
HDTrans: An Open Source, Low-Level Dynamic
Instrumentation System

Swaroop Sridhar Jonathan S. Shapiro
Eric Northup

Systems Research Laboratory
Department of Computer Science

Johns Hopkins University
swaroop@cs.jhu.edu / shap@cs.jhu.edu / eric@digitaleric.net

Prashanth P. Bungale
Division of Engineering and Applied Sciences

Harvard University
prash@eecs.harvard.edu

Abstract
Dynamic translation is a general purpose tool used for instrument-
ing programs at run time. Performance of translated execution re-
lies on balancing the cost of translation against the benefits of any
optimizations achieved, and many current translators perform sub-
stantial rewriting during translation in an attempt to reduce execu-
tion time. Our results show that these optimizations offer no sig-
nificant benefit even when the translated program has a small, hot
working set. When used in a broader range of applications, such
as ubiquitous policy enforcement or penetration detection, transla-
tor performance cannot rely on the presence of a hot working set
to amortize the cost of translation. A simpler, more maintainable,
adaptable, and smaller translator appears preferable to more com-
plicated designs in most cases.

HDTrans is a light-weight dynamic instrumentation system for
the IA-32 architecture that uses some simple and effective trans-
lation techniques in combination with established trace lineariza-
tion and code caching optimizations. We present an evaluation of
translation overhead under both benchmark and less idealized con-
ditions, showing that conventional benchmarks do not provide a
good prediction of translation overhead when used pervasively.

A further contribution of this paper is an analysis of the effec-
tiveness of post-link static pre-translation techniques for overhead
reduction. Our results indicate that static pre-translation is effective
only when expensive instrumentation or optimization is performed.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors

General Terms Languages, Performance, Security

Keywords Dynamic instrumentation, Dynamic translation, Binary
translation

1. Introduction
One of the notable developments over the last few years has been
the use of dynamic binary translation to address numerous run

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’06 June 14–16, 2006, Ottawa, Ontario, Canada.
Copyright c© 2006 ACM 1-59593-332-6/06/0006. . . $5.00.

time instrumentation, compatibility, and security challenges. Dy-
namo [3] and Mojo [12] perform run time optimization to improve
the performance of native binaries. Valgrind [36] uses sophisti-
cated dynamic translation methods to perform heavy-weight dy-
namic binary analysis which can be used for comprehensive per-
formance measurements, profiling, memory analysis, and debug-
ging. Shade [15] uses dynamic translation for high-performance
instruction set simulation. Daisy [20, 2] uses dynamic compilation
for instruction set emulation and evaluation. VMWare [17] uses se-
lective dynamic translation to achieve full machine virtualization.
UQBT [13], Walkabout [14] and Strata [41] provide a retargetable
dynamic translation infrastructure. DynamoRIO [8] and Pin [34]
are dynamic instrumentation systems that export a high level API
for run time instrumentation of and optimization of programs. Pro-
gram Shepherding [32] uses dynamic translation to monitor control
flow transfers in order to enforce security policies on program exe-
cution.

Execution performance under dynamic translation is achieved
by balancing the cost of translation against the performance gains
from translations. Many current translators implement translation-
time trace optimizations. The expectation is that by improving the
performance of re-used code, the overhead of instrumentation is
reduced and in some cases application performance may be im-
proved. This expectation is violated in programs that have low per-
centages of dynamic code re-use, high frequencies of indirect con-
trol transfer, or short execution runs. If ubiquitous dynamic trans-
lation is intended (as proposed, for example, in program shepherd-
ing [32]), such “unfriendly” programs need to be efficiently instru-
mentable, and the cost of run-time optimization becomes difficult
to amortize.

Instrumentation applications can be broadly divided into three
categories: (1) those that are too complicated to benefit from the
techniques that a run-time optimizer can apply, (2) those that ben-
efit from repeated re-use of register(s) or non-trivial code schedul-
ing, and therefore may benefit from code re-synthesis, and (3) those
that can be accomplished efficiently without run-time optimization,
using only register liveness analysis. Most of the motivating exam-
ples for run-time binary instrumentation that appear in the litera-
ture fall into the last category. The second category is significantly
complicated if precise signal and exception handling is required,
because the translator must be prepared to restore registers to their
“official” state at any sequence point.

In this paper, we describe and evaluate HDTrans — a simple,
high-performance, light-weight dynamic instrumentation infra-
structure for the IA-32 architecture, that is optimized for sim-
plicity and modifiability. Our original motivating application for
HDTrans was supervisor-mode instrumentation. This prompted us

175

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1134760.1220166&domain=pdf&date_stamp=2006-06-14

to prioritize our implementation for simplicity rather than optimiza-
tion. Code rewriting is complex and fragile, and trace optimization
makes it more complicated. It is challenging to debug a dynamic
translator at user level where relatively rich debugging tools are
available. When running within a kernel, where the usual sign of
failure is a system-wide reset, “simple” and “good” are closely
correlated. For this reason, we chose to focus our attention on the
simplicity and efficiency of the decoding and translation system
rather than the efficiency of translated code. Surprisingly, given the
sequence of prior results favoring translation-time optimization,
the performance of HDTrans is competitive with the best current
translation systems.

HDTrans is entirely open source and easily modifiable. It pro-
vides a basic framework for instrumentation at a per-trace, per-
basic-block or per-instruction granularity. The instruction transla-
tion policy is table-driven, and can be revised on an instruction by
instruction basis. The goal of the translator design is to facilitate
modification of the translation strategy itself to provide inline in-
strumentation. The SYRAH group at Harvard University has used
HDTrans to dynamically instrument programs for two applications:
run-time security policy enforcement to ensure system integrity
while running untrusted code, and providing fine-grain reverse ex-
ecution for debugging.

The rest of the paper is organized as follows. In section 2, we
provide a brief review of the state of the art in dynamic transla-
tion. In section 3, we introduce the basic translation methodology
and the design choices adopted in HDTrans. We later present the
special techniques we used to address some performance critical
issues in dynamic translation. In section 4, we present compara-
tive performance results with existing systems using both standard
benchmarks and everyday programs. We provide a detailed eval-
uation of the overheads involved, and comment on the utility of
static-pretranslation techniques for overhead reduction in dynamic
translators. We present related work in section 5, and conclude in
section 6.

2. Review of the Art
The essential techniques of binary translation date back to Deutsch’s
early work on Smalltalk-80 [16] and May’s work on System/370
emulation [35]. Deutsch in turn was inspired by earlier work on uni-
versal host machines [38] and threaded code [4, 18]. May’s work
on MIMIC, in particular, appears to deserve credit for the idea of
trace-based translation, and many of the associated optimizations,
including run-time register allocation.

Guest

BB1
BB2

BBcache
BBdirectory

Program BB2

BB1

jump

jump

Translator

Special−bbs

Figure 1. The dynamic translator

A binary translator proceeds by alternating its execution be-
tween “translation mode” and “target mode,” as shown in Figure 1.
In translation mode, the instructions of the subject (or “guest”)
program are translated into a “basic block cache” (in HDTrans:
the BBcache). Depending on the specific translation strategy, the
unit of translation may be a basic block, an extended basic block,
or a trace [35] that spans multiple basic blocks. As translation is
performed, a directory of translated units (in HDTrans: the BB-
directory) is maintained, indexed by the guest program counter.
When translation is completed, the translator enters target mode
by branching to the newly formed translation unit.

