
Outline

1 Malloc and fragmentation

2 Exploiting program behavior

3 Allocator designs

4 Garbage collection

1 / 38



Dynamicmemory allocation

• Almost every useful program uses it
- Gives wonderful functionality benefits

. Don’t have to statically specify complex data structures

. Can have data grow as a function of input size

. Allows recursive procedures (stack growth)
- But, can have a huge impact on performance

• Today: how to implement it
- Lecture based on [Wilson 1995]

• Some interesting facts:
- Two or three line code change can have huge, non-obvious impact
on howwell allocator works (examples to come)

- Proven: impossible to construct an "always good" allocator
- Surprising result: a�er 35 years, memory management still poorly
understood

2 / 38



Why is it hard?

• Satisfy arbitrary set of allocation and frees.
• Easy without free: set a pointer to the beginning of some big
chunk of memory (“heap”) and increment on each allocation:

heap (free memory)
allocation

current free position

• Problem: free creates holes (“fragmentation”)
Result? Lots of free space but cannot satisfy request!

3 / 38



More abstractly

• What an allocator must do? NULL
freelist

- Track which parts of memory in use, which parts are free
- Ideal: no wasted space, no time overhead

• What the allocator cannot do?
- Control order of the number and size of requested blocks
- Know the number, size, & lifetime of future allocations
- Move allocated regions (bad placement decisions permanent)

malloc(20)? 20 10 20 10 20

• The core fight: minimize fragmentation
- App frees blocks in any order, creating holes in “heap”
- Holes too small? cannot satisfy future requests

4 / 38



What is fragmentation really?

• Inability to use memory that is free
• Two factors required for fragmentation
1. Di�erent lifetimes—if adjacent objects die at di�erent times, then
fragmentation:

. If all objects die at the same time, then no fragmentation:

2. Di�erent sizes: If all requests the same size, then no fragmentation
(that’s why no external fragmentation with paging):

5 / 38



Important decisions

• Placement choice: where in free memory to put a requested
block?
- Freedom: can select any memory in the heap
- Ideal: put block where it won’t cause fragmentation later
(impossible in general: requires future knowledge)

• Split free blocks to satisfy smaller requests?
- Fights internal fragmentation
- Freedom: can choose any larger block to split
- One way: choose block with smallest remainder (best fit)

• Coalescing free blocks to yield larger blocks

20 10 30 30 30

- Freedom: when to coalesce (deferring can save work)
- Fights external fragmentation

6 / 38



Impossible to “solve” fragmentation

• If you read allocation papers to find the best allocator
- All discussions revolve around tradeo�s
- The reason? There cannot be a best allocator

• Theoretical result:
- For any possible allocation algorithm, there exist streams of
allocation and deallocation requests that defeat the allocator and
force it into severe fragmentation.

• Howmuch fragmentation should we tolerate?
- LetM = bytes of live data, nmin = smallest allocation, nmax = largest –
Howmuch gross memory required?

- Bad allocator: M · (nmax/nmin)
. E.g., only ever use a memory location for a single size
. E.g., make all allocations of size nmax regardless of requested size

- Good allocator: ∼ M · log(nmax/nmin)
7 / 38



Pathological examples

• Suppose heap currently has 7 20-byte chunks

20 20 20 20 20 20 20

- What’s a bad stream of frees and then allocates?

- Free every other chunk, then alloc 21 bytes

• Given a 128-byte limit onmalloced space
- What’s a really bad combination of mallocs & frees?

- Malloc 128 1-byte chunks, free every other
- Malloc 32 2-byte chunks, free every other (1- & 2-byte) chunk
- Malloc 16 4-byte chunks, free every other chunk. . .

• Next: two allocators (best fit, first fit) that, in practice, work
pretty well
- “pretty well” =∼20% fragmentation under many workloads

8 / 38



Pathological examples

• Suppose heap currently has 7 20-byte chunks

20 20 20 20 20 20 20

- What’s a bad stream of frees and then allocates?
- Free every other chunk, then alloc 21 bytes

• Given a 128-byte limit onmalloced space
- What’s a really bad combination of mallocs & frees?

- Malloc 128 1-byte chunks, free every other
- Malloc 32 2-byte chunks, free every other (1- & 2-byte) chunk
- Malloc 16 4-byte chunks, free every other chunk. . .

