
CS350: Operating Systems

Lecture 7: Virtual memory HW

Ali Mashtizadeh

University of Waterloo

1 / 43



Want processes to co-exist

• Consider multiprogramming on physical memory
I What happens if emacs needs to expand?

I If emacs needs more memory than is on the machine??

I If emacs has an error and writes to address 0x7100?

I When does gcc have to know it will run at 0x4000?

I What if emacs isn’t using its memory?

2 / 43



Issues in sharing physical memory

• Protection

I A bug in one process can corrupt memory in another

I Must somehow prevent process A from trashing B’s memory

I Also prevent A from even observing B’s memory (ssh-agent)

• Transparency

I A process shouldn’t require particular physical memory bits

I Yes processes often require large amounts of contiguous memory (for stack, large
data structures, etc.)

• Resource exhaustion

I Programmers typically assume machine has “enough” memory

I Sum of sizes of all processes often greater than physical memory

3 / 43



Virtual memory goals

load

 

app.

kernel

virtual address
0x30408

MMU

Is address
legal?

Yes, phys. addr
0x92408

 
memorydata

NoTo fault handler

• Give each program its own “virtual” address space

I At run time, Memory-Management Unit relocates each load, store to actual
memory… App doesn’t see physical memory

• Also enforce protection

I Prevent one app from messing with another’s memory

• And allow programs to see more memory than exists

I Somehow relocate some memory accesses to disk

4 / 43



Virtual memory advantages

• Can re-locate program while running
I Run partially in memory, partially on disk

• Most of a process’s memory may be idle (80/20 rule).

 

gcc

kernel

 
idle idle

emacs

kernel

 

physical

memory

I Write idle parts to disk until needed

I Let other processes use memory of idle part

I Like CPU virtualization: when process not using CPU, switch
(Not using a memory region? switch it to another process)

• Challenge: VM = extra layer, could be slow
5 / 43



Idea 1: load-time linking

• Linker patches addresses of symbols like printf
• Idea: link when process executed, not at compile time

I Determine where process will reside in memory

I Adjust all references within program (using addition)

• Problems?

I How to enforce protection

I How to move once already in memory (Consider: data pointers)

I What if no contiguous free region fits program?

6 / 43



Idea 1: load-time linking

• Linker patches addresses of symbols like printf
• Idea: link when process executed, not at compile time

I Determine where process will reside in memory

I Adjust all references within program (using addition)

• Problems?
I How to enforce protection

I How to move once already in memory (Consider: data pointers)

I What if no contiguous free region fits program? 6 / 43



Idea 2: base + bound register

• Two special privileged registers: base and bound

• On each load/store:
I Physical address = virtual address + base

I Check 0 ≤ virtual address < bound, else trap to kernel

• How to move process in memory?

I Change base register

• What happens on context switch?

I OS must re-load base and bound register

7 / 43



Idea 2: base + bound register

• Two special privileged registers: base and bound

• On each load/store:
I Physical address = virtual address + base

I Check 0 ≤ virtual address < bound, else trap to kernel

• How to move process in memory?
I Change base register

• What happens on context switch?

I OS must re-load base and bound register

7 / 43



Idea 2: base + bound register

• Two special privileged registers: base and bound

• On each load/store:
I Physical address = virtual address + base

I Check 0 ≤ virtual address < bound, else trap to kernel

• How to move process in memory?
I Change base register

• What happens on context switch?
I OS must re-load base and bound register

7 / 43



Definitions

• Programs load/store to virtual (or logical) addresses

• Actual memory uses physical (or real) addresses

• VM Hardware is Memory Management Unit (MMU)

I Usually part of CPU

I Accessed w. privileged instructions (e.g., load bound reg)

I Translates from virtual to physical addresses

I Gives per-process view of memory called address space

8 / 43



Address space

9 / 43



Base+bound trade-offs

• Advantages

I Cheap in terms of hardware: only two registers

I Cheap in terms of cycles: do add and compare in parallel

I Examples: Cray-1 used this scheme

• Disadvantages

I Growing a process is expensive or
impossible

I No way to share code or data (E.g., two
copies of bochs)

• One solution: Multiple segments

I E.g., separate code, stack, data segments

I Possibly multiple data segments

10 / 43



Outline

1 Segmentation

2 Paging

3 Intel x86: Hardware MMU

4 MIPS: Software Managed MMU

11 / 43



Segmentation

• Let processes have many base/bound regs
I Address space built from many segments

I Can share/protect memory at segment granularity

• Must specify segment as part of virtual address
12 / 43



Segmentation mechanics

• Each process has a segment table

• Each VA indicates a segment and offset:
I Top bits of addr select segment, low bits select offset (PDP-10)

I Or segment selected by instruction or operand (means you need wider “far”
pointers to specify segment)

13 / 43



Segmentation example

0x4000

0x3000

0x2000

0x1500

0x1000
0x0700

0x0000

virtual physical

0x4700

0x3000

0x500

0x0000

0x4000

• 2-bit segment number (1st digit), 12 bit offset (last 3)
I Where is 0x0240? 0x1108? 0x265c? 0x3002? 0x1600?