2.1 From Code Blocks to Traces

The earliest binary translators translated instructions one at a time.
May [35] introduced translation in units of “code blocks.” Flow
analysis is used to discover all code sequences that are reachable
from some initial entry point, which is compiled as a unit using an
aggressive translation algorithm that back-tracks as branches into
previously translated blocks are discovered. Eventually this method
stabilizes and a translated code sequence is emitted along with a
record of all source to target branch relationships. In May’s design,
an “intermediate memory” is used to record the translated location
of source code blocks, allowing even indirect branches to proceed
without re-entering the translator as long as no new translations are
required. The key advantage to this approach is that all statically
computable branch destinations are discovered at translation time.
Two key disadvantages are the need for a comparatively large
intermediate memory and a code block discovery strategy that
yields variable translation delays and is likely to translate unused
code unnecessarily.

Later translators refined this strategy by translating more selec-
tively. Shade [15] translates instructions in units of (simple) basic
blocks. It also chains the basic blocks ending in a direct branch to
a known target in order to bypass translator intervention in control
transfer. Dynamo [3] dynamically constructs optimized traces for
instruction sequences that are identified to be in the “hot path”.
Pin [34] translates in units of static traces, proceeding forward
across conditional branches and stopping at the first unconditional
branch. Both Dynamo and Pin redirect direct branches whose des-
tinations are unknown to “exit stubs”. When an exit stub is encoun-
tered run time, it causes the translator to enter translation mode to
translate the target of the branch, and then patch the address of the
translated branch destination into the original code sequence. The
end result of these patches is that traces and fragments in the trans-
lation cache come to be linked more and more directly over time,
with fewer and fewer switches to translation mode required as exe-
cution progresses.

2.2 Indirect Branches

Indirect branches are more difficult to deal with, because they
cannot be patched into the original location, and the “interme-
diate memory” technique requires prohibitive amounts of mem-
ory on modern machines. Instead, other implementations rely on
some combination of hash tables and chained basic blocks. The
Smalltalk-80 [16] optimizes its method dispatch by inlining the
address of the most recently used method into the call site along
with a comparison to check for correctness of dispatch. Embra [49]
extends this idea to perform speculative chaining of basic blocks
across indirect branches in general. Dynamo [3] uses lightweight
runtime profiling information to construct traces across indirect
branches. These techniques impose the cost of saving and restor-
ing the hardware condition codes and / or several registers in or-
der to perform comparisons and hash table lookup. Pin attempts to
reduce overhead by jumping to a candidate destination block that
begins with a compare to determine whether it is the correct desti-

176

nation, and on failure branches to the next candidate [34]. When all
candidates are exhausted, Pin falls back to a hash table that is spe-
cific to the source instruction. If the destination cannot ultimately
be found all methods proceed by translating the destination block.

Because RETURN instructions are a performance-critical special
case, several strategies have been adopted to optimize them. Dy-
namo simply treats returns like other indirect branches. FX!32 [30]
uses a “shadow stack” that holds the translated return addresses.
Pin uses a form of polyinstantiation known as “function cloning,”
creating separate copies of a function for each call site so that the
return destination is known at translation time [34].

2.3 Instrumentation and Optimization

Recent dynamic translation systems have focused on instrumen-
tation, run-time optimization, profiling, debugging, or sandboxing
[8, 32, 34, 36]. In order to reduce the overhead of instrumentation
or improve run-time performance, some of these translators trans-
late to a (low-level) intermediate form, insert instrumentation at the
intermediate form level, and then re-generate code into the basic
block cache. In some applications, translate-time optimization is
known to be extremely important to reduce demultiplexing over-
heads [23]. Its use for general-purpose code optimization has (to
date) yielded mixed results [3, 12].

For low-level instrumentation, liveness analysis of the condi-
tion codes [31] is often sufficient to introduce instrumentation with
minimal performance overhead. General register liveness is better,
and both condition code and register liveness over a trace can be
obtained with minimal extra work during instruction decode. The
advantage of code regeneration is that more complex instrumenta-
tion strategies can be optimized to reduce their overhead. Pragmat-
ically, this advantage ends at the procedure call boundary: once an
instrumentation strategy is obliged to insert procedure calls with
any great frequency, the current trace construction strategies are
usually not able to usefully optimize the instrumentation.

2.4 Other Issues

The original approach of flushing the translation cache in its en-
tirety is commonly credited to Deutsch [16], though it seems likely
that the technique was used by earlier emulators within IBM. Sev-
eral recent systems have explored strategies for flushing the trans-
lation cache more selectively [3, 25, 26, 27, 28, 29]. In order to
support multithreaded programs, systems like Mojo [12] use thread
local code caches, while others [9, 34] have and examined transla-
tion caches that is shared across threads in multithreaded applica-
tions. Bruening et al have reported between 50% and 70% reuse of
cache content [9] across threads for server applications, but much
lower sharing (1% to 10%) for desktop applications [7]. In practice,
the performance benefit of retaining such shared code is highly de-
pendent on the throughput of the translator and the complexity of
the instrumentation.

3. HDTrans
HDTrans was initially designed as a supervisor-mode translator for
use in virtual machine emulation [10, 11]. Our original goal was to
build a faster, open-source version of VMWare [17], and to explore
the possibility that paravirtualization [19] might avoid the need for
recompilation through a hybrid combination of static and dynamic
translation techniques. That work remains incomplete, but our ini-
tial performance measurements on user mode code led us to con-
clude that HDTrans had value for user-mode instrumentation, and
could provide a useful base for more advanced instrumentation sys-
tems. For a variety of reasons, we also we wanted to ensure that the
state of the art was captured in open form. While several similar in-
strumentation systems exist, none of the machine-level translation

or instrumentation systems are openly inspectable. This impedes
research advance by making them hard to study, and introduces the
need for redundant implementation of complex and delicate sys-
tems.

3.1 A Heretical Proposition

Because HDTrans was intended for kernel use where debugging
would be difficult, we eliminated code re-generation from our de-
sign options immediately. Examination of the binary code size
of existing translators revealed that they were substantially larger
(and presumably more complex) than the microkernel systems
that we most wished to emulate and instrument. The version of
DynamoRIO reported here is approximately 382KB of code and
70KB data. The version of Pin reported here is over 3 megabytes
of code and 45KB of data. For calibration, the EROS kernel [44]
is approximately 65KB of code, and its successor, Coyotos [43], is
expected to be significantly smaller. Our challenge was to achieve
performance comparable to existing instrumentation systems with-
out comparable complexity.

As we considered the very variable optimization results achieved
by DynamoRIO, a heretical idea emerged: maybe the achieved
performance on modern translators was primarily due to trace lin-
earization, and run-time optimization was only achieving enough
benefit to amortize the cost of the optimization. If so, and if we
could come up with a way to implement the translation phase more
efficiently, it might turn out that we didn’t need to re-generate code
to achieve comparable results. As far as trace linearization is con-
cerned, we wanted to examine static trace linearization alternatives
to the dynamic profile driven approach taken by Dynamo. Where
instrumentation is concerned, matters clearly aren’t quite this sim-
ple, but for kernel instrumentation purposes we were prepared to
accept that fancy instrumentation might demand a dynamically sup-
ported static rewriting strategy, and for virtual machine translation
simplicity was an overriding objective.

The version of HDTrans benchmarked here is 97KB of code,
but 30% of this is due to aggressive inlining. When inlining is
disabled and the disassembler (part of the debugging support) is
discounted, the code size drops to 56KB. Essential function is
embodied in a 27KB decode table that is stored as data. Much
of the function of the translator can be validated by using it as a
disassembler and comparing the output to the output of objdump
utility. The balance of this section describes how we achieved an
instrumentation system that is competitive with DynamoRIO and
Pin in 1/6th and 1/50th of the code, respectively.

