelmSjöberg, andDavidCostanzo. CertiKOS:AnExtensibleAr-

chitecture for Building Certified Concurrent OS Kernels. In OSDI, 2016.
[28] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Cristiano Giuf-

frida, Herbert Bos, and Erik van der Kouwe. TypeSan: Practical Type

ConfusionDetection. InProceedings of the 2016ACMSIGSACConference
on Computer and Communications Security, CCS ’16, page 517–528,

New York, NY, USA, 2016. Association for Computing Machinery.

[29] Travis Hance, Andrea Lattuada, Chris Hawblitzel, Jon Howell, Rob

Johnson, and Bryan Parno. Storage Systems are Distributed Systems

(So Verify Them ThatWay!). InOSDI, 2020.
[30] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan

Parno, Michael L. Roberts, Srinath Setty, and Brian Zill. IronFleet:

Proving Practical Distributed Systems Correct. In SOSP, 2015.
[31] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan

Parno, Danfeng Zhang, and Brian Zill. Ironclad Apps: End-to-End

Security via Automated Full-System Verification. InOSDI, 2014.
[32] GalenC.Hunt and James R. Larus. Singularity: Rethinking the Software

Stack. SIGOPS Oper. Syst. Rev., 2007.
[33] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.

RustBelt: Securing the Foundations of the Rust Programming Language.

Proc. ACM Program. Lang., 2017.
[34] Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma,

Arvind Krishnamurthy, and Thomas E. Anderson. TAS: TCP

Acceleration as an OS Service. In EuroSys, 2019.
[35] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,

David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal

Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon

Winwood. SeL4: Formal Verification of an OS Kernel. In SOSP, 2009.
[36] K. Rustan M. Leino. Dafny: An Automatic Program Verifier for

Functional Correctness. In LPAR, 2010.
[37] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat

Pannuto, Prabal Dutta, and Philip Levis. Multiprogramming a 64kB

Computer Safely and Efficiently. In SOSP, 2017.
[38] Bojie Li, TianyiCui, ZiboWang,WeiBai, andLintaoZhang. SocksDirect:

Datacenter Sockets can be Fast and Compatible. In SIGCOMM, 2019.

[39] Jochen Liedtke. OnMicrokernel Construction. In SOSP, 1995.
[40] Jacob R. Lorch, Yixuan Chen, Manos Kapritsos, Bryan Parno, Shaz

Qadeer, Upamanyu Sharma, James R. Wilcox, and Xueyuan Zhao.

Armada: Low-Effort Verification of High-Performance Concurrent

Programs. In PLDI, 2020.
[41] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang, Nickolai

Zeldovich, andM. Frans Kaashoek. Software Fault Isolation with API

Integrity andMulti-principal Modules. In SOSP, 2011.
[42] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,

Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,

William C. Evans, Steve Gribble, and et al. Snap: A Microkernel

Approach to Host Networking. In SOSP, 2019.
[43] Samantha Miller, Kaiyuan Zhang, Mengqi Chen, Ryan Jennings, Ang

Chen, Danyang Zhuo, and Thomas Anderson. High Velocity Kernel

File Systems with Bento. In FAST, 2021.
[44] Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel,

Zhaofeng Li, Gerd Zellweger, and Anton Burtsev. RedLeaf: Isolation

and Communication in a Safe Operating System. InOSDI, 2020.

[45] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina

Torlak, and Xi Wang. Scaling Symbolic Evaluation for Automated

Verification of Systems Code with Serval. In SOSP, 2019.
[46] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson,

JamesBornholt, EminaTorlak, andXiWang. Hyperkernel: Push-Button

Verification of an OS Kernel. In SOSP, 2017.
[47] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia

Lawall, and Gilles Muller. Faults in Linux: Ten Years Later. In ASPLOS,
2011.

[48] David D. Redell, Yogen K. Dalal, Thomas R. Horsley, Hugh C. Lauer,

William C. Lynch, Paul R. McJones, Hal G. Murray, and Stephen C.

Purcell. Pilot: An Operating System for a Personal Computer. Commun.
ACM, 1980.

[49] Rust: A language empowering everyone to build reliable and efficient

software. https://www.rust-lang.org/.

[50] Michael Schroeder andMichael Burrows. Performance of Firefly RPC.

ACM Transactions on Computer Systems, 1990.
[51] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang.

Push-Button Verification of File Systems via Crash Refinement. In

OSDI, 2016.
[52] Nikhil Swamy, Aseem Rastogi, Aymeric Fromherz, Denis Merigoux,

Danel Ahman, and Guido Martínez. SteelCore: An Extensible Concur-

rent Separation Logic for Effectful Dependently Typed Programs. Proc.
ACM Program. Lang., 2020.

[53] Emina Torlak and Rastislav Bodik. A Lightweight Symbolic Virtual

Machine for Solver-Aided Host Languages. In PLDI, 2014.
[54] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L.

Graham. Efficient Software-based Fault Isolation. In SOSP, 1993.
[55] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock,

XiWang,Michael D. Ernst, and ThomasAnderson. Verdi: A Framework

for Implementing and Formally Verifying Distributed Systems. In PLDI,
2015.

[56] The Z3 Theorem Prover. https://github.com/Z3Prover/z3.

[57] Mo Zou, Haoran Ding, Dong Du, Ming Fu, Ronghui Gu, and Haibo

Chen. Using Concurrent Relational Logic with Helpers for Verifying

the AtomFS File System. In SOSP, 2019.

190

https://golang.org/
https://www.rust-lang.org/
https://github.com/Z3Prover/z3

	Abstract
	1 Introduction
	2 Motivation
	3 Our Roadmap
	4 Research Challenges
	4.1 Modularity
	4.2 Type Safety
	4.3 Ownership Safety
	4.4 Functional Correctness
	4.5 Practical Challenges

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

