
Where does the OS live?

• In its own address space?
- Can’t do this onmost hardware (e.g., syscall instruction won’t
switch address spaces)

- Also would make it harder to parse syscall arguments passed as
pointers

• So in the same address space as process
- Use protection bits to prohibit user code fromwriting kernel

• Typically all kernel text, most data at same VA in every
address space
- On x86, must manually set up page tables for this
- Usually just map kernel in contiguous virtual memory when boot
loader puts kernel into contiguous physical memory

- Some hardware puts physical memory (kernel-only) somewhere in
virtual address space

1 / 17

Hardware/So�ware Managed TLBs

• Intel Evolution:
- 80286: Segmentation Only
- 80386: Segmentation + Paging
- AMD64/x86-64: Paging (segmentation basically removed)

• Hardware Managed TLB: x86 hardware reloads the TLB
- Hardware reloads the TLB as needed from page tables
- Violations of protection bits lead to page faults

• So�ware Managed TLB: MIPS, SPARC, Alpha, POWER
- Page fault triggered to ask OS to reload the TLB
- OS designs its own paging structure
- Hardware must provide fast exception handling

2 / 17

Very di�erent MMU: MIPS

• Hardware checks TLB on application load/store
- References to addresses not in TLB trap to kernel

• Each TLB entry has the following fields:
Virtual page, Pid, Page frame, NC, D, V, Global

• Kernel itself unpaged
- All of physical memory contiguously mapped in high VM
(hardwired in CPU)

- Kernel uses these pseudo-physical addresses

• User TLB fault hander very e�icient
- Two hardware registers reserved for it
- utlb miss handler can itself fault—allow paged page tables

• OS is free to choose page table format!

3 / 17

MIPS Memory Layout

FFFF FFFF

C000 0000

kseg2: Paged Kernel

BFFF FFFF
A000 0000 kseg1: Phys. (Uncached)

9FFF FFFF
8000 0000 kseg0: Physical Memory

Kernel Memory

7FFF FFFF

0000 0000

kuseg
User Paging

User Memory

4 / 17

MIPS Translation Lookaside Bu�er (TLB)

• TLB caches mappings from a virtual to a physical address
• Specifically it replaces the upper 20 bits of any address
• MIPS R3000 contains 64 TLB entries

01234567891011121314151617181920212223242526272829303132

Page Frame O�set

5 / 17

MIPS Translation Lookaside Bu�er (TLB)

• MIPS co-processor 0 (COP0) provides TLB functionality
• tlbwr: TLB write a random slot
• tlbwi: TLB write a specific slot
• tlbr: TLB read a specific slot
• tlbp: TLB probe for the index given an address
• Registers c0_entryhi, c0_entrylo, c0_index
• Entry Hi:

01234567891011121314151617181920212223242526272829303132

Physical Page Number (PPN) PID

• Entry Lo: W (writable), V (valid)

01234567891011121314151617181920212223242526272829303132

Frame Number (VPN) W V

6 / 17

OS/161 tlb_random

/*
* tlb_random: use the "tlbwr" instruction to write a TLB
* entry into a (very pseudo-) random slot in the TLB.
*
* Pipeline hazard: must wait between setting entryhi/lo
* and doing the tlbwr. Use two cycles; some processors
* may vary.
*/
tlb_random:

mtc0 a0, c0_entryhi /* store the passed entry into the */
mtc0 a1, c0_entrylo /* tlb entry registers */
nop /* wait for pipeline hazard */
nop
tlbwr /* do it */
j ra
nop

7 / 17

OS/161 tlb_write

/*
* tlb_write: use the "tlbwi" instruction to write a TLB
* entry into a selected slot in the TLB.
*
* Pipeline hazard: must wait between setting entryhi/lo
* and doing the tlbwi. Use two cycles; some processors
* may vary.
*/
tlb_write:

mtc0 a0, c0_entryhi /* store the passed entry into the */
mtc0 a1, c0_entrylo /* tlb entry registers */
/* shift the passed index into place */
sll t0, a2, CIN_INDEXSHIFT
/* store the shifted index into the index register */
mtc0 t0, c0_index
nop /* wait for pipeline hazard */
nop
tlbwi /* do it */
j ra
nop

8 / 17

OS/161 tlb_read

/* tlb_read: use the "tlbr" instruction to read a TLB entry
* from a selected slot in the TLB.
*
* Pipeline hazard: must wait between setting c0_index and
* doing the tlbr. Use two cycles; some processors may vary.
* Similarly, three more cycles before reading c0_entryhi/lo.
*/
tlb_read:

sll t0, a2, CIN_INDEXSHIFT /* shift the passed index into place */
mtc0 t0, c0_index /* store the shifted index into the index register */
nop /* wait for pipeline hazard */
nop
tlbr /* do it */
nop /* wait for pipeline hazard */
nop
nop
mfc0 t0, c0_entryhi /* get the tlb entry out of the */
mfc0 t1, c0_entrylo /* tlb entry registers */
sw t0, 0(a0) /* store through the passed pointer */
j ra
sw t1, 0(a1) /* store (in delay slot) */ 9 / 17

OS/161 tlb_probe

/*
* tlb_probe: use the "tlbp" instruction to find the index in the
* TLB of a TLB entry matching the relevant parts of the one
* supplied.
*
* Pipeline hazard: must wait between setting c0_entryhi/lo
* and doing the tlbp. Use two cycles; some processors may
* vary. Similarly, two more cycles before reading c0_index.
*/
tlb_probe:

mtc0 a0, c0_entryhi /* store the passed entry into the */
mtc0 a1, c0_entrylo /* tlb entry registers */
nop /* wait for pipeline hazard */
nop
tlbp /* do it */
nop /* wait for pipeline hazard */
nop
mfc0 t0, c0_index /* fetch the index back in t0 */