• Next: two allocators (best fit, first fit) that, in practice, work
pretty well
- “pretty well” =∼20% fragmentation under many workloads

8 / 38



Pathological examples

• Suppose heap currently has 7 20-byte chunks

20 20 20 20 20 20 20

- What’s a bad stream of frees and then allocates?
- Free every other chunk, then alloc 21 bytes

• Given a 128-byte limit onmalloced space
- What’s a really bad combination of mallocs & frees?
- Malloc 128 1-byte chunks, free every other
- Malloc 32 2-byte chunks, free every other (1- & 2-byte) chunk
- Malloc 16 4-byte chunks, free every other chunk. . .

• Next: two allocators (best fit, first fit) that, in practice, work
pretty well
- “pretty well” =∼20% fragmentation under many workloads

8 / 38



Best fit

• Strategy: minimize fragmentation by allocating space from
block that leaves smallest fragment
- Data structure: heap is a list of free blocks, each has a header
holding block size and a pointer to the next block

20 30 30 37

- Code: Search freelist for block closest in size to the request.
(Exact match is ideal)

- During free (usually) coalesce adjacent blocks

• Potential problem: Sawdust
- Remainder so small that over time le� with “sawdust” everywhere
- Fortunately not a problem in practice

9 / 38



Best fit gone wrong

• Simple bad case: allocate n,m (n < m) in alternating orders,
free all the ns, then try to allocate an n+ 1

• Example: start with 99 bytes of memory
- alloc 19, 21, 19, 21, 19

19 21 19 21 19

- free 19, 19, 19:
19 21 19 21 19

- alloc 20? Fails! (wasted space = 57 bytes)

• However, doesn’t seem to happen in practice

10 / 38



First fit

• Strategy: pick the first block that fits
- Data structure: free list, sorted LIFO, FIFO, or by address
- Code: scan list, take the first one

• LIFO: put free object on front of list.
- Simple, but causes higher fragmentation
- Potentially good for cache locality

• Address sort: order free blocks by address
- Makes coalescing easy (just check if next block is free)
- Also preserves empty/idle space (locality good when paging)

• FIFO: put free object at end of list
- Gives similar fragmentation as address sort, but unclear why

11 / 38



Subtle pathology: LIFO FF

• Storagemanagement example of subtle impact of simple
decisions

• LIFO first fit seems good:
- Put object on front of list (cheap), hope same size used again
(cheap + good locality)

• But, has big problems for simple allocation patterns:
- E.g., repeatedly intermix short-lived 2n-byte allocations, with
long-lived (n+ 1)-byte allocations

- Each time large object freed, a small chunk will be quickly taken,
leaving useless fragment. Pathological fragmentation

12 / 38



First fit: Nuances

• First fit sorted by address order, in practice:
- Blocks at front preferentially split, ones at back only split when no
larger one found before them

- Result? Seems to roughly sort free list by size
- So? Makes first fit operationally similar to best fit: a first fit of a
sorted list = best fit!

• Problem: sawdust at beginning of the list
- Sorting of list forces a large requests to skip over many small
blocks. Need to use a scalable heap organization

• Supposememory has free blocks: 20 15
- If allocation ops are 10 then 20, best fit wins
- When is FF better than best fit?

- Suppose allocation ops are 8, 12, then 12=⇒ first fit wins

13 / 38



First fit: Nuances

• First fit sorted by address order, in practice:
- Blocks at front preferentially split, ones at back only split when no
larger one found before them

- Result? Seems to roughly sort free list by size
- So? Makes first fit operationally similar to best fit: a first fit of a
sorted list = best fit!

• Problem: sawdust at beginning of the list
- Sorting of list forces a large requests to skip over many small
blocks. Need to use a scalable heap organization

• Supposememory has free blocks: 20 15
- If allocation ops are 10 then 20, best fit wins
- When is FF better than best fit?
- Suppose allocation ops are 8, 12, then 12=⇒ first fit wins

13 / 38



Someworse ideas

• Worst-fit:
- Strategy: fight against sawdust by splitting blocks to maximize
le�over size

- In real life seems to ensure that no large blocks around

• Next fit:
- Strategy: use first fit, but remember where we found the last thing
and start searching from there

- Seems like a good idea, but tends to break down entire list

• Buddy systems:
- Round up allocations to power of 2 to makemanagement faster
- Result? Heavy internal fragmentation
- Used in virtual address space allocation

14 / 38



Outline

1 Malloc and fragmentation

2 Exploiting program behavior

3 Allocator designs

4 Garbage collection

15 / 38



Known patterns of real programs

• So far we’ve treated programs as black boxes.
• Most real programs exhibit 1 or 2 (or all 3) of the following
patterns of alloc/dealloc:
- Ramps: accumulate data monotonically over time

by
te
s

- Peaks: allocate many objects, use briefly, then free all

by
te
s

- Plateaus: allocate many objects, use for a long time

by
te
s

16 / 38



Pattern 1: ramps

• In a practical sense: ramp = no free!
- Implication for fragmentation?
- What happens if you evaluate allocator with ramp programs only?

