
Outline

1 Processes and Threads

2 Synchronization

3 Memory Management

1 / 45

Processes

• A process is an instance of a program running
• Modern OSes runmultiple processes simultaneously
• Very early OSes only ran one process at a time
• Examples (can all run simultaneously):

- emacs – text editor
- firefox – web browser

• Non-examples (implemented as one process):
- Multiple firefox windows or emacs frames (still one process)

• Why processes?
- Simplicity of programming
- Speed: Higher throughput, lower latency

2 / 45

A process’s view of the world

• Each process has own view of machine
- Its own address space
- Its own open files
- Its own virtual CPU (through preemptive
multitasking)

• *(char *)0xc000 di�erent in P1 & P2

3 / 45

System Calls

• Systems calls are the interface between processes and the
kernel

• A process invokes a system call to request operating system
services

• fork(), waitpid(), open(), close()
• Note: Signals are another commonmechanism to allow the
kernel to notify the application of an important event (e.g.,
Ctrl-C)
- Signals are like interrupts/exceptions for application code

4 / 45

System Call So�ware Stack

Application

Syscall Library unprivileged
code

privileged
code

Kernel

1

2

3

4

5

5 / 45

Kernel Privilege

• Hardware provides two or more privilege levels (or
protection rings)

• Kernel code runs at a higher privilege level than applications
• Typically called Kernel Mode vs. User Mode
• Code running in kernel mode gains access to certain CPU
features
- Accessing restricted features (e.g. Co-processor 0)
- Disabling interrupts, setup interrupt handlers
- Modifying the TLB (for virtual memory management)

• Allows the kernel to isolate processes from one another and
from the kernel
- Processes cannot read/write kernel memory
- Processes cannot directly call kernel functions

6 / 45

How System Calls Work

• The kernel only runs through well defined entry points
• Interrupts

- Interrupts are generated by devices to signal needing attention
- E.g. Keyboard input is ready

• Exceptions
- Exceptions are caused by the processor executing code
- E.g. Divide by zero, page fault, etc.

7 / 45

Interrupts

• An interrupt or exception causes the hardware to transfer
control to a fixed location in memory, where the interrupt
handler is located

• Interrupt handlers are part of the kernel
• When an interrupt occurs, the processor switches to kernel
mode (or privilegedmode) allowing the kernel to take over
- This is how the kernel gets run with privileges
- Interrupts can still be delivered while running the kernel
- Exception is that spinlocks disabled interrupts

8 / 45

Exceptions

• Exceptions are conditions that occur during the execution of
a program (or kernel) that require attention
- E.g. divide by zero, page faults, illegal instructions, etc.

• Exceptions are detected by the CPU during execution
• CPU handles exceptions just like interrupts by transferring
control to the kernel
- Control is transferred to a fixed location where the exception
handler is located

- Processor is switches into privilegedmode

9 / 45

MIPS Exception Vectors

EX_IRQ 0 /* Interrupt */
EX_MOD 1 /* TLB Modify (write to read-only page) */
EX_TLBL 2 /* TLB miss on load */
EX_TLBS 3 /* TLB miss on store */
EX_ADEL 4 /* Address error on load */
EX_ADES 5 /* Address error on store */
EX_IBE 6 /* Bus error on instruction fetch */
EX_DBE 7 /* Bus error on data load *or* store */
EX_SYS 8 /* Syscall */
EX_BP 9 /* Breakpoint */
EX_RI 10 /* Reserved (illegal) instruction */
EX_CPU 11 /* Coprocessor unusable */
EX_OVF 12 /* Arithmetic overflow */

• Interrupts, exceptions, and system calls are handled through
the samemechanism

• Some processors specially handle system calls for
performance reasons

10 / 45

How System Calls Work Continued

• System calls are performed by triggering an exception
• Applications execute the syscall instruction to trigger the
EX_SYS exception
- Many processors include a similar instruction
- For example, x86 contains the syscall and/or sysenter
instructions, but with an optimized implementation

11 / 45

Hardware Handling

• Exception handlers in the R3000 are at fixed locations
• The processor jumps to these addresses whenever an
exception is encountered
- 0x8000_0000 User TLB Handler
- 0x8000_0080 General Exception Handler

• Remember that in MIPS 0x8000_0000-0x9FFF_FFFF is mapped
to the first 512 MBs of physical memory.

