© Paging
@ Eviction policies

© Thrashing

1/28

page is on

backing store /____\\
operating
system
refe(:e)nce trap
load M
restart page table
instruction
free frame
reset page bring in
table missing page
physical
memory

« Use disk to simulate larger virtual than physical mem
2/28

Working set model

of accesses

virtual address

» Disk much, much slower than memory
- Goal: run at memory speed, not disk speed

» 80/20 rule: 20% of memory gets 80% of memory accesses

- Keep the hot 20% in memory
- Keep the cold 80% on disk

3/28

Working set model

of accesses

virtual address

» Disk much, much slower than memory
- Goal: run at memory speed, not disk speed

» 80/20 rule: 20% of memory gets 80% of memory accesses

— Keep the hot 20% in memory
- Keep the cold 80% on disk

3/28

Working set model

of accesses

2\,

virtual address

» Disk much, much slower than memory
- Goal: run at memory speed, not disk speed

» 80/20 rule: 20% of memory gets 80% of memory accesses

- Keep the hot 20% in memory
— Keep the cold 80% on disk

3/28

Paging challenges

+ How to resume a process after a fault?

- Need to save state and resume
- Process might have been in the middle of an instruction!

» What to fetch from disk?
- Just needed page or more?

» What to eject?

- How to allocate physical pages amongst processes?
- Which of a particular process’s pages to keep in memory?

4/28

Re-starting instructions

Hardware provides kernel with information about page fault

- Faulting virtual address (c0_vaddr in MIPS)
- Address of instruction that caused fault (cO_epc in MIPS)

- Was the access a read or write? Was it an instruction fetch?
Was it caused by user access to kernel-only memory?

Hardware must allow resuming after a fault

Idempotent instructions are easy

- E.g., simple load or store instruction can be restarted

- Just re-execute any instruction that only accesses one address
Complex instructions must be re-started, too

- E.g.,x86 move string instructions
- Specify src, dst, countin %esi, %edi, %ecx registers
- On fault, registers adjusted to resume where move left off

5/28

» Bring in page that caused page fault

» Pre-fetch surrounding pages?

- Reading two disk blocks approximately as fast as reading one
- As long as no track/head switch, seek time dominates
- If application exhibits spacial locality, then big win to store and
read multiple contiguous pages
 Also pre-zero unused pages inidle loop

- Need O-filled pages for stack, heap, anonymously mmapped
memory

- Zeroing them only on demand is slower

- Hence, many OSes zero freed pages while CPU is idle

6/28

Selecting physical pages

» May need to eject some pages
- More on eviction policy in two slides

» May also have a choice of physical pages

» Direct-mapped physical caches

- Virtual — Physical mapping can affect performance

- In old days: Physical address A conflicts with kC + A
(where k is any integer, C is cache size)

- Applications can conflict with each other or themselves

- Scientific applications benefit if consecutive virtual pages do not
conflictin the cache

- Many other applications do better with random mapping
- These days: CPUs more sophisticated than kC + A

7/28

Superpages

How should OS make use of “large” mappings

- x86 has 2/4MB pages that might be useful
- Alpha has even more choices: 8KB, 64KB, 512KB, 4MB

Sometimes more pages in L2 cache than TLB entries
- Don’t want costly TLB misses going to main memory

Or have two-level TLBs
- Want to maximize hit rate in faster L1 TLB

OS can transparently support superpages [Navarro]
- “Reserve” appropriate physical pages if possible
- Promote contiguous pages to superpages
- Does complicate evicting (esp. dirty pages) - demote

8/28

http://www.usenix.org/events/osdi02/tech/full_papers/navarro/navarro.pdf

@ Paging
@ Eviction policies

© Thrashing

9/28

Straw man: FIFO eviction

 Evict oldest fetched page in system
o Example—reference string 1,2, 3,4,1,2,5,1,2,3,4,5
» 3 physical pages: 9 page faults

11114 5
2 2|1 3 9page faults

3132 4

10/28

Straw man: FIFO eviction

Evict oldest fetched page in system

Example—reference string 1,2, 3,4,1,2,5,1,2,3,4,5

3 physical pages: 9 page faults

4 physical pages: 10 page faults

1 5 4

1
22| 1 5 10 page faults
3 3] 2
44

3

10/28

Belady’s Anomaly

16
14
12

10 <

number of page faults

1 2 3 4 5 6 7
number of frames

» More physical memory doesn’t always mean fewer faults

1/28

Optimal page replacement

» What is optimal (if you knew the future)?