3.2 Basic Translator

The basic structure of HDTrans is similar to that of Dynamo [3],
Pin [34], or Mojo [12]. The translation phase builds traces and
accumulates a directory of mappings from source basic blocks to
target basic blocks. As each translation phase finishes, execution of
the guest program resumes with the newly translated basic block.
HDTrans translates direct branches eagerly when the destination
is known and uses exit stubs to patch them when the destination
is not known. To lower the overhead of indirect branches and
returns, HDTrans employs two new optimization techniques: the
return cache and the sieve. Beyond these, HDTrans achieves its
performance through four basic techniques:

• Through a carefully structured, table-driven decoder, HDTrans
reduces the total number of cache line fetches required to trans-
late each instruction.

• HDTrans optimizes for reuse of existing translation, and adds
“extra” entries to the BBdirectory for instructions that are likely
to be destinations of currently unseen branch instructions.

177

 ...

 { 0xecu, "inB", AL, indirDX, NONE, EMIT(normal), XX, N },
 { 0xebu, "jmp", Jb, NONE, NONE, EMIT(jmp), XO, N },
 { 0xeau, "ljmp", Ap, NONE, NONE, EMIT(normal), XO, N },
 { 0xe9u, "jmpL", Jv, NONE, NONE, EMIT(jmp), XO, N },
 { 0xe8u, "callL", Jv, NONE, NONE, EMIT(call_disp), XO, N },

 /* opCode, instr, op1, op2, op3, emitterFunc, attribs */

 ...

Figure 2. Translation table fragment

• HDTrans performs implicit trace construction through the Least
Redundant Effort heuristic.

• HDTrans uses code sequences that carefully avoid modifying
condition codes (as suggested in [8]). This optimization is IA-
32 specific, but the IA-32’s combination of sensitive and non-
sensitive state in the EFLAGS register makes restoring this
register extremely expensive. Fortunately, RISC architectures
do not penalize condition code restore quite so effectively.

The sizes of the BBcache and BBdirectory are selected statically at
HDTrans compile time. The default translation cache size, which
is used for all measurements reported in this paper, is 4MB. If
either the BBcache or the BBdirectory become full, we flush the
translation cache and start over.

3.3 Table-Driven Translator

HDTrans performs basic block translation one instruction at a time.
The translator is table-driven. The translation table (Figure 2) em-
bodies rules for decoding all instructions in the current architecture.
Each entry in the table occupies a single cache line, and a maxi-
mum of three table entries are visited in order to decode an instruc-
tion. The result of an instruction decode is a decode-structure that
is passed to the emission or instrumentation routine corresponding
to the instruction.

The table also identifies the back-end emit-routine that should
be used to emit each instruction into the BBcache. The emitter
routine also controls the translation process by deciding whether
the current instruction terminates a trace, and what instruction
pointer should be translated next following the current instruction.
In order to support customized instrumentation, we only need to
change the corresponding entry in the translation table to point to a
function that calls user-supplied code in addition to its respective
emit-routine. In the basic translator that does not perform any
instrumentation, most instructions are translated by copying them
verbatim into the BBcache, and only those involving a control
transfer need special attention.

HDTrans works very hard to leave application registers undis-
turbed. Translator state, including the BBdirectory, is stored in
a per-thread data structure called M-state, which is referenced
through memory-absolute addressing modes. Translation of pri-
marily indirect control transfer instructions requires that scratch
registers be spilled. At present, HDTrans spills these registers to the
application stack. This is safe for well-behaved UNIX applications,
but is insufficient to support emulation of Windows applications
which write beyond the current stack pointer. Note that this state is
transient: an ill-behaved application may observe that state beyond
the stack pointer has not been preserved, but HDTrans uses the
stack only between guest instructions, and does not rely on these
values at any other time. Late in the process of writing this paper,
we realized that UNIX applications making use of sigprocmask
may reliably use storage beyond the current stack pointer, and we
are currently modifying the implementation to spill temporary reg-
isters to the M-state instead of the stack.

While the current translator does not support precise signal con-
texts in the case of exceptions or interrupts, all translator-emitted
code sequences have been carefully designed so that they can be
rolled back. This allows the implementation to restore the exact
user register state at any architected sequence point. The miss-
ing feature in the current implementation is emitting the necessary
“undo” information for register spills.

3.4 Unconditional Direct Branches: Trace Linearization

HDTrans performs lazy trace linearization using a Least Redundant
Effort heuristic. Translation proceeds straight through conditional
branches and call instructions, and terminates at any uncondi-
tional jump to a destination that is statically unknown or previ-
ously translated. Instructions following a branch or call are added
to the BBdirectory as likely targets of future branches. When a
direct jump to a previously untranslated basic block is encoun-
tered, we elide the jump, add a BBdirectory entry for the desti-
nation, and continue translating at the destination instruction. Pin
terminates its traces when an unconditional branch is encountered.
DynamoRIO [8] maintains a separate trace cache in addition to the
basic block cache, where hot traces are maintained. Trace forma-
tion is aggressive, and is done even across indirect jumps at the
cost of tail duplication. In contrast, HDTrans optimizes for maxi-
mum reuse of translation effort.

The above translation scheme is illustrated using the following
example. We use AT&T syntax for the assembly fragments illus-
trated in this paper. All variables beginning with ‘G’ correspond to
guest (original) values and those beginning with ‘T’ correspond to
translated values. If the source instructions of the guest are:

add $20, %ecx
jmp $G_dest
...

G_dest: mov $30, %edx
call $G_proc

G_next: add $4, %esp
jmp $G_dest
...

If G proc is already translated and G dest is not, the correspond-
ing translated instructions in the BBcache will be:

add $20, %ecx
T_dest: mov $30, %edx ; new BB here

push $G_next
jmp $T_proc
<call-postamble> ; See section 3.7

T_next: add $4, %esp ; new BB here
Jmp $T_dest ; end of trace
...

Average trace lengths in our scheme was about three basic blocks,
or 10-15 instructions. The longest measured trace was 256 basic
blocks with over 1,100 instructions in the case of gcc.

178

3.5 Conditional Branches

Translation at a conditional branch uses the technique used in
Dynamo [3]. If the destination of the branch has already been
translated, we emit a conditional jump to the existing translated
basic block. Otherwise, we conditionally branch to an exit stub.
On entry, the exit stub calls the translator, providing the original
destination and the address of the conditional jump instruction
in the basic block cache. The translator performs translation as
needed at the jump target, and patches the destination into the
translated jump instruction so that further jumps can go directly
to the destination block. Exit stubs are also emitted for call
instructions whose destination has not yet been translated.

The instruction following a conditional branch is noted as the
start of a new basic block in the BBdirectory. Exit stubs do not
sub-divide source traces; their emission is deferred till the end of a
trace in order to preserve the sequentiality of the trace. Pin inserts
exit stubs at the end of the code cache, in order to improve I-cache
locality among the traces in the BBcache [26].

3.6 Indirect Branches

Since the dynamic translator cannot know the destination of the
jump at translation time, it is necessary to emit code that performs
a run time lookup to determine the translated destination of the
branch, which is a potentially expensive operation. Computing the
branch destination requires that a mapping from guest address to
translated address be implemented. DynamoRIO attempts to avoid
some of this overhead by inlining a small number of “guesses” at
trace construction time. If these fail, it falls back to a global hash-
table lookup. Pin emits a (back-patched) branch to a candidate basic
block, and checks at the destination whether it is indeed the target.
These guessed blocks are chained together. If the chain does not
discover a translation, a source-specific hash table of destinations
is consulted. In all schemes, the BBdirectory is consulted as the
ultimate fallback and used to revise the optimized strategies for
later use.

