Memory and I/O buses

1/O bus

1880Mbps 1056Mbps
——— ———

» CPU accesses physical memory over a bus
» Devices access memory over I/O bus with DMA

» Devices can appear to be a region of memory
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Realistic ~2005 PC architecture

Advanced
CPU CPU Programable
Interrupt
L front- Controller
Blde bus
us
AGP North Main
bus ~ Bridge memory
Plla PCI | 1/0
bus IRQs— APIC ||
South
USB <-— Bﬁdge
ISA

bus
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Modern PC architecture (intel)

Pl
DRAM CPU, 2 CPU; DRAM

(,2\‘ ﬁl
— x5810H

DMI
USB 2.0 h 4
Power Management
Dual EHCI Controller)
SATA (6 ports) Clock Generators
Intel® High Definition Intel® System _'\If'ggagemem
Audio Codec(s) ICH10 ( )
12
PCI Express* x1 SMBus 2.0/I°C
———
Intel® Gigabit Ethernet Phy |0 POl Bus - SPI Flash

LCI
| JTAG* (Corporate Only) |—

GPIO

Other ASICs
(Optional)

TPM
(Optional)

PCl express

Super /0

Firmware Hub

!

[intel]
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http://www.intel.com/content/dam/doc/datasheet/x58-express-chipset-datasheet.pdf
http://www.intel.com/content/www/us/en/io/io-controller-hub-10-family-datasheet.html

What is memory?

» SRAM - Static RAM
- Like two NOT gates circularly wired input-to-output
- 4-6 transistors per bit, actively holds its value
- Very fast, used to cache slower memory
o DRAM - Dynamic RAM
- A capacitor + gate, holds charge to indicate bit value
- 1transistor per bit - extremely dense storage
- Charge leaks - need slow comparator to decide if bit 1or 0
- Must re-write charge after reading, and periodically refresh
* VRAM - “Video RAM”

- Dual ported DRAM, can write while someone else reads

4740



monitor processor

| —

BIRE:
8| @

graphics bridge/memory
controller controller

SCSI controller

PCI bus

IDE disk controller

expansion bus
interface

@ G
@ @

keyboard

) L——expansion bus——

)

parallel
port

serial
port
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Communicating with a device

Memory-mapped device registers

- Certain physical addresses correspond to device registers
- Load/store gets status/sends instructions - not real memory

Device memory - device may have memory OS can write to
directly on other side of I/O bus

Special /O instructions
- Some CPUs (e.g., x86) have special I/O instructions
- Like load & store, but asserts special I/0 pin on CPU
- 0S can allow user-mode access to 1/O ports at byte granularity

DMA - place instructions to card in main memory

- Typically then need to “poke” card by writing to register

- Overlaps unrelated computation with moving data over (typically
slower than memory) I/O bus
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x86 1/0 instructions

static inline uint8_t

inb (uintl16_t port)

{
uint8_t data;
asm volatile ("inb %wl, %b0" : "=a" (data) : "Nd" (port));
return data;

}

static inline void
outb (uintl6_t port, uint8_t data)
{
asm volatile ("outb %b0, %wil" : : "a" (data), "Nd" (port));
}

static inline void
insw (uint16_t port, void *addr, size_t cnt)
{
asm volatile ("rep insw" : "+D" (addr), "+c" (cnt)
"d" (port) : "memory");
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Example: parallel port (LPT1)

» Simple hardware has three control registers:

| 0 | De | Ds | D4 | D5 [ Do | B | Do |
read/write data register (port 0x378)

| BSY | Ak | pap JoFoN] ERR [ - | - | - |
read-only status register (port 0x379)

| - | - | - | irq | psL [ NI | ALF [ STR|  [Messmer]
read/write control register (port 0x37a)

» Every bit except IRQ corresponds to a pin on 25-pin connector:

= mhb
241—@
® — 11 BSY

Ground 22

181—@

DSL17«— @ g 35 3
INU 16« @ g ) 3 2

ERR 15— @ >3 s
AF 11— o g 57 o0

[image credits: Wikipedia] 8/40


https://searchworks.stanford.edu/view/3475233

Writing bit to parallel port [osdev]

void
sendbyte (uint8_t byte)
{
/* Wait until BSY bit is 1. %/
while ((inb (0x379) & 0x80) == 0)
delay Q;