12 / 45

System Call Operations

• Application calls into C library (e.g. calls write())
• Library executes the syscall instruction
• Kernel exception handler 0x8000_0080 runs

- Switch to kernel stack
- Create a trap frame to save program state
- Determine the type of system call
- Determine which system call is being invoked
- Process call
- Restore application state from trap frame
- Return from exception

• Library wrapper function returns to application

13 / 45

Application Binary Interface/Calling Conventions

• Each architecture and OS define calling conventions
• Describes how registers are used in function calls and system
calls

• MIPS+OS/161 Calling Conventions
- System call number in v0
- First four arguments in a0, a1, a2, a3
- Remaining arguments passed on stack
- Result success/fail in a3 and return value/error code in v0

• Number for each system call in kern/include/kern/syscall.h
#define SYS_fork 0
#define SYS_vfork 1
#define SYS_execv 2
#define SYS__exit 3
#define SYS_waitpid 4
#define SYS_getpid 5
...

14 / 45

Creating processes

• int fork (void);

- Create new process that is exact copy of current one
- Returns process ID of new process in “parent”
- Returns 0 in “child”

• int waitpid (int pid, int *stat, int opt);

- pid – process to wait for, or -1 for any
- stat – will contain exit value, or signal
- opt – usually 0 or WNOHANG
- Returns process ID or -1 on error

15 / 45

Deleting processes

• void exit (int status);

- Current process ceases to exist
- status shows up in waitpid (shi�ed)
- By convention, status of 0 is success, non-zero error

• int kill (int pid, int sig);

- Sends signal sig to process pid
- SIGTERMmost common value, kills process by default
(but application can catch it for “cleanup”)

- SIGKILL stronger, kills process always

• pid_t getpid(void);

- Get the current process ID

• pid_t getppid(void);

- Get the process ID of the parent process
16 / 45

Running programs

• int execve (char *prog, char **argv, char **envp);

- prog – full pathname of program to run
- argv – argument vector that gets passed to main
- envp – environment variables, e.g., PATH, HOME

• Generally called through a wrapper functions
- int execvp (char *prog, char **argv);
Search PATH for prog, use current environment

- int execlp (char *prog, char *arg, ...);
List arguments one at a time, finish with NULL

17 / 45

Error returns

• What if open fails? Returns -1 (invalid fd)
• Most system calls return -1 on failure

- Specific kind of error in global int errno

• #include <sys/errno.h> for possible values
- 2 = ENOENT “No such file or directory”
- 13 = EACCES “Permission Denied”

• perror function prints human-readable message
- perror ("initfile");
→ “initfile: No such file or directory”

• Details:
- Typically errno is a thread local variable
- FreeBSD: C macro that calls __errno() to return the result

18 / 45

Implementing processes

• Keep a data structure for each process
- Process Control Block (PCB)
- Called proc in Unix, task_struct in Linux

• Tracks state of the process
- Running, ready (runnable), waiting, etc.

• Includes information necessary to run
- Registers, virtual memory mappings, etc.
- Open files (including memory mapped files)

• Various other data about the process
- Credentials (user/group ID), signal mask,
controlling terminal, priority, accounting
statistics, whether being debugged, which
system call binary emulation in use, . . .

Open files

Registers

Program counter

Address space
(VM data structs)

Process state
Process ID
User id, etc.

PCB

19 / 45

Process states

new

ready running

terminated

waiting

admitted

interrupt

scheduler
dispatch exit

I/O or event
completion

I/O or event wait

• Process can be in one of several states
- new & terminated at beginning & end of life
- running – currently executing (or will execute on kernel return)
- ready – can run, but kernel has chosen di�erent process to run
- waiting – needs async event (e.g., disk operation) to proceed

• Which process should kernel run?
- if 0 runnable, run idle loop (or halt CPU), if 1 runnable, run it
- if>1 runnable, must make scheduling decision

20 / 45

Preemption

• Can preempt a process when kernel gets control
• Running process can vector control to kernel

- System call, page fault, illegal instruction, etc.
- May put current process to sleep—e.g., read from disk
- Maymake other process runnable—e.g., fork, write to pipe

• Periodic timer interrupt
- If running process used up quantum, schedule another

• Device interrupt
- Disk request completed, or packet arrived on network
- Previously waiting process becomes runnable
- Schedule if higher priority than current running proc.

• Changing running process is called a context switch

21 / 45

Context switch

22 / 45

Context switch details

• Very machine dependent. Typical things include:
- Save program counter and integer registers (always)
- Save floating point or other special registers
- Save condition codes
- Change virtual address translations

• Non-negligible cost
- Save/restore floating point registers expensive

. Optimization: only save if process used floating point
- May require flushing TLB (memory translation hardware)

. HWOptimization 1: don’t flush kernel’s own data from TLB

. HWOptimization 2: use tag to avoid flushing any data
- Usually causes more cache misses (switch working sets)