HDTrans proceeds by constructing a global hash table at run
time. This table is hashed on the destination address. Each table en-
try contains a jump instruction to the start of a destination-specific
chain of comparison blocks. Comparison blocks are added only for
those basic blocks that are dynamically observed at run time to be
indirect destinations. Collectively, the hash table and its compar-
ison blocks are known as the “sieve” (Figure 3). The mechanism
differs from the strategy of Pin [34] in that it hashes first and chains
second. In the benchmarks reported here, and in a variety of other
programs we have tested, the length of the sieve chains are observed
to be 1 or 2 on an average, and are never more than 4. HDTrans
currently uses separate seives for indirect jump and call instruc-
tions, but this appears to make no significant difference (Figure 7),
and we expect to remove it in future implementations.

3.7 Return Caching

The return instruction is by far the most important form of indi-
rect branch in terms of dynamic frequency. Although the return
instruction can be handled by a generalized indirect branching
scheme, we can exploit the symmetry between the call and return
instructions to optimize this case. However, a key constraint on any
implementation is that the call/return sequence should not al-
ter the activation stack in a way that is observable by the subject
program.

Some dynamic translators [40] have proposed a scheme in
which the translated return address, rather than original code ad-
dress is pushed on the stack. This approach is incompatible with
C++ exception handling, garbage collection, or longjmp()with-
out extensive and complicated fix-ups or built-in support for the ex-
ception handling control transfer mechanism. It also presents chal-

The

YesNoYes

No

Source

BBCache

Translator

...

Need_xlate_bb

jmp bucket #x
jmp bucket #y

trans_dest

jmp $Need_xlate_bb

my BBstart
dest with
Compare

Compare
dest with
my BBstart

Sieve_dispatch_bb

jmp *G_dest push *G_dest
jmp $Sieve_dispatch_bb

Figure 3. The sieve.

lenges when the BBdirectory is flushed. Pin uses function cloning
(a.k.a polyinstantiation) to specialize functions that are called from
multiple locations [34]. This allows the return instruction to return
directly, at the cost of emitting redundant traces into the trans-
lation cache. FX!32 implements a “shadow stack” for translated
addresses.

HDTrans uses a new technique known as the “return cache,”
which is built on a co-operative protocol implemented between
call and return instruction emitters. The return cache is a
single-entry hash table that is indexed by a hash of the called
procedure’s start address. The translation of a call instruction
pushes the untranslated return address on the stack, and stores the
translated return address into the appropriate return cache entry.
If the call in question is a direct call, the return cache bucket
calculation can be done at dynamic compile time.

caller

BBcache

Sieve dispatch bb

Update ret−cache

trans_caller

return

Return Cache

jmp $T_proc2

verify−ret−addr

oops!

Fail

trans_wrong

call $G_proc
G_next: ...

jmp $T_proc

verify−ret−addr

push $G_next

T_proc

Figure 4. Return cache control-flow.

The translation of a return instruction leaves the original
return address on the stack and blindly performs an indirect jump
through the return cache entry indexed by the procedure entry point
that dominates that return instruction (Figure 4).

This is an optimistic control transfer. If all goes well, control
reaches the correct caller of this function (as shown by the solid

179

arrow in the figure). However, due to return cache collisions (e.g.
due to recursion), or failed return dominance tracking due to indi-
rect control flow, this method can result in misdirected returns (as
shown by the dashed arrow). We rely on the fact that every return
ends up at the postamble of some call, and every postamble per-
forms a check to see if the intended destination has been reached.
If this postamble check fails, control is transferred to the sieve to
locate the intended destination.

Between 15% and 22% of returns fall back into the sieve. The
majority of these occur because of failures of return dominance
tracking. Return cache entries are initialized with the address of the
sieve-dispatch-bb at startup. This ensures that (perverse)
code performing a return before call works correctly.

The return cache differs from the FX!32 shadow stack in three
regards. First, the shadow stack is definitive. It contains (guest pro-
gram counter, guest stack pointer, translated return address) triples
that must be preserved if execution of return instructions is to pro-
ceed successfully. Second, it is precise: the shadow stack technique
is more attractive for certain recursion patterns. Third, the shadow
stack approach requires special handling to support longjmp()
and exception handling. The return cache is somewhat easier to im-
plement and introduces less register pressure.

3.8 Translation Startup

In order to take control over the the guest’s execution, HDTrans
uses the LD PRELOAD environment variable to load itself before
the guest program [37]. When our startup code is called by the dy-
namic loader, it hijacks the control flow, and never returns to the
loader. Instead, it uses the return address pushed on the stack to
start dynamic translation. The startup code passes this address to
an initialization routine that initializes the M-state and branches
into the translator, which then starts a co-routine like execution
along with the guest program. The method can be straightforwardly
adapted for debugger-directed injection, allowing more complete
instrumentation of early startup code. Related techniques were used
by the Debug debugger [42] and an unreleased incremental compi-
lation environment developed at AT&T Bell Laboratories in 1989.

3.9 Multithreading Support

Previously reported versions of HDTrans did not support multi-
threaded execution. The version reported here has added multi-
threading support, and all of the performance results reported (in-
cluding single-threaded benchmarks) are obtained from the mul-
tithreaded implementation. There is no measurable single-thread
overhead incurred by the presence of support for multithreading.

In implementing multithreading, we considered several designs
that would support sharing – or at least reuse – of translated code
across the threads. The simplest approach is to copy the existing
BBcache at the time of thread creation. The problem with this is
that the emitted code in the BBcache contains absolute references
to trampoline basic blocks and to the M-state structure. We con-
sidered moving the M-state pointer to thread-local storage, but the
necessary run-time support is implemented by the pthreads li-
brary, and not all multithreaded programs use pthreads. The
same problem is shared by various lazy cloning methods. While
it would be possible to keep enough relocation information to be
able to relocate these addresses, or to steal a register as is done in
Pin [34]. Both of these require significant new effort and complex-
ity in the translator. On register-starved architectures like the IA-32,
stealing a register is not a thing to be undertaken lightly.

While translation cache reuse may be important in some ap-
plications, the degree of reuse varies widely. Bruening has reported
between 50% and 70% reuse of cache content [9] across threads for
server applications, but much lower sharing (1% to 10%) for desk-
top applications [7]. Ultimately, the benefit of reuse is a function of

the cost of regeneration. In keeping with the rest of the HDTrans de-
sign, we ended up adopting a brute force approach. The M-state and
BBcache structures have been made thread-local, and each newly-
created thread begins with a cold translation cache.

Similar to the approach followed in DynamoRIO [8], when the
clone system call is (successfully) invoked with the CLONE VM
flag set, the translator arranges for the child to resume execution in
a dedicated initialization routine that allocates and initializes a new
M-state and BBcache for the thread. The initialization routine then
branches to the translator to begin translation of the new thread.
No special handling is required for the vfork system call, because
the parent is blocked until the child executes an execve() or an
exit(), and all signals to the parent are delivered after the child

has exited.

3.10 Signal Handling

HDTrans currently provides support for signal handling, though it
does not yet support introspective signal handlers. HDTrans treats
signals as a separate thread of execution that happen to get “sched-
uled” on signal arrival. When the guest attempts to register a signal
handler, we hijack the system call and set up our own “master” sig-
nal handler, after noting the guest signal handler information in our
signal handler table. Upon signal arrival, our master signal han-
dler — keeping with the brute force philosophy of HDTrans —
allocates a new M-state1 and BBcache, and starts the translation of
the corresponding signal handler. When the signal handler eventu-
ally executes a sigreturn or a rt sigreturn, we release the
memory allocated for the signal handler’s execution. This method
side-steps many of the complications in translating signal handlers
like BBcache flush within the signal handler, signals arriving on an
alternate stack, special handling for one-shot signals, signal queu-
ing and deferred delivery of signals that arrive while the translator
itself is executing [8], etc.