/* Put the byte we wish to send on pins D7-0. */
outb (0x378, byte);

/* Pulse STR (strobe) line to inform the printer
* that a byte is available */

uint8_t ctrlval = inb (0x37a);

outb (0x37a, ctrlval | 0x01);

delay Q);

outb (0x37a, ctrlval);
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http://wiki.osdev.org/Parallel_port

void IDE_ReadSector(int disk, int off, void *buf)

{
outb(0x1F6, disk == 0 ? OxEO : 0xF0); // Select Drive
IDEWait () ;
outb(0x1F2, 1); // Read length (1 sector = 512 B)
outb(0x1F3, off); // LBA low

outb(0x1F4, off >> 8); // LBA mid

outb(0x1F5, off >> 16); // LBA high

outb (0x1F7, 0x20); // Read command

insw(0x1F0, buf, 256); // Read 256 words
}

void IDEWait()
{
// Discard status 4 times
inb(0x1F7); inb(0x1F7);
inb(0x1F7); inb(0x1F7);
// Wait for status BUSY flag to clear
while ((inb(0x1F7) & 0x80) != 0)

3
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Memory-mapped IO

 in/out instructions slow and clunky

- Instruction format restricts what registers you can use
- Only allows 2'® different port numbers
- Per-port access control turns out not to be useful
(any port access allows you to disable all interrupts)
» Devices can achieve same effect with physical addresses, e.g.:

volatile int32_t *device_control
= (int32_t *) (0xc0100 + PHYS_BASE);
*device_control = 0x80;
int32_t status = *device_control;
- 0S must map physical to virtual addresses, ensure non-cachable
« Assign physical addresses at boot to avoid conflicts. PCI:

- Slow/clunky way to access configuration registers on device
- Use that to assign ranges of physical addresses to device
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DMA buffers

Memory buffers

T
4

y

y

)

Buffer
descriptor
list

« Idea: only use CPU to transfer control requests, not data
« Include list of buffer locations in main memory

- Device reads list and accesses buffers through DMA

- Descriptions sometimes allow for scatter/gather I/O
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Example: Network Interface Card

Network link

Host I/O bus

Adaptor

Y
« Link interface talks to wire/fiber/antenna

- Typically does framing, link-layer CRC
« FIFOs on card provide small amount of buffering

» Bus interface logic uses DMA to move packets to and from
buffers in main memory
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Example: IDE disk read w. DMA

1. device driver is told
to transfer disk data CPU
to buffer at address X
5. DMA controller 2. device driver tells
transfers bytes to disk controller to

buffer X, increasing  transfer C bytes
memory address from disk to buffer EacE'
and decreasing C at address X

untiC =0
= DMA/bus/ .
) m?;?ucpts_ C())IE'l[J)hlnoAsignal interrupt  [}1= CPU memory bus —| memory
transfer completion C°““|'°"er
i : : PCI bus )

3. disk controller initiates
IDE disk DMA transfer

controller 4. disk controller sends
each byte to DMA

@ @ controller
(k) ot
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Driver architecture

Device driver provides several entry points to kernel
- Reset, ioctl, output, interrupt, read, write, strategy ...

How should driver synchronize with card?

- E.g., Need to know when transmit buffers free or packets arrive
- Need to know when disk request complete

One approach: Polling
- Sent a packet? Loop asking card when buffer is free
- Waiting to receive? Keep asking card if it has packet
- Disk I/0? Keep looping until disk ready bit set

Disadvantages of polling?
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Driver architecture

Device driver provides several entry points to kernel
- Reset, ioctl, output, interrupt, read, write, strategy ...

How should driver synchronize with card?

- E.g., Need to know when transmit buffers free or packets arrive
- Need to know when disk request complete

One approach: Polling
- Sent a packet? Loop asking card when buffer is free
- Waiting to receive? Keep asking card if it has packet
- Disk I/0? Keep looping until disk ready bit set

Disadvantages of polling?