14 / 43



Segmentation trade-offs

• Advantages

I Multiple segments per process

I Allows sharing! (how?)

I Don’t need entire process in memory

• Disadvantages

I Requires translation hardware, which could limit performance

I Segments not completely transparent to program (e.g., default segment faster or
uses shorter instruction)

I n byte segment needs n contiguous bytes of physical memory

I Makes fragmentation a real problem.

15 / 43



Fragmentation

• Fragmentation→ Inability to use free memory

• Over time:

I Variable-sized pieces = many small holes (external fragmentation)

I Fixed-sized pieces = no external holes, but force internal waste (internal
fragmentation)

16 / 43



Outline

1 Segmentation

2 Paging

3 Intel x86: Hardware MMU

4 MIPS: Software Managed MMU

17 / 43



Paging

• Divide memory up into small pages

• Map virtual pages to physical pages

I Each process has separate mapping

• Allow OS to gain control on certain operations

I Read-only pages trap to OS on write

I Invalid pages trap to OS on read or write

I OS can change mapping and resume application

• Other features sometimes found:

I Hardware can set “accessed” and “dirty” bits

I Control page execute permission separately from read/write

I Control caching or memory consistency of page

18 / 43



Paging trade-offs

• Eliminates external fragmentation

• Simplifies allocation, free, and backing storage (swap)

• Average internal fragmentation of .5 pages per “segment”

19 / 43



Simplified allocation

emacsgcc
memory

Disk

physical

• Allocate any physical page to any process

• Can store idle virtual pages on disk

20 / 43



Paging data structures

• Pages are fixed size, e.g., 4K
I Least significant 12 (log2 4K) bits of address are page offset

I Most significant bits are page number

• Each process has a page table
I Maps virtual page numbers (VPNs) to physical page numbers (PPNs)

I Also includes bits for protection, validity, etc.

• On memory access: Translate VPN to PPN,
then add offset

21 / 43



Example: Paging on PDP-11

• 64K virtual memory, 8K pages

I Separate address space for instructions & data

I I.e., can’t read your own instructions with a load

• Entire page table stored in registers

I 8 Instruction page translation registers

I 8 Data page translations

• Swap 16 machine registers on each context switch

22 / 43



MMU Types

• Memory Management Units (MMU) come in two flavors

• Hardware Managed

I Hardware reloads TLB with pages from a page tables

I Typically hardware page tables are Radix Trees

I Requires complex hardware

I Examples: x86, ARM64, IBM POWER9+

• Software Managed

I Simplier hardware and asks software to reload pages

I Requires fast exception handling and optimized software

I Enables more flexiblity in the TLB (e.g. variable page sizes)

I Examples: MIPS, Sun SPARC, DEC Alpha, ARM and POWER

23 / 43



Outline

1 Segmentation

2 Paging

3 Intel x86: Hardware MMU

4 MIPS: Software Managed MMU

24 / 43



x86 Paging

• Paging enabled by bits in a control register (%cr0)
I Only privileged OS code can manipulate control registers

• Normally 4KB pages

• %cr3: points to 4KB page directory

• Page directory: 1024 PDEs (page directory entries)

I Each contains physical address of a page table

• Page table: 1024 PTEs (page table entries)

I Each contains physical address of virtual 4K page

I Page table covers 4 MB of Virtual mem

• See intel manual for detailed explanation

I Volume 2 of AMD64 Architecture docs

I Volume 3A of Intel Pentium Manual

25 / 43

http://developer.amd.com/Resources/documentation/guides/Pages/default.aspx#manuals
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html


x86 page translation

*32 bits aligned onto a 4−KByte boundary

Page Directory

Directory Entry

CR3 (PDBR)