Signal arrival is a very rare event when measured on the scale
of the CPU clock cycle. Therefore, there is practically little perfor-
mance impact due to the fact that we use a new code cache for every
signal. We were able to run programs like emacs-x and openoffice
with no interactively noticeable overhead as compared to the ver-
sion of HDTrans that executes signal handlers natively.

Because of our interest in kernel-level translation, care has been
taken in designing the HDTrans emitted code sequences to preserve
the possibility of support for introspective signals and exceptions.
At every point where guest registers have been spilled, it is possible
to emit “undo” information that would allow them to be restored
and a correct guest sequence point re-established. This would allow
HDTrans to present a fully accurate sigcontext structure to
signal handlers. HDTrans does not currently emit the necessary
undo information. We also do not support signal handler sharing
between parent and child processes.2

4. Performance Evaluation
In evaluating HDTrans, we are interested both in comparative
performance and in understanding which optimizations used by
HDTrans are significant. We also want to understand the overhead
of instrumentation using the respective systems. Finally, we would
like to understand the degree to which dynamic translation over-
head is sensitive to particular processor implementations.

1 There is a small amount of state that must be unique per thread, like the
signal handler table, thread-wide profiling counters, etc. These are held in a
separate structure and all M-states within a thread store a pointer to it.
2 When the clone system call is invoked with the CLONE SIGHAND flag
set, the calling process and the child processes share the same table of signal
handlers.

180

4.1 Experimental Setup

Hardware: The following machines are used to the collect the
performance measurements reported in this section:

• Machine-0: Dual processor, hyperthreaded Intel(R) Xeon(TM)
CPU 2.80GHz system with 512 KB cache and 6GB main mem-
ory.

• Machine-1: AMD Athlon(TM) 64 Processor 3200+, 2043.352
MHz system with 512 KB cache and 3 GB main memory.

• Machine-2: Dual AMD Athlon(TM) Processor 1526.7 MHz
system with 256 KB cache and 3 GB main memory

• Machine-3: Intel(R) Pentium III (TM) CPU 931.2 MHz system
with 256 KB cache and 512 MB main memory.

Except where noted in the processor comparisons, benchmarks are
executed on Machine-0. In all cases, benchmarks are compiled on
the machine where they are executed.

Operating System and Compiler: All benchmarks presented
are executed on Linux Fedora Core 4 (2.6.15-1.1833 FC4smp
kernel). Single-threaded performance is evaluated using SPEC
INT2000 version 1.3 compiled with gcc version 4.0.2. Multi-
threaded performance is evaluated using SPEC OMP2001 version
3.0. Due to the absence of OpenMP support in the GNU compiler
chain, multithreading benchmarks are compiled using Intel’s ver-
sion 9.0 FORTRAN and C++ compilers.

Translators: The following dynamic translators are used to
present comparative performance results:

• HDTrans version 0.3
• Pin Kit 3077, built for gcc 4.0
• Pin-PLDI – the version of Pin that was used to report perfor-

mance numbers in the PLDI paper [34].
• DynamoRIO version 0.9.4
• Valgrind version 2.4.0, with null instrumentation (Nulgrind)

Except in the case of multithreaded benchmarks, we show the
performance of Pin without the -mt option which is used to enable
the execution of multi-threaded programs.

4.2 Single-Threaded Comparative Performance

Figure 5 shows the performance of HDTrans on the SPEC INT2000
version 1.3 benchmarks [48] in comparison to DynamoRIO and
Pin. HDTrans compares favorably with the leading dynamic trans-
lation systems in terms of baseline execution translation speed.

 HDTrans
 Dynamorio
 Pin
 Pin−PLDI

 50%

 100%

 150%

 200%

 250%

 300%

 350%

 400%

twolfbzip2vortexgapperleonparsercraftymcfgccvprgzip

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

878% 740%

Figure 5. SPEC INT2000 benchmarks.

Benchmarks such as SPEC INT2000 are designed to measure
the performance of relatively small codes with hot working sets,

and therefore tend to minimize translation overheads. Pervasive
instrumentation applications, such as Program Shepherding [32],
run in environments where a significant proportion of programs
may be dominated by translation startup costs.

In consequence, it is doubtful that these results accurately pre-
dict the performance of machine-level dynamic translators in pro-
duction use.

4.3 Multi-Threaded Comparative Performance

 HDTrans
 Pin
 DynamoRIO

 50%

 100%

 150%

 200%

 250%

 300%

 350%

ammpartfma3dapsiequakeapplumgridswimwupwise

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Figure 6. Multi threaded performance using SPECOMP medium
benchmarks. Pin-PLDI does not support multi-threading.
DynamoRIO failed to run swim, applu and apsi

Figure 6 shows the performance of HDTrans on SPEC OMP2001
version 3.00 benchmarks [47] in comparison to Pin (executed with
the -mt option). We were unable to get two of the benchmarks
– 318.galgel m and 326.gafort m to build and to run cor-
rectly, and they are not reported in Figure 6. This also meant that
we could not run the benchmarks with the --reportable flag,
but had to instead use --ignore errors flag. Discounting this,
everything else was compatible with a reportable run.

4.4 Evaluation of HDTrans Optimizations

HDTrans (all optimizations enabled)
No EFLAGS avoidance
No sieve
No new bb following Jcc
No return−cache
 Unified call and jump sieve

 50%

 100%

 150%

 200%

 250%

 300%

 350%

 400%

 450%

 500%

twolfbzip2vortexgapPerleonparsercraftymcfgccvprgzip

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

1,182% 1,472%

Figure 7. SPEC INT2000 benchmarks with optimizations selec-
tively disabled.

Figure 7 shows the performance of HDTrans on SPEC INT2000
benchmark with individual optimizations disabled one at a time.
These measurements demonstrate that the sieve, return cache and
using code sequences that do not modify eflags are significant opti-
mizations, and that maximizing basic block reuse is an effective

181

choice for indirection intensive programs. The reuse result sug-
gests that previously published arguments favoring trace construc-
tion may not be compelling in environments where simplicity and
maintainability are paramount concerns, and may not be necessary
for simpler instrumentation applications.

4.5 Instrumentation Overhead

 HDTrans
Pin
Pin−PLDI

 100%

 200%

 300%

 400%

 500%

 600%

 700%

 800%

twolfbzip2vortexgapPerleonparsercraftymcfgccvprgzip

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

1,094% 981%

Figure 8. Performance with basic block counting. Pin-PLDI failed
to run 175.vpr and 300.twolf with basic block counting

Figure 8 shows the performance of HDTrans on basic block
counting. As the number of saves and restores of the eflags is
the dominating factor in the performance of instrumented code, our
basic block counting scheme performs a condition code liveness
analysis using the information readily stored in our decode-table.
If we encounter an instruction that modifies condition codes any-
where in the basic, we emit the increment before that instruction. If
no such instruction is encountered until the end of the basic block,
we emit the increment just before the branch (direct, conditional
or indirect jmps, calls and rets) bracketed by code that saves
and restores the condition codes. This emission policy is imple-
mented explicitly by the instrumentation code. In the case of Pin,
we used the instrumentation code that was used in the PLDI pa-
per [34], which we obtained from the Pin group.

HDTrans performs favorably when compared to current leading
dynamic instrumentation systems. The average overhead of instru-
mentation in HDTrans is 103% as opposed to 282% in the case of
Pin.

4.6 CPU Sensitivity

Dynamic translation can be sensitive to particular processor imple-
mentations. In particular, differences in branch prediction, branch
caching, and return address caching can interact with the trace con-
struction strategy. Moreover, some systems may use documented
or undocumented features peculiar to a processor and / or compiler
implementation. For example, Pin does not support AMD proces-
sors.