- Can’t use CPU for anything else while polling

- Schedule pollin future? High latency to receive packet or process
disk block bad for response time
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Interrupt driven devices

Instead, ask card to interrupt CPU on events
- Interrupt handler runs at high priority
- Asks card what happened (xmit buffer free, new packet)
- This is what most general-purpose OSes do

Bad under high network packet arrival rate

- Packets can arrive faster than OS can process them
Interrupts are very expensive (context switch)
Interrupt handlers have high priority

In worst case, can spend 100% of time in interrupt handler and
never make any progress - receive livelock

Best: Adaptive switching between interrupts and polling

Very good for disk requests

Rest of today: Disks (network devices in 3 lectures)
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Anatomy of a disk [Ruemmler]

« Stack of magnetic platters
- Rotate together on a central spindle @3,600-15,000 RPM
- Drive speed drifts slowly over time
- Can’t predict rotational position after 100-200 revolutions

» Disk arm assembly

- Arms rotate around pivot, all move together

- Pivot offers some resistance to linear shocks

- One disk head per recording surface (2 xplatters)

- Sensitive to motion and vibration [Gregg] (demo on youtube)
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https://cs.uwaterloo.ca/~mashti/cs350/diskmodel.pdf
http://dtrace.org/blogs/brendan/2008/12/31/unusual-disk-latency/
https://www.youtube.com/watch?v=tDacjrSCeq4
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Storage on a magnetic platter

Platters divided into concentric tracks

A stack of tracks of fixed radius is a cylinder

Heads record and sense data along cylinders
- Significant fractions of encoded stream for error correction

Generally only one head active at a time

- Disks usually have one set of read-write circuitry
- Must worry about cross-talk between channels
- Hard to keep multiple heads exactly aligned
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Cylinders, tracks, & sectors

track t l«— spindle
N
S U e
| < arm assembly
sector s I !
Skl [
| ==
3‘, <
I o e :
|
' :
cylinder ¢ i | read-write
| ! head
|
| \
platter

rotation
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Disk positioning system

Move head to specific track and keep it there
- Resist physical shocks, imperfect tracks, etc.

A seek consists of up to four phases:

speedup-accelerate arm to max speed or half way point
coast-at max speed (for long seeks)

slowdown-stops arm near destination

settle-adjusts head to actual desired track

Very short seeks dominated by settle time (~1 ms)

Short (200-400 cyl.) seeks dominated by speedup
- Accelerations of 40g
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Seek details

» Head switches comparable to short seeks

- May also require head adjustment
- Settles take longer for writes than for reads - Why?

» Disk keeps table of pivot motor power

Maps seek distance to power and time

Disk interpolates over entries in table

Table set by periodic “thermal recalibration”

- But, e.g., ~500 ms recalibration every ~25 min bad for AV

» “Average seek time” quoted can be many things
- Time to seek 1/3 disk, 1/3 time to seek whole disk
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Seek details

» Head switches comparable to short seeks
- May also require head adjustment
- Settles take longer for writes than for reads
If read strays from track, catch error with checksum, retry
If write strays, you’ve just clobbered some other track

» Disk keeps table of pivot motor power

Maps seek distance to power and time

Disk interpolates over entries in table

Table set by periodic “thermal recalibration”

- But, e.g., ~500 ms recalibration every ~25 min bad for AV

» “Average seek time” quoted can be many things
- Time to seek 1/3 disk, 1/3 time to seek whole disk
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« Disk interface presents linear array of sectors

- Historically 512 B, but 4 KiB in “advanced format” disks
- Written atomically (even if there is a power failure)

» Disk maps logical sector #s to physical sectors
- Zoning-puts more sectors on longer tracks
- Track skewing-sector 0 pos. varies by track (why?)
- Sparing-flawed sectors remapped elsewhere

» 0S doesn’t know logical to physical sector mapping
- Larger logical sector # difference means longer seek time
- Highly non-linear relationship (and depends on zone)

- 0S has no info on rotational positions
- Can empirically build table to estimate times
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http://www.idema.org/?page_id=98

« Disk interface presents linear array of sectors

- Historically 512 B, but 4 KiB in “advanced format” disks
- Written atomically (even if there is a power failure)

» Disk maps logical sector #s to physical sectors
- Zoning-puts more sectors on longer tracks
- Track skewing-sector 0 pos. varies by track (sequential access speed)
- Sparing-flawed sectors remapped elsewhere
» OS doesn’t know logical to physical sector mapping
- Larger logical sector # difference means longer seek time
- Highly non-linear relationship (and depends on zone)

