CS350: Operating Systems

Lecture 7: Virtual memory HW

Ali Mashtizadeh

University of Waterloo

1/43

Want processes to co-exist

0x9000
0S
0x7000
cc
J 0x4000
bochs/pintos
0x3000
emacs
0x0000

¢ Consider multiprogramming on physical memory
> What happens if emacs needs to expand?
> If emacs needs more memory than is on the machine??
> If emacs has an error and writes to address 0x7100?
> When does gcc have to know it will run at 0x4000?
> What if emacs isn't using its memory?

2/43

Issues in sharing physical memory

* Protection
> A bug in one process can corrupt memory in another
> Must somehow prevent process A from trashing B's memory
> Also prevent A from even observing B's memory (ssh-agent)
e Transparency

> A process shouldn't require particular physical memory bits

> Yes processes often require large amounts of contiguous memory (for stack, large
data structures, etc.)

e Resource exhaustion

> Programmers typically assume machine has “enough” memory
> Sum of sizes of all processes often greater than physical memory

3/43

Virtual memory goals
Is address
legal?
(@]

app. virtual address S __ Yes, phys. addr
0x30408 0x92408
\ | data | memory

kernel

To fault handler No

¢ Give each program its own “virtual” address space

> At run time, Memory-Management Unit relocates each load, store to actual
memory... App doesn't see physical memory

* Also enforce protection
> Prevent one app from messing with another’'s memory
¢ And allow programs to see more memory than exists
> Somehow relocate some memory accesses to disk

4/43

Virtual memory advantages

¢ Can re-locate program while running
> Run partially in memory, partially on disk
* Most of a process’s memory may be idle (80/20 rule).

gce
><><
kernel
L

> Write idle parts to disk until needed
> Let other processes use memory of idle part

> Like CPU virtualization: when process not using CPU, switch
(Not using a memory region? switch it to another process)

¢ Challenge: VM = extra layer, could be slow

emacs

kernel

5 /43

Idea 1: load-time linking

0S
static a.out
0x3000 0x6000
a.out’
. j 0x5000
jump 0x2000 jump 04000
0x1000

e Linker patches addresses of symbols like printf

¢ Idea: link when process executed, not at compile time
> Determine where process will reside in memory
> Adjust all references within program (using addition)

e Problems?

6/43

Idea 1: load-time linking

0S
static a.out
0x3000 0x6000
a.out’
. j 0x5000
jump 0x2000 e 0x4000
0x1000

e Linker patches addresses of symbols like printf
¢ Idea: link when process executed, not at compile time
> Determine where process will reside in memory
> Adjust all references within program (using addition)
* Problems?
» How to enforce protection
> How to move once already in memory (Consider: data pointers)
> What if no contiguous free region fits program? 6/43

Idea 2: base + bound register

0Ss
static a.out
0x3000 0x6000
a.out’
s j 0x5000
jump 0x2000 jump Ox 0x4000
0x1000

Two special privileged registers: base and bound

On each load/store:

> Physical address = virtual address + base

> Check 0 < virtual address < bound, else trap to kernel
* How to move process in memory?

What happens on context switch?

7/43

Idea 2: base + bound register

0Ss
static a.out
0x3000 0x6000
a.out’
s j 0x5000
jump 0x2000 JENGD RS 0x4000
0x1000

Two special privileged registers: base and bound

On each load/store:

> Physical address = virtual address + base

> Check 0 < virtual address < bound, else trap to kernel
* How to move process in memory?

> Change base register
What happens on context switch?

7/43

Idea 2: base + bound register

0Ss
static a.out
0x3000 0x6000
a.out’
s j 0x5000
jump 0x2000 JENGD RS 0x4000
0x1000

Two special privileged registers: base and bound

On each load/store:

> Physical address = virtual address + base

> Check 0 < virtual address < bound, else trap to kernel
* How to move process in memory?

> Change base register

What happens on context switch?