17 / 38



Pattern 2: peaks

• Peaks: allocate many objects, use briefly, then free all
- Fragmentation a real danger
- What happens if peak allocated from contiguous memory?
- Interleave peak & ramp? Interleave two di�erent peaks?

18 / 38



Exploiting peaks

• Peak phases: allocate a lot, then free everything
- Change allocation interface: allocate as before, but only support
free of everything all at once

- Called “arena allocation”, “obstack” (object stack), or
alloca/procedure call (by compiler people)

• Arena = a linked list of large chunks of memory
- Advantages: alloc is a pointer increment, free is “free”
No wasted space for tags or list pointers

19 / 38



Pattern 3: Plateaus

• Plateaus: allocate many objects, use for a long time
- What happens if overlap with peak or di�erent plateau?

20 / 38



Fighting fragmentation

• Segregation = reduced fragmentation:
- Allocated at same time∼ freed at same time
- Di�erent type∼ freed at di�erent time

• Implementation observations:
- Programs allocate a small number of di�erent sizes
- Fragmentation at peak usage more important than at low usage
- Most allocations small (< 10 words)
- Work done with allocated memory increases with size
- Implications?

21 / 38



Outline

1 Malloc and fragmentation

2 Exploiting program behavior

3 Allocator designs

4 Garbage collection

22 / 38



Slab allocation [Bonwick]

• Kernel allocates many instances of same structures
- E.g., a 1.7 KB task_struct for every process on system

• O�en want contiguous physicalmemory (for DMA)
• Slab allocation optimizes for this case:

- A slab is multiple pages of contiguous physical memory
- A cache contains one or more slabs
- Each cache stores only one kind of object (fixed size)

• Each slab is full, empty, or partial
• E.g., need new task_struct?

- Look in the task_struct cache
- If there is a partial slab, pick free task_struct in that
- Else, use empty, or may need to allocate new slab for cache

• Advantages: speed, and no internal fragmentation
23 / 38



Simple, fast segregated free lists

• Array of free lists for small sizes, tree for larger
- Place blocks of same size on same page
- Have count of allocated blocks: if goes to zero, can return page

• Pro: segregate sizes, no size tag, fast small alloc
• Con: worst case waste: 1 page per size even w/o free,
A�er pessimal free: waste 1 page per object

• TCMalloc [Ghemawat] is a well-documentedmalloc like this
24 / 38

http://goog-perftools.sourceforge.net/doc/tcmalloc.html


Typical space overheads

• Free list bookkeeping and alignment determineminimum
allocatable size:

• If not implicit in page, must store size of block
• Must store pointers to next and previous freelist element

12 16

0x40f0 0x40fc
4 byte alignment: addr % 4 = 0

• Allocator doesn’t know types
- Must align memory to conservative boundary

• Minimum allocation unit? Space overhead when allocated?

25 / 38



Gettingmore space fromOS

• On Unix, can use sbrk
- E.g., to activate a new zero-filled page:

stack

heap

r/w data
r/o data
+ code

sbrk

/* add nbytes of valid virtual address space */
void *get_free_space(size_t nbytes) {
void *p = sbrk(nbytes);
if (!p)
error("virtual memory exhausted");

return p;
}

• For large allocations, sbrk a bad idea
- May want to give memory back to OS
- Can’t with sbrk unless big chunk last thing allocated
- So allocate large chunk using mmap’s MAP_ANON

26 / 38



Buddy Allocator Example

• Variations still used as the basis of other designs
• Used to allocate virtual address space
• Process:

- Allocate memory rounded to the closest power of 2
- If no memory exists of that size split a larger memory region
- Repeat until we have the size we want

• Allocations: 2, 1, 4, 8, ...

0123456789101112131415

Free

27 / 38



Buddy Allocator Example

• Variations still used as the basis of other designs
• Used to allocate virtual address space

- Allocate memory rounded to the closest power of 2
- If no memory exists of that size split a larger memory region
- Repeat until we have the size we want

• Allocations: 2, 1, 4, 8, ...

0123456789101112131415

Alloc Free Free Free

28 / 38



Buddy Allocator Example

• Variations still used as the basis of other designs
• Used to allocate virtual address space

- Allocate memory rounded to the closest power of 2
- If no memory exists of that size split a larger memory region
- Repeat until we have the size we want

• Allocations: 2, 1, 4, 8, ...