- 0S has no info on rotational positions
- Can empirically build table to estimate times
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http://www.idema.org/?page_id=98

Disk interface

» Controls hardware, mediates access

» Computer, disk often connected by bus (e.g., ATA, SCSI, SATA)
- Multiple devices may contentd for bus

o Possible disk/interface features:
» Disconnect from bus during requests
« Command queuing: Give disk multiple requests
- Disk can schedule them using rotational information

«» Disk cache used for read-ahead
- Otherwise, sequential reads would incur whole revolution
- Cross track boundaries? Can’t stop a head-switch

» Some disks support write caching
- But data not stable—not suitable for all requests
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SCSI overview [Schmidt]

» SCSI domain consists of devices and an SDS

- Devices: host adapters & SCSI controllers

- Service Delivery Subsystem connects devices—e.g., SCSI bus
o SCSI-2 bus (SDS) connects up to 8 devices

- Controllers can have > 1 “logical units” (LUNs)
- Typically, controller built into disk and 1 LUN/target, but “bridge
controllers” can manage multiple physical devices
» Each device can assume role of initiator or target
- Traditionally, host adapter was initiator, controller target
- Now controllers act as initiators (e.g., cOPY command)
- Typical domain has Tinitiator, > 1 targets
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https://cs.uwaterloo.ca/~mashti/cs350/scsi.pdf

SCSl requests

» Arequestis acommand from initiator to target

- Once transmitted, target has control of bus

- Target may disconnect from bus and later reconnect
(very important for multiple targets or even multitasking)

» Commands contain the following:

Task identifier—initiator ID, target ID, LUN, tag

Command descriptor block—e.g., read 10 blocks at pos. N
Optional task attribute—SIMPLE, ORDERD, HEAD OF QUEUE
Optional: output/input buffer, sense data

Status byte—GOOD, CHECK CONDITION, INTERMEDIATE, . . .

26 /40



Executing SCSI commands

» Each LUN maintains a queue of tasks

- Each task is DORMANT, BLOCKED, ENABLED, Or ENDED
SIMPLE tasks are dormant until no ordered/head of queue
ORDERED tasks dormant until no HoQ/more recent ordered
- HoQ tasks begin in enabled state

» Task management commands available to initiator
- Abort/terminate task, Reset target, etc.

o Linked commands

- Initiator can link commands, so no intervening tasks
- E.g., could use to implement atomic read-modify-write
- Intermediate commands return status byte INTERMEDIATE
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SCSI exceptions and errors

After error stop executing most SCSI commands
- Target returns with CHECK CONDITION status
- Initiator will eventually notice error
- Must read specifics w. REQUEST SENSE

Prevents unwanted commands from executing
- E.g., initiator may not want to execute 2nd write if 1st fails

Simplifies device implementation
- Don’t need to remember more than one error condition

Same mechanism used to notify of media changes
- l.e., ejected tape, changed CD-ROM
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Disk performance

Placement & ordering of requests a huge issue
- Sequential I/O much, much faster than random
- Long seeks much slower than short ones
- Power might fail any time, leaving inconsistent state

Must be careful about order for crashes
- More on this in next two lectures

Try to achieve contiguous accesses where possible
- E.g., make big chunks of individual files contiguous

Try to order requests to minimize seek times
- OS canonly do this if it has a multiple requests to order
- Requires disk 1/0O concurrency
- High-performance apps try to maximize 1/O concurrency

Next: How to schedule concurrent requests
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Scheduling: FCFS

« “First Come First Served”
- Process disk requests in the order they are received

« Advantages

« Disadvantages
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Scheduling: FCFS

« “First Come First Served”

- Process disk requests in the order they are received
« Advantages

- Easy toimplement

- Good fairness
« Disadvantages

- Cannot exploit request locality
- Increases average latency, decreasing throughput
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FCFS example

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199
|
|
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Shortest positioning time first (SPTF)

Shortest positioning time first (SPTF)
- Always pick request with shortest seek time

Also called Shortest Seek Time First (SSTF)
Advantages

Disadvantages
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Shortest positioning time first (SPTF)

Shortest positioning time first (SPTF)

- Always pick request with shortest seek time
Also called Shortest Seek Time First (SSTF)
Advantages

- Exploits locality of disk requests

- Higher throughput
Disadvantages

- Starvation

- Don’t always know what request will be fastest

Improvement?
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Shortest positioning time first (SPTF)