Page Table

Page−Table Entry

4−KByte Page

Physical Address

32*

10

12

10

20

0

irectory e f s

31 21 111222

Linear Address

D Tabl O f et

1024 PDE × 1024 PTE = 220 Pages

26 / 43



x86 page directory entry

)

3 1

A v a ila b le fo r s y s te m p ro g ra m m e r ’s u s e

G lo b a l p a g e (Ig n o re d )

P a g e s iz e (0 in d ic a te s 4 K B y te s )

R e s e rv e d (s e t to 0 )

1 2 11 9 8 7 6 5 4 3 2 1 0

P
S

P
CA0

A c c e s s e d

C a c h e d is a b le d

W rite −th ro u g h

U s e r/S u p e rv is o r

R e a d /W rite

P re s e n t

D
P

P
W
T

U
/

S

R
/

W
GA v a ilP a g e −Ta b le B a s e A d d re ss

P a g e −D i r e c t o r y E n t r y (4 −K B y t e P a g e Ta b l e

27 / 43



x86 page table entry

t

31

Available for system programmer’s use

Global Page

Page Table Attribute Index

Dirty

12 11 9 8 7 6 5 4 3 2 1 0

P
CAD

Accessed

Cache Disabled

Write−Through

User/Supervisor

Read/Write

Present

D
P

P
W
T

U
/
S

R
/

W
AvailPage Base Address

Page−Table En ry (4−KByte Page)

P
A
T

G

28 / 43



x86 hardware segmentation

• x86 architecture also supports segmentation
I Segment register base + pointer val = linear address

I Page translation happens on linear addresses

• Two levels of protection and translation check
I Segmentation model has four privilege levels (CPL 0–3)

I Paging only two, so 0–2 = kernel, 3 = user

• Why do you want both paging and segmentation?

• Short answer: You don’t – just adds overhead
I Most OSes use “flat mode” – set base = 0, bounds = 0xffffffff

in all segment registers, then forget about it

I x86-64 architecture removes much segmentation support

• Long answer: Has some fringe/incidental uses
I VMware runs guest OS in CPL 1 to trap stack faults

I OpenBSD used CS limit for W∧X when no PTE NX bit

29 / 43



x86 hardware segmentation

• x86 architecture also supports segmentation
I Segment register base + pointer val = linear address

I Page translation happens on linear addresses

• Two levels of protection and translation check
I Segmentation model has four privilege levels (CPL 0–3)

I Paging only two, so 0–2 = kernel, 3 = user

• Why do you want both paging and segmentation?

• Short answer: You don’t – just adds overhead
I Most OSes use “flat mode” – set base = 0, bounds = 0xffffffff

in all segment registers, then forget about it

I x86-64 architecture removes much segmentation support

• Long answer: Has some fringe/incidental uses
I VMware runs guest OS in CPL 1 to trap stack faults

I OpenBSD used CS limit for W∧X when no PTE NX bit
29 / 43



Making paging fast

• x86 PTs require 3 memory references per load/store

I Look up page table address in page directory

I Look up PPN in page table

I Actually access physical page corresponding to virtual address

• For speed, CPU caches recently used translations

I Called a translation lookaside buffer or TLB

I Typical: 64-2K entries, 4-way to fully associative, 95% hit rate

I Each TLB entry maps a VPN→ PPN + protection information

• On each memory reference

I Check TLB, if entry present get physical address fast

I If not, walk page tables, insert in TLB for next time
(Must evict some entry)

30 / 43



TLB details

• TLB operates at CPU pipeline speed→ small, fast

• Complication: what to do when switch address space?

I Flush TLB on context switch (e.g., old x86)

I Tag each entry with associated process’s ID (e.g., MIPS)

• In general, OS must manually keep TLB valid

• E.g., x86 invlpg instruction

I Invalidates a page translation in TLB

I Must execute after changing a possibly used page table entry

I Otherwise, hardware will miss page table change

• More Complex on a multiprocessor (TLB shootdown)

31 / 43



Where does the OS live?

• In its own address space?