12/28

Optimal page replacement

» What is optimal (if you knew the future)?

- Replace page that will not be used for longest period of time
o Example—reference string 1,2, 3,4,1,2,5,1,2,3,4,5
» With 4 physical pages:

114

6 page faults

2
3
4

12/28

LRU page replacement

Approximate optimal with least recently used
- Because past often predicts the future

Example—reference string 1,2, 3,4,1,2,5,1,2,3,4,5
With 4 physical pages: 8 page faults

115

2

3|5 4
413

Problem 1: Can be pessimal - example?

Problem 2: How to implement?

13/28

LRU page replacement

Approximate optimal with least recently used
- Because past often predicts the future

Example—reference string 1,2, 3,4,1,2,5,1,2,3,4,5
With 4 physical pages: 8 page faults

115

2

3|5 4
413

Problem 1: Can be pessimal - example?
- Looping over memory (then want MRU eviction)

Problem 2: How to implement?

13/28

Straw man LRU implementations

« Stamp PTEs with timer value
- E.g., CPU has cycle counter
- Automatically writes value to PTE on each page access
- Scan page table to find oldest counter value = LRU page
- Problem: Would double memory traffic!
» Keep doubly-linked list of pages
- On access remove page, place at tail of list
- Problem: again, very expensive
+ What to do?
- Just approximate LRU, don’t try to do it exactly

14/28

Clock algorithm

Use accessed bit supported by most hardware

- E.g., Pentium will write 1to A bit in PTE on first access
- Software managed TLBs like MIPS can do the same

Do FIFO but skip accessed pages A
Keep pages in circular FIFO list S ol

Scan: A=0 A=0

- page’s Abit=1, set to 0 & skip A—0 \ A=0

- elseif A=0, evict

A.k.a. second-chance replacement A=1 A=
A=1 A=0
A

15/28

Clock algorithm

Use accessed bit supported by most hardware

- E.g., Pentium will write 1to A bit in PTE on first access
- Software managed TLBs like MIPS can do the same

Do FIFO but skip accessed pages
Keep pages in circular FIFO list

Scan: < \ il
- page’sAbit=1,set to 0 & skip A—0 A0

- elseif A=0, evict

A.k.a. second-chance replacement A=1 A=
A=1 A=0
A

15/28

Clock algorithm

Use accessed bit supported by most hardware

- E.g., Pentium will write 1to A bit in PTE on first access
- Software managed TLBs like MIPS can do the same

Do FIFO but skip accessed pages x
Keep pages in circular FIFO list Al ol

» Scan: &b <
- page’sAbit=1,set to 0 & skip A—0 A0
- elseif A=0, evict
» A.k.a. second-chance replacement A=1 A=
A=1 A=0

15/28

Clock algorithm (continued)

Large memory may be a problem
- Most pages referenced in long interval S 1\/ &
Add a second clock hand A=0 A=0

- Two hands move in lockstep
- Leading hand clears A bits A=1 A=1
- Trailing hand evicts pages with A=0 A=1 A—0

Can also take advantage of hardware Dirty bit

- Each page can be (Unaccessed, Clean), (Unaccessed, Dirty),
(Accessed, Clean), or (Accessed, Dirty)

- Consider clean pages for eviction before dirty

Or use n-bit accessed count instead just A bit
- Onsweep: count = (A << (n —1)) | (count >> 1)
- Evict page with lowest count

16/28

Clock algorithm (continued)

Large memory may be a problem
- Most pages referenced in longinterval A= \/A =0
Add a second clock hand A=0 A=0

- Two hands move in lockstep
- Leading hand clears A bits A=1 A=
- Trailing hand evicts pages with A=0 A=1 A—0

Can also take advantage of hardware Dirty bit

- Each page can be (Unaccessed, Clean), (Unaccessed, Dirty),
(Accessed, Clean), or (Accessed, Dirty)

- Consider clean pages for eviction before dirty

Or use n-bit accessed count instead just A bit
- Onsweep: count = (A << (n —1)) | (count >>1)
- Evict page with lowest count

16/28

Clock algorithm (continued)
A=1 %:.‘EE,A =0

Large memory may be a problem

- Most pages referenced in long interval b Ak
» Add a second clock hand A=0 A=0

- Two hands move in lockstep

- Leading hand clears A bits A=1 A=1

- Trailing hand evicts pages with A=0 A=1 A—0

Can also take advantage of hardware Dirty bit

- Each page can be (Unaccessed, Clean), (Unaccessed, Dirty),
(Accessed, Clean), or (Accessed, Dirty)