> OS must re-load base and bound register

7/43

* Programs load/store to virtual (or logical) addresses
¢ Actual memory uses physical (or real) addresses
* VM Hardware is Memory Management Unit (MMU)

Physical
virtual addrs addrs
<_1_,) l .| memory

CPU MMU

> Usually part of CPU
> Accessed w. privileged instructions (e.g., load bound reg)
> Translates from virtual to physical addresses

> Gives per-process view of memory called address space
8 /43

Address space

Virtual Address Physical Address
View View

0S

9/43

Base+bound trade-offs

¢ Advantages
> Cheap in terms of hardware: only two registers
> Cheap in terms of cycles: do add and compare in parallel
> Examples: Cray-1 used this scheme

* Disadvantages
> Growing a process is expensive or
impossible

> No way to share code or data (E.g., two
copies of bochs)

* One solution: Multiple segments

> E.g., separate code, stack, data segments
> Possibly multiple data segments

10 /43

@ Segmentation
@ Paging
® Intel x86: Hardware MMU

@ MIPS: Software Managed MMU

11/43

Segmentation

Real memory

gcc 0x2000
0x1000
Text seg
r/o
0x3000
0x8000
0x5000 Base&bound?
Stack seg
0x6000
0x6000 £ *

¢ Let processes have many base/bound regs
> Address space built from many segments
> Can share/protect memory at segment granularity

* Must specify segment as part of virtual address
12 /43

Segmentation mechanics

fault
Virtual addr n mem

3 P&) ox1009

j
Seg 1128

seg

e Each process has a segment table
* Each VA indicates a segment and offset:
> Top bits of addr select segment, low bits select offset (PDP-10)

> Or segment selected by instruction or operand (means you need wider “far”
pointers to specify segment)

13 /43

Segmentation example

Seg Dbase bounds rw)

0 0x4000 O0x6ff 10 virtual physical
1 0x0000 Ox4ff 11

2 0x3000 Oxfff 11 0x4000 0x4700
3 00

0x3000 /f 0x4000

0x2000 0x3000

0x1500

0x0700
0x0000

¢ 2-bit segment number (1st digit), 12 bit offset (last 3)
» Where is 0x0240? 0x1108? 0x265c? 0x3002? 0x1600?

14 /43

Segmentation trade-offs

¢ Advantages
» Multiple segments per process gcc
» Allows sharing! (how?) &
> Don't need entire process in memory
. ; where?
¢ Disadvantages gcc emacs?

> Requires translation hardware, which could limit performance

> Segments not completely transparent to program (e.g., default segment faster or
uses shorter instruction)
> n byte segment needs n contiguous bytes of physical memory

> Makes fragmentation a real problem.

15 /43

Fragmentation

* Fragmentation — Inability to use free memory

e Qver time:

> Variable-sized pieces = many small holes (external fragmentation)

> Fixed-sized pieces = no external holes, but force internal waste (internal
fragmentation)

PPu—

External
‘ — /fragmentation

} Unused

(“internal
fragmentation”)

allocated

16 /43

@ Segmentation
® Paging
® Intel x86: Hardware MMU

@ MIPS: Software Managed MMU

17 /43

Divide memory up into small pages

Map virtual pages to physical pages
> Each process has separate mapping

Allow OS to gain control on certain operations
> Read-only pages trap to OS on write
> Invalid pages trap to OS on read or write
> OS can change mapping and resume application

Other features sometimes found:

> Hardware can set “accessed” and “dirty” bits
> Control page execute permission separately from read/write
> Control caching or memory consistency of page

18 /43

Paging trade-offs

/7
Pages >
typical: 4k-8k

gcc

<$--\\\\\\~
T / internal frag
v 2

* Eliminates external fragmentation
¢ Simplifies allocation, free, and backing storage (swap)
* Average internal fragmentation of .5 pages per “segment”

19 /43

Simplified allocation

physical emacs

memory ©

Disk

gce

* Allocate any physical page to any process
e Can store idle virtual pages on disk

20 /43

Paging data structures

* Pages are fixed size, e.g., 4K
> Least significant 12 (log, 4K) bits of address are page offset
> Most significant bits are page number
* Each process has a page table
> Maps virtual page numbers (VPNs) to physical page numbers (PPNs)
> Also includes bits for protection, validity, etc.
* On memory access: Translate VPN to PPN,
then add offset

Virtual addr mem
|3 | ((1<<12)1128) | 0.1000
ij
Vﬁ“ page table seq 128
Prot]l VPN IPPN
? PPN

>
*“invalid"
— _

21/43

Example: Paging on PDP-11

* 64K virtual memory, 8K pages

> Separate address space for instructions & data
> l.e. can't read your own instructions with a load

* Entire page table stored in registers

> 8 Instruction page translation registers
> 8 Data page translations

* Swap 16 machine registers on each context switch

22 /43

MMU Types

* Memory Management Units (MMU) come in two flavors

* Hardware Managed

> Hardware reloads TLB with pages from a page tables
> Typically hardware page tables are Radix Trees