I Can’t do this on most hardware (e.g., syscall instruction won’t switch address
spaces)

I Also would make it harder to parse syscall arguments passed as pointers

• So in the same address space as process

I Use protection bits to prohibit user code from writing kernel

• Typically all kernel text, most data at same VA in every address space

I On x86, must manually set up page tables for this

I Usually just map kernel in contiguous virtual memory when boot loader puts
kernel into contiguous physical memory

I Some hardware puts physical memory (kernel-only) somewhere in virtual address
space

32 / 43



Outline

1 Segmentation

2 Paging

3 Intel x86: Hardware MMU

4 MIPS: Software Managed MMU

33 / 43



Very different MMU: MIPS

• Hardware has 64-entry TLB

I References to addresses not in TLB trap to kernel

• Each TLB entry has the following fields:
Virtual page, Pid, Page frame, NC, D, V, Global

• Kernel itself unpaged

I All of physical memory contiguously mapped in high VM

I Kernel uses these pseudo-physical addresses

• User TLB fault hander very efficient

I Two hardware registers reserved for it

I utlb miss handler can itself fault—allow paged page tables

• OS is free to choose page table format!

34 / 43



MIPS Memory Layout

FFFF FFFF

C000 0000

kseg2: Paged Kernel

BFFF FFFF
A000 0000 kseg1: Phys. Uncached

9FFF FFFF
8000 0000 kseg0: Phys. Cached


Kernel Memory

7FFF FFFF

0000 0000

useg: Paged User


User Memory

35 / 43



MIPS Translation Lookaside Buffer

• TLB Entries: 64 - 64-bit entries containing:
I PID: Process ID (tagged TLB)

I N: No Cache - disables caching for memory mapped I/O

I D: Writeable - makes the page writeable

I V: Valid

I G: Global - ignores the PID during lookups

3233343536373839404142434445464748495051525354555657585960616263

Frame Number (VPN) PID

012345678910111213141516171819202122232425262728293031

Physical Page Number (PPN) ND V G

• Page Sizes: Multiples of 4 from 4 kiB–16 MiB
I 4 kiB, 16 kiB, 64 kiB, 256 kiB, 1 MiB, 4 MiB, 16 MiB

36 / 43



TLB PID and Global Bit

• Process ID (PID) allows multiple processes to coexist

I We don’t need to flush the TLB on context switch

I By setting the process ID

I Only flush TLB entries when reusing a PID

I Current PID is stored in c0_entryhi

• Global bit

I Used for pages shared across all address spaces in kseg2 or useg

I Ensures the TLB ignores the PID field

I Typically in most hardware a TLB flush doesn’t flush global pages

37 / 43



TLB Instructions

• MIPS co-processor 0 (COP0) provides the TLB functionality

• Four instructions:

I tlbwr: TLB write a random slot

I tlbwi: TLB write a specific slot

I tlbr: TLB read a specific slot

I tlbp: Probe the slot containing an address

• For each of these instructions you must load the following registers

I c0_entryhi: high bits of TLB entry

I c0_entrylo: low bits of TLB entry

I c0_index: TLB Index

38 / 43



Hardware Lookup Exceptions

• TLB Exceptions:

I UTLB Miss: Generated when the accessing useg without matching TLB entry

I TLB Miss: Generated when the accessing kseg2 without matching entry

I TLB Mod: Generated when writing to read-only page

• UTLB handler is seperate from general exception handler

I UTLBs are very frequent and require a hand optimized path

I 64 entry TLB with 4 kiB pages covers 256 kiB of memory

I Modern machines have workloads with far more memory

I Require more entries (expensive hardware) or larger pages

39 / 43



Hardware Lookup Algorithm

• If most significant bit (MSB) is 1 and in user mode→ address error exception.

• If no VPN match→ TLB miss exception if MSB is 1, otherwise UTLB miss.

• If PID mismatches and global bit not set→ generate a TLB miss or UTLB miss.

• If valid bit not set→ TLB miss.

• Write to read-only page→ TLB mod exception.

• If N bit is set directly access device memory (disable cache)

40 / 43



OS/161 Assembly Wrappers

• tlb_random: Write random TLB entry

• tlb_write: Write specific TLB entry

• tlb_read: Read specific TLB entry

• tlb_probe: Lookup TLB entry

• Currently the OS implements segments using paging hardware

• In a later assignment you will implement a Radix tree (like x86)

41 / 43



OS/161 Memory Layout

• Example Memory Layout: user/testbin/sort

7FFF FFFF
xxxx xxxx Stack

1012 00B0
1000 0000 Data

0040 1A0C
0040 0000 Text + R/O Data

42 / 43



Paging in day-to-day use

• Paging Examples

I Demand paging

I Growing the stack

I BSS page allocation

I Shared text

I Shared libraries

I Shared memory

I Copy-on-write (fork, mmap, etc.)

• Next time: detailed discussion on operating system side

43 / 43


	Segmentation
	Paging
	Intel x86: Hardware MMU
	MIPS: Software Managed MMU