Shortest positioning time first (SPTF)
- Always pick request with shortest seek time
Also called Shortest Seek Time First (SSTF)

Advantages

- Exploits locality of disk requests
- Higher throughput

Disadvantages
- Starvation
- Don’t always know what request will be fastest

Improvement: Aged SPTF

- Give older requests higher priority
- Adjust “effective” seek time with weighting factor:
Teﬁ = Tpos -Ww- Twait
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SPTF example

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199
L1 | L1l | I L]
| |
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“Elevator” scheduling (SCAN)

« Sweep across disk, servicing all requests passed

- Like SPTF, but next seek must be in same direction
- Switch directions only if no further requests

« Advantages

« Disadvantages
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“Elevator” scheduling (SCAN)

» Sweep across disk, servicing all requests passed
- Like SPTF, but next seek must be in same direction
- Switch directions only if no further requests

» Advantages
- Takes advantage of locality
- Bounded waiting

- Disadvantages
- Cylinders in the middle get better service
- Might miss locality SPTF could exploit

o CSCAN: Only sweep in one direction
Very commonly used algorithm in Unix

» Also called LOOK/CLOOK in textbook
- (Textbook uses [C]SCAN to mean scan entire disk uselessly)
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CSCAN example

queue 98,183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199
LI | Ll | 1l L
| |
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e Continuum between SPTF and SCAN

- Like SPTF, but slightly changes “effective” positioning time
If request in same direction as previous seek: Tog = Tpos
Otherwise: Ter = Tpos + I+ Trmax

- whenr=0, get SPTF, when r=1, get SCAN

- E.g.,r=0.2 works well

» Advantages and disadvantages
- Those of SPTF and SCAN, depending on how r is set

» See [Worthington] for good description and evaluation of
various disk scheduling algorithms
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http://www.ece.cmu.edu/~ganger/papers/sigmetrics94.pdf

Flash memory

Today, people increasingly using flash memory
Completely solid state (no moving parts)

- Remembers data by storing charge

- Lower power consumption and heat

- No mechanical seek times to worry about

Limited # overwrites possible
Blocks wear out after 10,000 (MLC) - 100,000 (SLC) erases

Requires flash translation layer (FTL) to provide wear leveling, so
repeated writes to logical block don’t wear out physical block

FTL can seriously impact performance
In particular, random writes very expensive [Birrell]
Limited durability

- Charge wears out over time

- Turn off device for a year, you can potentially lose data
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http://research.microsoft.com/pubs/63681/TR-2005-176.pdf

Types of flash memory

» NAND flash (most prevalent for storage)

- Higher density (most used for storage)

- Faster erase and write

- More errors internally, so need error correction
» NOR flash

- Faster reads in smaller data units
- Can execute code straight out of NOR flash
- Significantly slower erases
« Single-level cell (SLC) vs. Multi-level cell (MLC)

- MLC encodes multiple bits in voltage level
- MLC slower to write than SLC
- MLC has lower durability (bits decay faster)
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NAND Flash Overview

Flash device has 2112-byte pages
- 2048 bytes of data + 64 bytes metadata & ECC
Blocks contain 64 (SLC) or 128 (MLC) pages

Blocks divided into 2-4 planes

- All planes contend for same package pins
- But can access their blocks in parallel to overlap latencies

Can read one page at a time
- Takes 25 usec + time to get data off chip

Must erase whole block before programing

- Erase sets all bits to 1—very expensive (2 msec)

- Programming pre-erased block requires moving data to internal
buffer, then 200 (SLC)-800 (MLC) usec
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Flash Characteristics [Caulfield’09]

Parameter SLC MLC
Density Per Die (GB) 4 8
Page Size (Bytes) | 2048+32 | 2048+64

Block Size (Pages) 64 128
Read Latency (us) 25 25

Write Latency (us) 200 800

Erase Latency (us) 2000 2000

40MHz, 16-bit bus Read b/w (MB/s) 75.8 75.8
Program b/w (MB/s) 20.1 5.0

133MHz Read b/w (MB/s) | 126.4 126.4
Program b/w (MB/s) 20.1 5.0
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http://cseweb.ucsd.edu/~swanson/papers/Asplos2009Gordon.pdf