23 / 45

Outline

1 Processes and Threads

2 Synchronization

3 Memory Management

24 / 45

Critical Sections

int total = 0;

void add() {
int i;
for (i=0; i<N; i++) {

total++;
}

}

void sub() {
int i;
for (i=0; i<N; i++) {

total--;
}

}

25 / 45

Critical Sections: Assembly Pseudocode

int total = 0;

void add() {
int i;
/* r8 := &total */
for (i=0; i<N; i++) {

lw r9, 0(r8)
add r9, 1
sw r9, 0(r8)

}
}

void sub() {
int i;
for (i=0; i<N; i++) {

lw r9, 0(r8)
sub r9, 1
sw r9, 0(r8)

}
} 26 / 45

Memory Model

• Sequential Consistency: statements execute in program order
• Compilers/HW reorder loads/stores for performance
• Language-level Memory Model

- C/Java: sequential consistency for race free programs
- Compiler must be aware of synchronization
- Language provides barriers and atomics

• Processor-level Memory Model
- TSO: Total Store Order - X86, SPARC (default)
- PSO: Partial Store Order - SPARC PSO
- RMO: Relaxed Memory Order - Alpha, POWER, ARM, PA-RISC,
SPARC RMO, x86 OOS

- Evenmore nuanced variations between architectures!

27 / 45

Mutexes

• Thread packages typically providemutexes:
void mutex_init (mutex_t *m, ...);
void mutex_lock (mutex_t *m);
int mutex_trylock (mutex_t *m);
void mutex_unlock (mutex_t *m);

- Only one thread acuires m at a time, others wait

28 / 45

Simple Spinlock in C11

typedef struct Spinlock {
alignas(CACHELINE) _Atomic(uint64_t) lck;

} Mutex;

void Spinlock_Init(Spinlock *m) {
atomic_store(&m->lck, 0);

}

void Spinlock_Lock(Spinlock *m) {
while (atomic_exchange(&m->lck, 1) == 1)

;
}

void Spinlock_Unlock(Spinlock *m) {
atomic_store(&m->lck, 0);

}

29 / 45

Atomics in C11

Where’s the barriers?
// Implicit Sequential Consistency
C atomic_load(const volatile A* obj);
// Explicit Consistency
C atomic_load_explicit(const volatile A* obj,

memory_order order);
// Barrier or Fence
void atomic_thread_fence(memory_order order);

enum memory_order {
memory_order_relaxed,
memory_order_consume,
memory_order_acquire,
memory_order_release,
memory_order_acq_rel,
memory_order_seq_cst

};

30 / 45

Pre-C11 Compilers (including OS/161)

• Use assembly routines for compiler barriers:
- asm("" ::: "memory");
- Compiler will not reorder loads/stores nor cache values

• Use volatile keyword
- volatile originally meant for accessing device memory
- loads/stores to volatile variables will not be reordered with
respect to other volatile operations

- Use of volatile is deprecated onmodern compilers
- volatile operations are not atomics!
- Use volatilewith inline assembly to use atomics

31 / 45

Spinlocks in OS/161

struct spinlock {
volatile spinlock_data_t lk_lock;
struct cpu *lk_holder;

}

void spinlock_init(struct spinlock *lk);
void spinlock_acquire(struct spinlock *lk);
void spinlock_release(struct spinlock *lk);

• Spinlocks based on using spinlock_data_testandset
• Spinlocks don’t yield CPU, i.e., they spin
• Raise the interupt level to prevent preemption

32 / 45

MIPS Atomics

• Load Linked ll: Loads a value andmonitors memory for
changes

• Store Conditional sc: Stores if memory didn’t change
• sc can fail for multiple reasons

- Value from llwasmodified by another processor
- An interrupt preempted the thread between ll and sc

• Otherwise scwill succeed returning 1
• On failure we can retry the operation
• Powerful primitives

- Can implement any read-modify-write operation
- For example, atomic add or increment
- Some architectures are implemented this way internally

33 / 45

Mutex Locks

• Provide mutual exclusion like spinlocks
• Yield the CPUwhen waiting on the lock
• Mutex locks deal with priority inversion

- Problem: Low priority thread sleeps while holding lock then a high
priority thread wants the lock

- Mutex locks typically boost the priority of the lower thread to
unblock the higher thread

34 / 45

Wait Channels in OS/161

• Wait channels are used to implement thread blocking in
OS/161

• Many di�erent wait channels holding threads sleeping for
di�erent reasons

• Similar primitives exist in most operating systems
• void wchan_sleep(struct wchan *wc);

- blocks calling thread on wait channel wc
- causes a context switch, like thread_yield

• void wchan_wakeall(struct wchan *wc);
- Unblocks all threads sleeping on the wait channel

• void wchan_wakeone(struct wchan *wc);
- Unblocks one threads sleeping on the wait channel

• void wchan_lock(struct wchan *wc);
- Prevent operations on the wait channel
- More on this later