Figure 9 shows the overhead of HDTrans measured on several
CPU implementations using the SPEC INT2000 benchmark suite.
Interestingly, there is no conclusive difference in performance be-
tween these platforms.

4.7 Cold Cache Performance

It has become common practice to evaluate dynamic translation
systems using benchmarks such as SPEC INT2000 [14, 8, 34, 41,
32, 46]. Instrumentation using HDTrans shows that most of these
benchmarks converge rapidly on a stable state that runs entirely out
of the translation cache. In consequence, this approach evaluates

Machine−0
Machine−1
Machine−2
Machine−3

 60%

 80%

 100%

 120%

 140%

 160%

 180%

 200%

twolfbzip2vortexgapPerleonparsercraftymcfgccvprgzip

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Figure 9. Overhead of HDTrans for the SPEC INT2000 bench-
marks measured on different machines.

translators under ideal conditions, and does not effectively reveal
the impact of translator overhead. Especially in ubiquitous applica-
tion, evaluation of “cold cache” overheads is important.

To evaluate the cold cache performance of HDTrans, we mea-
sured the performance of a number of short-running programs that
are dominated by startup initialization costs or interpretation:

• cc1 (v 4.0.2) compiling a 390 line Huffman encoder,
• bzip2 -t on a 4KB bzip file,
• the clear command,
• the ls command on /bin,
• emacs in batch mode directed to load a file, enter a highlight-

ing mode, and quit, and
• perl (v 5.8.6) run on a 200 line script that generates random

passwords

Figure 10 shows the comparative performance of HDTrans for
these benchmarks. It should be noted that recent versions of gcc
exhibit dramatically lower code reuse than the older version used in
SPEC INT2000, and consequently stress dynamic translators much
harder.

HDTrans
Dynamorio
Valgrind
Pin

 0%

 500%

 1,000%

 1,500%

 2,000%

 2,500%

lsperlemacsclearbzip2cc1

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

20,091% 4,596%
52,856%

28,322% 4,408%
63,328%

Figure 10. Overhead for some cold cache benchmarks.
DynamoRIO failed to run emacs for this test.

4.8 Translation vs. Execution Overhead

The overhead of dynamic translation can be divided into the cost
of the translation process itself, and the overhead introduced by
the translated code. To isolate these effects, we modified HDTrans

182

HDTrans
HDTrans−reloaded

 0%

 50%

 100%

 150%

 200%

 250%

 300%

 350%

lsperlemacsclearbzip2cc1

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Figure 11. Overhead of HDTrans-pure and HDTrans-reloaded for
some cold cache benchmarks.

to dump and reload its translation cache and associated metadata.
To perform this comparison, Linux address space randomization is
disabled. Figure 11 shows the performance of the purely dynamic
version of HDTrans and the reloaded version for programs evalu-
ated in the previous section. With the translation cache reloaded,
very few basic blocks are dynamically translated in the second ex-
ecution. Measurement shows that the overhead of the reload itself
is negligible. As expected, higher execution overhead is incurred
in programs having a high dynamic frequency of indirect control
transfers, and the translation overhead is highest for programs ex-
hibiting the least dynamic code reuse. A detailed analysis of the
translation and execution time overheads in the case of Pin can be
found in [39].

4.9 Utility of Static Pretranslation

The idea of using a semi-static approach to binary translation dates
back to May’s work on MIMIC [35]. FX!32 [30] uses a combi-
nation of emulation and profile driven binary translation for trans-
lating x86 binaries to Alpha systems. In HDTrans we considered
employing a hybrid approach to translation, in which we statically
pre-warm the basic block cache using a best-effort static disassem-
bly and code-emission loop. While static disassembly of x86 code
is imprecise, falsely identified basic blocks are dynamically un-
reached (therefore harmless), and missing basic blocks can be gen-
erated at runtime by the dynamic translator. For some programs,
static pretranslation might provide substantial performance gains
by recognizing common compiler idioms (e.g. switch statements
or vtable dispatch) and eliminating the need for most exit stubs.

Using a minor variant of Kruegel et al.’s obfuscated disassem-
bly techniques [33] (we assume that a call is followed by instruction
bytes), we have confirmed that over 98% (often more than 99%)
of the dynamically executed basic blocks can be statically iden-
tified and pretranslated. Therefore, the reloaded bar in Figure 11
is a reliable estimate of the performance of a hybrid translator pro-
vided that no substantial overhead is incurred when loading the stat-
ically generated precache in an unconstrained operating environ-
ment. The HDTrans source tree includes an implementation of this
pretranslation strategy. Support for relocating reloading is currently
unimplemented, because a substantial intrinsic overhead seems to
exist in reloading.

The difficulty lies in the widespread use of address space ran-
domization, which implies that absolute addresses embedded in the
load image must be relocated when the image is loaded. Unfortu-
nately, each page modified during reload incurs a demand copy-on-
write (COW) overhead. Similar overheads are well known in the

garbage collection literature, and have led to the abandonment of
MMU-based guard pages in modern garbage collectors.

If a PC-relative addressing mode was available it would be pos-
sible to emit position independent code in the BBcache, and thus
facilitate reuse without regard to address space randomization. Un-
fortunately, the IA-32 architecture (along with most other archi-
tectures) does not provide such an addressing mode. In this case,
it is necessary to embed absolute addresses in the BBcache. In
HDTrans, emitting such absolute addresses is necessary for opti-
mizing the call/return sequence as described in section 3.7. More
importantly, instrumentation code that is inlined into the BBcache
also relies on the emission of absolute addresses (ex: basic block
counting).

Our results suggest that any static reuse strategy will substan-
tially exceed the cost of re-running HDTrans in most cases. We
therefore believe that static pretranslation is effective only for opti-
mization or instrumentation strategies where the cost of translation
is a dominating factor and repeated reuse is anticipated.

5. Related Work
We have discussed DynamoRIO and Pin extensively, and compared
their techniques and performance with HDTrans throughout the pa-
per. In this section we address other related systems. Readers inter-
ested in further information about dynamic translation systems and
other binary rewriting tools should refer Chapter 10 of Breuning’s
dissertation [6]. The papers on Walkabout [14] and Dynamo[3] give
particularly clear descriptions of how earlier, high-performance
translators were constructed.

Valgrind Valgrind [36] is a dynamic binary analysis tool for pro-
filing and debugging applications. It constructs a full intermedi-
ate representation of traces using an IA32-specialized intermediate
form. This form is instrumented according to the requirements of
the user-selected tracing “skin.” Following instrumentation, the in-
termediate form is optimized and native code is re-emitted. In com-
parison to tools providing a per-instruction instrumentation API,
the Valgrind intermediate form is both rich and complex, but en-
ables more invasive profiling to be performed with tolerable over-
head. The Valgrind intermediate form is particularly well suited for
tracing of memory references, cache behavior, and related dynamic
performance characteristics that depend on deterministic but stati-
cally unpredictable attributes of the execution. Valgrind can also be
used to perform use-before-store checking.

VMWare VMWare [17] is a full-system virtual machine emula-
tor that uses a combination of native execution for non-privileged
code and dynamic translation to emulate privileged-mode behavior.
Prior to the arrival of Intel’s “Vanderpool” [45] and AMD’s “Paci-
fica” [1] technologies, VMWare was the highest performance full-
system emulator for IA32 in widespread use. VMWare, Inc. asserts
that systems emulated by VMWare run at up to 95% of the speed of
the underlying system, which implies an extremely low translation
overhead for supervisor-mode code. This is consistent with the per-
formance results reported in Figure 9. Lightweight, same-machine
translation is ideally suited to codes (such as operating systems)
that do not make intensive use of indirect control flow. When the
added facts that (a) operating system execution accounts for less
than 50% of total instructions on a normal system, and (b) operat-
ing systems make extensive reuse of code, it is conceivable that the
VMWare-asserted overheads might be achievable.