> Requires complex hardware

> Examples: x86, ARM64, IBM POWER9+

* Software Managed

> Simplier hardware and asks software to reload pages

> Requires fast exception handling and optimized software
> Enables more flexiblity in the TLB (e.g. variable page sizes)
> Examples: MIPS, Sun SPARC, DEC Alpha, ARM and POWER

23 /43

@ Segmentation
@ Paging
® Intel x86: Hardware MMU

@ MIPS: Software Managed MMU

24 /43

x86 Paging

* Paging enabled by bits in a control register (%cro)
> Only privileged OS code can manipulate control registers

Normally 4KB pages

%cr3: points to 4KB page directory

Page directory: 1024 PDEs (page directory entries)
> Each contains physical address of a page table

Page table: 1024 PTEs (page table entries)

> Each contains physical address of virtual 4K page
> Page table covers 4 MB of Virtual mem

See intel manual for detailed explanation

> Volume 2 of AMD64 Architecture docs
> Volume 3A of Intel Pentium Manual

25 /43

http://developer.amd.com/Resources/documentation/guides/Pages/default.aspx#manuals
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

x86 page translation

Linear Address
31 22 21 12 11 0

| Directory | Table | Offset |

12 4KByte Page

|,
10

10 Page Table Physical Address

Page Directory

Page-Table Entr >
g y /20

L

Directory Entry

32*

1024 PDE x 1024 PTE = 2% Pages

CR3 (PDBR)

26 /43

x86 page directory entry

Page-Directory Entry (4-KByte Page Table)
31 12 11 9876543210

Page-Table Base Address Avail |G

Available for system programmer’s use —I ‘

Global page (Ignored)
Page size (0 indicates 4 KBytes)
Reserved (setto 0)
Accessed
Cache disabled
Writethrough
User/Supervisor
Read/Write
Present

o
>
[s¥ok-]
—=T
w—c
=—3
el

)
S

27 /43

x86 page table entry

Page-Table Entry (4-KByte Page)

31 1211 9876543210
P PIP|U|R

Page Base Address Avail |[G|A|D|A|C|W|/]|/]|P
T D|T|S (W

Available for system programmer’s use —I ‘

Global Page
Page Table Attribute Index
Dirty
Accessed
Cache Disabled
Write-Through
User/Supervisor
Read/Write
Present

28 /43

x86 hardware segmentation

* x86 architecture also supports segmentation
> Segment register base + pointer val = linear address
> Page translation happens on linear addresses
* Two levels of protection and translation check
> Segmentation model has four privilege levels (CPL 0-3)
> Paging only two, so 0-2 = kernel, 3 = user
* Why do you want both paging and segmentation?

29 /43

x86 hardware segmentation

* x86 architecture also supports segmentation
> Segment register base + pointer val = linear address
> Page translation happens on linear addresses
Two levels of protection and translation check
> Segmentation model has four privilege levels (CPL 0-3)
> Paging only two, so 0-2 = kernel, 3 = user
Why do you want both paging and segmentation?
Short answer: You don’t - just adds overhead

> Most OSes use “flat mode” - set base = 0, bounds = Oxffffffff
in all segment registers, then forget about it

> x86-64 architecture removes much segmentation support
* Long answer: Has some fringe/incidental uses

> VMware runs guest OS in CPL 1 to trap stack faults

> OpenBSD used CS limit for WAX when no PTE NX bit

29 /43

Making paging fast

* x86 PTs require 3 memory references per load/store

> Look up page table address in page directory
> Look up PPN in page table
> Actually access physical page corresponding to virtual address

* For speed, CPU caches recently used translations

> Called a translation lookaside buffer or TLB
> Typical: 64-2K entries, 4-way to fully associative, 95% hit rate
> Each TLB entry maps a VPN — PPN + protection information

* On each memory reference

> Check TLB, if entry present get physical address fast

> If not, walk page tables, insert in TLB for next time
(Must evict some entry)

30/43

TLB details

* TLB operates at CPU pipeline speed — small, fast

¢ Complication: what to do when switch address space?

> Flush TLB on context switch (e.g., old x86)
> Tag each entry with associated process's ID (e.g., MIPS)

In general, OS must manually keep TLB valid

E.g., x86 invipg instruction

> Invalidates a page translation in TLB
> Must execute after changing a possibly used page table entry
> Otherwise, hardware will miss page table change

More Complex on a multiprocessor (TLB shootdown)

31/43

Where does the OS live?