35 / 45

Producer

mutex_t mutex = MUTEX_INITIALIZER;

void producer (void *ignored) {
for (;;) {

item *nextProduced = produce_item ();

mutex_lock (&mutex);
while (count == BUFFER_SIZE) {
mutex_unlock (&mutex); /* <--- Why? */
thread_yield ();
mutex_lock (&mutex);

}

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;
mutex_unlock (&mutex);

}
}

36 / 45

Consumer

void consumer (void *ignored) {
for (;;) {

mutex_lock (&mutex);
while (count == 0) {
mutex_unlock (&mutex);
thread_yield ();
mutex_lock (&mutex);

}

item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;
mutex_unlock (&mutex);

consume_item (nextConsumed);
}

}

37 / 45

Condition variables

• Busy-waiting in application is a bad idea
- Consumes CPU even when a thread can’t make progress
- Unnecessarily slows other threads/processes or wastes power

• Better to inform scheduler of which threads can run
• Typically done with condition variables
• struct cond_t; (pthread_cond_t or cv in OS/161)
• void cond_init (cond_t *, ...);

• void cond_wait (cond_t *c, mutex_t *m);
- Atomically unlock m and sleep until c signaled
- Then re-acquire m and resume executing

• void cond_signal (cond_t *c);
void cond_broadcast (cond_t *c);
- Wake one/all threads waiting on c

38 / 45

http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_cond_destroy.html

Improved producer

mutex_t mutex = MUTEX_INITIALIZER;
cond_t nonempty = COND_INITIALIZER;
cond_t nonfull = COND_INITIALIZER;

void producer (void *ignored) {
for (;;) {

item *nextProduced = produce_item ();

mutex_lock (&mutex);
while (count == BUFFER_SIZE)
cond_wait (&nonfull, &mutex);

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;
cond_signal (&nonempty);
mutex_unlock (&mutex);

}
}

39 / 45

Improved consumer

void consumer (void *ignored) {
for (;;) {

mutex_lock (&mutex);
while (count == 0)
cond_wait (&nonempty, &mutex);

item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;
cond_signal (&nonfull);
mutex_unlock (&mutex);

consume_item (nextConsumed);
}

}

40 / 45

Semaphores [Dijkstra]

• A Semaphore is initialized with an integer N
- sem_create(N)

• Provides two functions:
- sem_wait (S) (originally called P)
- sem_signal (S) (originally called V)

• Guarantees sem_waitwill return only Nmore times than
sem_signal called
- Example: If N == 1, then semaphore acts as amutex with sem_wait
as lock and sem_signal as unlock

41 / 45

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html

Using a Semaphore as a Mutex

• We can use a semaphore as amutex

semaphore *s = sem_create(1);

/* Acquire the lock */
sem_wait(s); /* Semaphore count is now 0 */
/* critical section */
/* Release the lock */
sem_signal(s); /* Seamphore count is now 1 */

• Couple important di�erences:
- Mutex requires the same thread to acquire/relase the lock
- Allows mutexes to implement priority inversion

42 / 45

Using a Semaphore as a Mutex

• We can use a semaphore as amutex

semaphore *s = sem_create(1);

/* Acquire the lock */
sem_wait(s); /* Semaphore count is now 0 */
/* critical section */
/* Release the lock */
sem_signal(s); /* Seamphore count is now 1 */

• Couple important di�erences:
- Mutex requires the same thread to acquire/relase the lock
- Allows mutexes to implement priority inversion

42 / 45

Semaphore producer/consumer

• Initialize full to 0 (block consumer when bu�er empty)
• Initialize empty to N (block producer when queue full)

void producer (void *ignored) {
for (;;) {

item *nextProduced = produce_item ();
sem_wait (&empty);
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
sem_signal (&full);

}
}
void consumer (void *ignored) {

for (;;) {
sem_wait (&full);
item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
sem_signal (&empty);
consume_item (nextConsumed);

}
} 43 / 45

Implementation of P and V

• See os161/kern/thread/synch.c
void P(struct semaphore *sem) {

spinlock_acquire(&sem->sem_lock);
while (sem->sem_count == 0) {

wchan_lock(sem->sem_wchan);
spinlock_release(&sem->sem_lock);
wchan_sleep(sem->sem_wchan);
spinlock_acquire(&sem->sem_lock);

}
sem->sem_count--;
spinlock_release(&sem->sem_lock);

}

void V(struct semaphore *sem) {
spinlock_acquire(&sem->sem_lock);
sem->sem_count++;
wchan_wakeone(sem->sem_wchan);
spinlock_release(&sem->sem_lock);

}
44 / 45

Outline

1 Processes and Threads

2 Synchronization

3 Memory Management

45 / 45

	Processes and Threads
	Synchronization
	Memory Management