- Consider clean pages for eviction before dirty

Or use n-bit accessed count instead just A bit
- Onsweep: count = (A << (n —1)) | (count >>1)
- Evict page with lowest count

16/28

Other replacement algorithms

Random eviction

- Dirt simple to implement
- Not overly horrible (avoids Belady & pathological cases)

LFU (least frequently used) eviction

- Instead of just A bit, count # times each page accessed

- Least frequently accessed must not be very useful
(or maybe was just brought in and is about to be used)

- Decay usage counts over time (for pages that fall out of usage)

MFU (most frequently used) algorithm

- Because page with the smallest count was probably just brought in
and has yet to be used

Neither LFU nor MFU used very commonly

17/28

frame valid—invalid bit A
swap out
change victim
0 1 to invalid @page L] |
Fv /
@ f| vietim
reset page
table for
page table
new page @ swap
desired
page in
physical
memory

» Naive page replacement: 2 disk I/Os per page fault .

Page buffering

» ldea: reduce # of I/Os on the critical path

« Keep pool of free page frames

On fault, still select victim page to evict

But read fetched page into already free page

Can resume execution while writing out victim page
Then add victim page to free pool

« Can also yank pages back from free pool

- Contains only clean pages, but may still have data
- If page fault on page still in free pool, recycle

19/28

Page allocation

« Allocation can be global or local

» Global allocation doesn’t consider page ownership

- E.g., with LRU, evict least recently used page of any proc
- Works well if P; needs 20% of memory and P, needs 70%:

LA]] P2 |

- Doesn’t protect you from memory pigs
(imagine P, keeps looping through array that is size of mem)

» Local allocation isolates processes (or users)

- Separately determine how much memory each process should
have

- Then use LRU/clock/etc. to determine which pages to evict within
each process

20/28

@ Paging
@ Eviction policies

© Thrashing

21/28

» Processes require more memory than system has

- Each time one page is brought in, another page, whose contents
will soon be referenced, is thrown out

- Processes will spend all of their time blocked, waiting for pages to
be fetched from disk

- 1/0 devs at 100% utilization but system not getting much useful
work done

+ What we wanted: virtual memory the size of disk with access
time the speed of physical memory

» What we got: memory with access time of disk

22/28

Reasons for thrashing

» Access pattern has no temporal locality (past # future)

WNMWMMMMMWMMMML (80/20 rule has broken down)

» Hot memory does not fit in physical memory

P

memory

» Each process fits individually, but too many for system

LA AL PLALP P AL (PP P e

memory

- At least this case is possible to address

23/28

Multiprogramming & Thrashing

I >

I thrashing

CPU utilization

degree of multiprogramming

* Must shed load when thrashing

24/28

Dealing with thrashing

» Approach 1: working set
- Thrashing viewed from a caching perspective: given locality of
reference, how big a cache does the process need?

- Or: how much memory does the process need in order to make
reasonable progress (its working set)?

- Only run processes whose memory requirements can be satisfied

» Approach 2: page fault frequency

- Thrashing viewed as poor ratio of fetch to work
- PFF = page faults / instructions executed

- If PFF rises above threshold, process needs more memory.
Not enough memory on the system? Swap out.

- If PFF sinks below threshold, memory can be taken away

25/28

Working sets

Transitions

N
7

working set size

A d

time

» Working set changes across phases
- Baloons during phase transitions

26/28

Calculating the working set

Working set: all pages process will access in next T time
- Can’t calculate without predicting future

Approximate by assuming past predicts future
- So working set = pages accessed in last T time

Keep idle time for each page

Periodically scan all resident pages in system

- Abit set? Clear it and clear the page’s idle time
- Abit clear? Add CPU consumed since last scan to idle time
- Working set is pages with idle time < T

27/28

Two-level scheduler

« Divide processes into active & inactive
- Active - means working set resident in memory
- Inactive - working set intentionally not loaded
« Balance set: union of all active working sets
- Must keep balance set smaller than physical memory

» Use long-term scheduler [recall from lecture 4]

- Moves procs active — inactive until balance set small enough
- Periodically allows inactive to become active
- As working set changes, must update balance set

» Complications
- How to chose idle time threshold 77

- How to pick processes for active set
- How to count shared memory (e.g., libc.so)

28/28

	Paging
	Eviction policies
	Thrashing