While the VMWare license precludes reporting performance
figures, our experiences and the experiences of the Xen [19] group
have been much less favorable in practice. The most likely expla-
nation for this is that translation for supervisor-mode code requires

183

additional checks, and therefore requires a somewhat heavier trans-
lation mechanism than the one used by HDTrans.3

QEMU Bellard’s QEMU [5] provides cross-machine full system
emulation using dynamic translation. The current implementation
can, for example, emulate a SPARC guest system running on an
IA32 host. This is achieved by precompiling native code to em-
ulate common target instruction sequences and “stitching” these
sequences together to translate instructions into the QEMU ba-
sic block cache. A particularly clever implementation technique in
QEMU is taking advantage of the native compiler to construct the
target code sequences automatically, but this technique relies on as-
sumptions about compiler register usage, and has recently proven
to be fragile.
’C The ’C (pronounced “tick see”) system [22] builds on Engler’s
previous work on low-overhead code generation [24, 21, 23] to
allow compiler-generated dynamic code generation. For example,
the ’C system defers decisions about loop unrolling until run-time
when loop bounds are available. Instead of generating code to
execute the unrolled loop, the ’C compiler may alternatively emit
code that generates the loop code at run time and then executes
that code. Because the technique is fully compiler directed, it is not
truly a dynamic translation strategy.
Strata The Strata system [41] explores “continuous compila-
tion,” an approach in which the compiler and the dynamic trans-
lator collaborate to generate code at the most appropriate time.
The translator performs runtime optimization, but may do so us-
ing compiler-generated hints or directives. As a concrete example
of one place where this approach can significantly reduce run-time
performance overheads, the Strata runtime translator can be given
direct knowledge of many dynamic branch targets, and therefore
should not exhibit the types of performance overhead seen for eon
or perlbmk in Figure 5.

6. Conclusion
The key to dynamic translator performance is balancing the over-
head of translation against the performance improvement in trans-
lated code. HDTrans shows that satisfactory performance can be
achieved using a much simpler translation strategy than has previ-
ously been assumed. HDTrans emits code that is competitive with
the best existing translators, but has significantly lower startup and
translation overheads.

If the dynamic translator will be used in a ubiquitous transla-
tion application, cold cache performance must be considered. Most
of the benchmarks in conventional benchmark suites such as SPEC
INT2000 are designed to evaluate hot cache performance of stat-
ically optimized code. In consequence, they provide an unrealis-
tically favorable assessment of dynamic translator performance –
the case where translation costs are effectively irrelevant. Because
of its lightweight translation approach, HDTrans demonstrates sig-
nificantly better cold cache performance than DynamoRIO or Pin.

The success of the SYRAH group in adapting HDTrans for re-
verse execution and run-time security policy enforcement tends to
support our view that exposing a lower-level translator interface
facilitates instrumentation. The reverse execution work, in particu-
lar, requires changes in the low-level code generation strategy that
would be difficult in a “closed” translation infrastructure.

Several authors have speculated on the possible benefit of static
pre-warming of the dynamic translation cache. Our examination of

3 This assessment considers only 32-bit supervisor code. When executing
16-bit code or code with active segmentation, the VMWare translator must
emit code to emulate the translation subsystem, which introduces noticeable
degradation. As a practical matter this has little relevance to the overall
performance of VMWare, because such code is dynamically rare and occurs
primarily at boot time.

translation overheads vs. execution overheads and the comparative
cost of reloading the translation cache suggest that cache pre-
warm is unlikely to improve the performance of a lightweight
instrumentation infrastructure.

Source code for the HDTrans translator may be downloaded
from http://srl.cs.jhu.edu. The version reported here is
version 0.3.

Acknowledgments
Kim Hazelwood, our shepherd, provided many useful suggestions
which significantly improved the paper you now read. Christopher
Kruegel graciously allowed us to use his obfuscated binary disas-
sembler implementation as a starting point for our static translator.
Vijay Janapa Reddi provided a generous amount of time confirming
our understanding of Pin, and helping us ensure that we achieved a
fair comparative measurement. Robert Cohn made available the lat-
est version of Pin to help us resolve compatibility issues in Fedora
Core 4. Jack Davidson inspired us to complete the multithreading
support and look further into signal handler instrumentation. Derek
Bruening clarified certain issues about DynamoRIO. Michael Scott
Doerrie provided useful feedback and comments about this paper.

Chi-Keung Luk of Intel was kind enough to supply a copy of
the Pin version used for their PLDI paper [34], and assist us in
benchmarking it accurately. Sandeep Sarat assisted in setting up
experiments for profiling and measurement. Harish Patil of Intel
clarified some issues about SPECOMP.

References
[1] Advanced Micro Devices, Inc. AMD64 Architecture Tech Docs,

2005. http://www.amd.com/us-en/Processors/
TechnicalResources/0,,30 182 739 7044,00.html.

[2] ALTMAN, E., GSCHWIND, M., AND SATHAYE, S. BOA: The
architecture of a binary translation processor. In Research Report
RC21665 IBM T.J. Watson Research Center (2000).

[3] BALA, V., DUESTERWALD, E., AND BANERJIA, S. Dynamo: A
transparent dynamic optimization system. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation (June 2000), pp. 1–12.

[4] BELL, J. R. Threaded Code. In Communications of the ACM (June
1973), no. 6, pp. 370–372.

[5] BELLARD, F. QEMU, a Fast and Portable Dynamic Translator. In
Proc. 2005 USENIX Annual Technical Conference, FREENIX Track
(2005), pp. 41–46.

[6] BREUNING, D. L. Efficient, Transparent, and Comprehensive
Runtime Code Manipulation. PhD thesis, Massachusetts Institute
of Technology, September 2004.

[7] BRUENING, D., AND AMARASINGHE, S. Maintaining Consistency
and Bounding Capacity of Software Code Caches. In Proc.3rd
International Symposium on Code Generation and Optimization
(CGO 2006) (Mar. 2005), pp. 74–85.

[8] BRUENING, D., GARNETT, T., AND AMARASINGHE, S. An
Infrastructure for Adaptive Dynamic Optimizations. In Proc.
International Symposium on Code Generation and Optimization
(2003), pp. 265–275.

[9] BRUENING, D., KIRIANSKY, V., GARNETT, T., AND BANERJIA,
S. Thread-Shared Software Code Caches. In Proc.4th International
Symposium on Code Generation and Optimization (CGO 2006) (Mar.
2006).

[10] BUNGALE, P., SRIDHAR, S., AND SHAPIRO, J. S. Low-Complexity
Dynamic Translation in VDebug. Tech. Rep. SRL2004-02, Johns
Hopkins University Systems Research Laboratory, May 2004.

[11] BUNGALE, P., SRIDHAR, S., AND SHAPIRO, J. S. Supervisor-Mode
Virtualization for x86 in VDebug. Tech. Rep. SRL2004-01, Johns
Hopkins University Systems Research Laboratory, May 2004.

184

[12] CHEN, W. K., LERNER, S., CHAIKEN, R., AND GILLIES, D. M.
Mojo: A Dynamic Optimization System. In ACM Workshop on
Feedback-directed and Dynamic Optimization (FDDO-3) (Dec
2000).

[13] CIFUENTES, C., AND EMMERIK, M. V. UQBT: Adaptable binary
translation at low cost. In IEEE Computer, 33(3).