10 / 17

OS/161 tlb_probe continued

/*
* If the high bit (CIN_P) of c0_index is set, the probe
* failed.
* The high bit is not set <--> c0_index (now in t0) >= 0.
*/
bgez t0, 1f /* did probe succeed? if so, skip forward */
nop /* delay slot */

/* set return value to -1 to indicate failure */
addi v0, z0, -1
j ra /* done */
nop /* delay slot */

1:
/*
* succeeded: get the index field from the
* index register value.
*/
andi t1, t0, CIN_INDEX /* mask off the field */
j ra /* done */
sra v0, t1, CIN_INDEXSHIFT /* shift it (in delay slot) */

11 / 17

Typical Userspace Memory Layout

• Example layout of user/testbin/sort
• Using <2MB of memory, but spread over 2GB VA space

7FFF FFFF
xxxx xxxx Stack

1012 00B0
1000 0000 Data

0040 1A0C
0040 0000 Text (code) + R/O Data

12 / 17

Managing OS Page Tables

• Example used 1.4MB of memory, over a 2GB VA space
• Simple Map: linear table of 4KB pages

- Requires 2MBs of memory. More than the program!
- Lots of unusedmemory

• Segment Map: requires very little memory
- Requires very little memory
- Requires contiguous segments of physical memory

• Radix tree: similar to x86 hardware page tables
- Requires around 16KB (for sort example)
- More complex implementation

• VM Objects: hybrid between segments and radix
- Originally fromMach (used in FreeBSD and other OSes)
- Memory space consists of objects
- Each object is represented by a radix tree or similar structure
- Simplifies sharing memory mapped objects

13 / 17

Managing OS Page Tables

• Example used 1.4MB of memory, over a 2GB VA space
• Simple Map: linear table of 4KB pages

- Requires 2MBs of memory. More than the program!
- Lots of unusedmemory

• Segment Map: requires very little memory
- Requires very little memory
- Requires contiguous segments of physical memory

• Radix tree: similar to x86 hardware page tables
- Requires around 16KB (for sort example)
- More complex implementation

• VM Objects: hybrid between segments and radix
- Originally fromMach (used in FreeBSD and other OSes)
- Memory space consists of objects
- Each object is represented by a radix tree or similar structure
- Simplifies sharing memory mapped objects

13 / 17

Managing OS Page Tables

• Example used 1.4MB of memory, over a 2GB VA space
• Simple Map: linear table of 4KB pages

- Requires 2MBs of memory. More than the program!
- Lots of unusedmemory

• Segment Map: requires very little memory
- Requires very little memory
- Requires contiguous segments of physical memory

• Radix tree: similar to x86 hardware page tables
- Requires around 16KB (for sort example)
- More complex implementation

• VM Objects: hybrid between segments and radix
- Originally fromMach (used in FreeBSD and other OSes)
- Memory space consists of objects
- Each object is represented by a radix tree or similar structure
- Simplifies sharing memory mapped objects

13 / 17

Managing OS Page Tables

• Example used 1.4MB of memory, over a 2GB VA space
• Simple Map: linear table of 4KB pages

- Requires 2MBs of memory. More than the program!
- Lots of unusedmemory

• Segment Map: requires very little memory
- Requires very little memory
- Requires contiguous segments of physical memory

• Radix tree: similar to x86 hardware page tables
- Requires around 16KB (for sort example)
- More complex implementation

• VM Objects: hybrid between segments and radix
- Originally fromMach (used in FreeBSD and other OSes)
- Memory space consists of objects
- Each object is represented by a radix tree or similar structure
- Simplifies sharing memory mapped objects

13 / 17

OS/161 dumbvm

• Fixed segment map
• You will implement a better version in Lab 3

struct addrspace {
vaddr_t as_vbase1;
paddr_t as_pbase1;
size_t as_npages1;
vaddr_t as_vbase2;
paddr_t as_pbase2;
size_t as_npages2;
paddr_t as_stackpbase;

};

14 / 17

OS/161 dumbvm fault handling

vbase1 = as->as_vbase1;
vtop1 = vbase1 + as->as_npages1 * PAGE_SIZE;
vbase2 = as->as_vbase2;
vtop2 = vbase2 + as->as_npages2 * PAGE_SIZE;
stackbase = USERSTACK - DUMBVM_STACKPAGES * PAGE_SIZE;
stacktop = USERSTACK;

if (faultaddress >= vbase1 && faultaddress < vtop1) {
paddr = (faultaddress - vbase1) + as->as_pbase1;

}
else if (faultaddress >= vbase2 && faultaddress < vtop2) {
paddr = (faultaddress - vbase2) + as->as_pbase2;

}
else if (faultaddress >= stackbase && faultaddress < stacktop) {
paddr = (faultaddress - stackbase) + as->as_stackpbase;

}
else {
return EFAULT;

}

15 / 17

OS/161 dumbvm tlb update

for (i=0; i<NUM_TLB; i++) {
tlb_read(&ehi, &elo, i);
if (elo & TLBLO_VALID) {
continue;

}
ehi = faultaddress;
elo = paddr | TLBLO_DIRTY | TLBLO_VALID;
DEBUG(DB_VM, "dumbvm: 0x%x -> 0x%x\n", faultaddress, paddr);
tlb_write(ehi, elo, i);
splx(spl);
return 0;

}

16 / 17

OS/161 dumbvm invalidate tlb

for (i=0; i<NUM_TLB; i++) {
tlb_write(TLBHI_INVALID(i), TLBLO_INVALID(), i);

}

17 / 17