0123456789101112131415

Alloc A F Free Free

29 / 38



Buddy Allocator Example

• Variations still used as the basis of other designs
• Used to allocate virtual address space

- Allocate memory rounded to the closest power of 2
- If no memory exists of that size split a larger memory region
- Repeat until we have the size we want

• Allocations: 2, 1, 4, 8, ...

0123456789101112131415

Alloc A F Alloc Alloc

30 / 38



Outline

1 Malloc and fragmentation

2 Exploiting program behavior

3 Allocator designs

4 Garbage collection

31 / 38



Garbage collection

• In safe languages, run time knows about all pointers
- So canmove an object if you change all the pointers

• What memory locations might a program access?
- Any objects whose pointers are currently in registers
- Recursively, any pointers in objects it might access
- Anything else is unreachable, or garbage; memory can be re-used

• Example: stop-and-copy garbage collection
- Memory full? Temporarily pause program, allocate new heap
- Copy all objects pointed to by registers into new heap

. Mark old copied objects as copied, record new location
- Start scanning through new heap. For each pointer:

. Copied already? Adjust pointer to new location

. Not copied? Then copy it and adjust pointer
- Free old heap—programwill never access it—and continue

32 / 38



Concurrent garbage collection

• Idea: Stop & copy, but without the stop
- Mutator thread runs program, collector concurrently does GC

• When collector invoked:
- Protect from space & unscanned to space frommutator
- Copy objects in registers into to space, resumemutator
- All pointers in scanned to space point to to space
- If mutator accesses unscanned area, fault, scan page, resume

1 2 3 4 5 6

to space

area
scanned

area
unscanned

mutator faults
on access

=

from space
[Appel&Li]

33 / 38



Heap overflow detection

• Many GCed languages need fast allocation
- E.g., in lisp, constantly allocating cons cells
- Allocation can be as o�en as every 50 instructions

• Fast allocation is just to bump a pointer

char *next_free;
char *heap_limit;

void *alloc (unsigned size) {
if (next_free + size > heap_limit) /* 1 */
invoke_garbage_collector (); /* 2 */

char *ret = next_free;
next_free += size;
return ret;

}

• But would be even faster to eliminate lines 1 & 2!
34 / 38



Heap overflow detection 2

• Mark page at end of heap inaccessible
- mprotect (heap_limit, PAGE_SIZE, PROT_NONE);

• Programwill allocate memory beyond end of heap
• Programwill use memory and fault

- Note: Depends on specifics of language
- But many languages will touch allocated memory immediately

• Invoke garbage collector
- Must now put just allocated object into new heap

• Note: requires more than just resumption
- Faulting instruction must be resumed
- But must resume with di�erent target virtual address
- Doable onmost architectures since GC updates registers

35 / 38



Reference counting

• Seemingly simpler GC scheme:
- Each object has “ref count” of pointers to it
- Increment when pointer set to it
- Decremented when pointer killed
(C++ destructors handy—c.f. shared_ptr)

ref = 2

a b

void foo(bar c) {
bar a b;
a = c; // c.refcnt++
b = a; // a.refcnt++
a = 0; // c.refcnt--
return; // b.refcnt--

}

- ref count == 0? Free object

• Works well for hierarchical data structures
- E.g., pages of physical memory

36 / 38

http://en.cppreference.com/w/cpp/memory/shared_ptr


Reference counting pros/cons
• Circular data structures always have ref count> 0

- No external pointers means lost memory

ref = 1 ref = 1

ref = 1

• Can domanually w/o PL support, but error-prone
• Potentially more e�icient than real GC

- No need to halt program to run collector
- Avoids weird unpredictable latencies

• Potentially less e�icient than real GC
- With real GC, copying a pointer is cheap
- With refcounts, must update count each time & possibly take lock
(but C++11 std::move can avoid overhead)

37 / 38

http://en.cppreference.com/w/cpp/utility/move


Ownership types

• Another approach: avoid GC by exploiting type system
- Use ownership types, which prohibit copies

• You canmove a value into a new variable (e.g., copy pointer)
- But then the original variable is no longer usable

• You can borrow a value by creating a pointer to it
- But must prove pointer will not outlive borrowed value
- And can’t use original unless both are read-only (to avoid races)

• Ownership types available now in new language Rust
- First serious competitor to C/C++ for OSes, browser engines

• C++11 does something similar but weaker with unique types
- std::unique_ptr, std::unique_lock,. . .
- Can std::move but not copy these

38 / 38

https://doc.rust-lang.org/book/
http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/thread/unique_lock
http://en.cppreference.com/w/cpp/utility/move

	Malloc and fragmentation
	Exploiting program behavior
	Allocator designs
	Garbage collection