[14] CIFUENTES, C., LEWIS, B., AND UNG, D. Walkabout–A
Retargetable Dynamic Binary Translation Framework. In Technical
report 2002-106, Sun Microsystems Laboratories (January 2002).

[15] CMELIK, B., AND KEPPEL, D. Shade: A fast instruction- set
simulator for execution profiling. In ACM SIGMETRICS Conf.
on the Measurement and Modeling of Computer Systems (1994),
pp. 128–137.

[16] DEUTSCH, L. P., AND SCHIFFMAN, A. M. Efficient Implementation
of the Smalltalk-80 System. In Proc. ACM Symposium on Principles
of Programming Languages (Jan. 1984), pp. 297–302.

[17] DEVINE, S., BUGNION, E., AND ROSENBLUM, M. Virtualization
System Including a Virtual Machine Monitor for a Computer with
a Segmented Architecture. In United States Patent 6,397,242 (May
2002).

[18] DEWAR, R. B. Indirect Threaded Code. In Communications of the
ACM (June 1975), no. 6, pp. 330–331.

[19] DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO, A.,
PRATT, I., WARFIELD, A., BARHAM, P., AND NEUGEBAUER, R.
Xen and the Art of Virtualization. In Proc. 2003 ACM Symposium on
Operating Systems Principles (Oct. 2003), pp. 164–177.

[20] EBCIOGLU, K., AND ALTMAN, E. DAISY: Dynamic Compilation
for 100% Architectural Compatibility. In In Proc. 24th International
Symposium on Computer Architecture (June 1997), pp. 26–38.

[21] ENGLER, D. VCODE: A Retargetable, Extensible, Very Fast
Dynamic Code Generation System. In Proc. 23rd Annual ACM
Conference on Programming Language Design and Implementation
(Philadelphia, PA, USA, May 1996).

[22] ENGLER, D., HSIEH, W. C., AND KAASHOEK, M. F. ’C: A
Language for High-Level, Efficient, and Machine-Independent
Dynamic Code Generation. In Proc. 22nd Annual Symposium on
Principles of Programming Languages (Dec. 1995), pp. 131–144.

[23] ENGLER, D., AND KAASHOEK, M. F. DPF: Fast, Flexible
Message Demultiplexing using Dynamic Code Generation. In Proc.
SIGCOMM ’96 Conference (Stanford, CA, USA, Aug. 1992), pp. 53–
59.

[24] ENGLER, D., AND PROEBSTING, T. A. DCG: An Efficient,
Retargable Dynamic Code Generation System. In Proc. ASPLOS-VI
(Oct. 1994), pp. 238–245.

[25] HAZELWOOD, K. Code Cache Management in Dynamic Optimiza-
tion Systems. PhD thesis, Harvard University, Cambridge, MA, May
2004.

[26] HAZELWOOD, K., AND COHN, R. A Cross-Architectural Frame-
work for Code Cache Manipulation. In 4th Annual International
Symposium on Code Generation and Optimization (March 2006).

[27] HAZELWOOD, K., AND SMITH, J. E. Exploring Code Cache
Eviction Granularities in Dynamic Optimization Systems. In
2nd Annual International Symposium on Code Generation and
Optimization (March 2004), pp. 89–99.

[28] HAZELWOOD, K., AND SMITH, M. D. Code Cache Management
Schemes for Dynamic Optimizers. In Proc. Sixth Annual Workshop
on Interaction between Compilers and Computer Architectures (Feb.
2002), pp. 102–110.

[29] HAZELWOOD, K., AND SMITH, M. D. Generational Cache
Management of Code Traces in Dynamic Optimization Systems.
In 36th Annual International Symposium on Microarchitecture (San
Diego, CA, December 2003), pp. 169–179.

[30] HOOKWAY, R. J., AND HERDEG, M. A. DIGITAL FX!32:
Combining Emulation and Binary Translation. In Digital Technical
Journal, 9(1):3–12 (1997).

[31] HUNTER, C., AND BANNING, J. DOS at RISC. In Byte Magazine
(Nov. 1989), pp. 361–368.

[32] KIRIANSKY, V., BRUENING, D., AND AMARASINGHE, S. Secure
Execution via Program Shepherding. In 11th USENIX Security
Symposium (August 2002).

[33] KRUEGEL, C., ROBERTSON, W., VALEUR, F., AND VIGNA, G.
Static Disassembly of Obfuscated Binaries. In Proceedings of
USENIX Security 2004 (August 2004).

[34] LUK, C. K., COHN, R. S., MUTH, R., PATIL, H., KLAUSER, A.,
LOWNEY, P. G., WALLACE, S., REDDI, V. J., AND HAZELWOOD,
K. Pin: Building Customized Program Analysis Tools With
Dynamic Instrumentation. In Programming Languages Design and
Implementation 2005 (June 2005), pp. 190–200.

[35] MAY, C. MIMIC: A fast System/370 simulator. In Proc.
SIGPLAN’87 Symposium on Interpreters and Interpretive Techniques
(June 1987), pp. 1–13.

[36] NETHERCOTE, N. Dynamic Binary Analysis and Instrumentation.
PhD thesis, University of Cambridge, November 2004.

[37] OPERATION, A. U. S. System V Interface Definition. 1989.

[38] RAU, B. R. Levels of Representation of Programs and the
Architecture of Universal Host Machines. In Proc. 11th Annual
Workshop on Microprogramming (1978), pp. 67–79.

[39] REDDI, V. J., CONNORS, D. A., AND COHN, R. S. Persistence in
Dynamic Code Transformation Systems. In Proc. 2005 Workshop on
Binary Instrumentation and Analysis (Sept. 2005).

[40] SCOTT, K., KUMAR, N., CHILDERS, B., DAVIDSON, J., AND
SOFFA, M. Overhead Reduction Techniques for Software Dynamic
Translation. In NSF Workshop on Next Generation Software (April
2004).

[41] SCOTT, K., KUMAR, N., VELUSAMY, S., CHILDERS, B., DAVID-
SON, J., AND SOFFA, M. Retargetable and Reconfigurable Software
Dynamic Translation. In ACM SIGMICRO Int’l. Conf. on Code
Generation and Optimization (March 2003).

[42] SHAPIRO, J. Debug: The Next Generation UNIX Debugger, 1989.

[43] SHAPIRO, J. S., NORTHUP, E., DOERRIE, M. S., AND SRID-
HAR, S. Coyotos Microkernel Specification, 2006. http://
www.coyotos.org/.

[44] SHAPIRO, J. S., SMITH, J. M., AND FARBER, D. J. EROS: A fast
capability system. In In Proc. 17th ACM Symposium on Operating
Systems Principles (Dec. 1999), pp. 170–185.

[45] SHIVELEY, R. Enhanced Virtualization on Intel Architecture-based
Servers. In Technology@Intel Magazine (april 2005).

[46] SRIDHAR, S., SHAPIRO, J. S., AND BUNGALE, P. P. HDTrans:
A Low-Overhead Dynamic Translator. In Proc. 2005 Workshop on
Binary Instrumentation and Analysis (Sept. 2005).

[47] STANDARD PERFORMANCE EVALUATION CORPORATION.
SPEC OMP OpenMP Benchmark Suite, version 3.0, Dec. 2003.
http://www.spec.org/omp.

[48] STANDARD PERFORMANCE EVALUATION CORPORATION.
SPEC CPU2000 Benchmark Suite, version 1.3, Nov. 2005.
http://www.spec.org/ osg/cpu2000.

[49] WITCHEL, E., AND ROSENBLUM, M. Embra: Fast and exible
machine simulation. In Measurement and Modeling of Computer
Systems (1996), pp. 68–79.

185

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