* In its own address space?

> Can't do this on most hardware (e.g., syscall instruction won’t switch address
spaces)
> Also would make it harder to parse syscall arguments passed as pointers

* So in the same address space as process
> Use protection bits to prohibit user code from writing kernel

e Typically all kernel text, most data at same VA in every address space

> On x86, must manually set up page tables for this

> Usually just map kernel in contiguous virtual memory when boot loader puts
kernel into contiguous physical memory

> Some hardware puts physical memory (kernel-only) somewhere in virtual address
space

32/43

@ Segmentation
@ Paging
® Intel x86: Hardware MMU

@ MIPS: Software Managed MMU

33/43

Very different MMU: MIPS

* Hardware has 64-entry TLB
> References to addresses not in TLB trap to kernel

Each TLB entry has the following fields:
Virtual page, Pid, Page frame, NC, D, V, Global

Kernel itself unpaged

> All of physical memory contiguously mapped in high VM
> Kernel uses these pseudo-physical addresses

User TLB fault hander very efficient

> Two hardware registers reserved for it
> utlb miss handler can itself fault—allow paged page tables

OS is free to choose page table format!

34/43

MIPS Memory Layout

\

FFFF FFFF
kseg2: Paged Kernel

C000 0000

BFFF FFFF
AGRO 0000

9FFF FFFF _
8000 0000 kseg0: Phys. Cached

7FFF FFFF

Kernel Memory

kseg1: Phys. Uncached

AN

useg: Paged User User Memory

0000 0000 J

35/43

MIPS Translation Lookaside Buffer

* TLB Entries: 64 - 64-bit entries containing:
> PID: Process ID (tagged TLB)
> N: No Cache - disables caching for memory mapped 1/0
> D: Writeable - makes the page writeable
> V:Valid
> G: Global - ignores the PID during lookups

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Frame Number (VPN) PID

31 30 29 28 27 26 2524 23 222120191817 16151413121110 9 8 7 6 5 4 3 2 1 0

Physical Page Number (PPN) ND|V|G

* Page Sizes: Multiples of 4 from 4 kiB-16 MiB
> 4kiB, 16 kiB, 64 kiB, 256 kiB, 1 MiB, 4 MiB, 16 MiB

36 /43

TLB PID and Global Bit

* Process ID (PID) allows multiple processes to coexist

> We don't need to flush the TLB on context switch
> By setting the process ID

> Only flush TLB entries when reusing a PID

> Current PID is stored in c@_entryhi

¢ Global bit

> Used for pages shared across all address spaces in kseg2 or useg
> Ensures the TLB ignores the PID field
> Typically in most hardware a TLB flush doesn't flush global pages

37/43

TLB Instructions

¢ MIPS co-processor 0 (COPO) provides the TLB functionality

e Four instructions:
> tlbwr: TLB write a random slot
> tlbwi: TLB write a specific slot
> tlbr: TLB read a specific slot
> tlbp: Probe the slot containing an address

* For each of these instructions you must load the following registers

> c0_entryhi: high bits of TLB entry
> c0_entrylo: low bits of TLB entry
> c@_index: TLB Index

38 /43

Hardware Lookup Exceptions

* TLB Exceptions:
> UTLB Miss: Generated when the accessing useg without matching TLB entry
> TLB Miss: Generated when the accessing kseg2 without matching entry
> TLB Mod: Generated when writing to read-only page

* UTLB handler is seperate from general exception handler
> UTLBs are very frequent and require a hand optimized path
> 64 entry TLB with 4 kiB pages covers 256 kiB of memory
> Modern machines have workloads with far more memory
> Require more entries (expensive hardware) or larger pages

39 /43

Hardware Lookup Algorithm

If most significant bit (MSB) is 1 and in user mode — address error exception.

If no VPN match — TLB miss exception if MSB is 1, otherwise UTLB miss.

If PID mismatches and global bit not set — generate a TLB miss or UTLB miss.

If valid bit not set — TLB miss.

Write to read-only page — TLB mod exception.

If N bit is set directly access device memory (disable cache)

40/43

0S/161 Assembly Wrappers

t1lb_random: Write random TLB entry

tlb_write: Write specific TLB entry

tlb_read: Read specific TLB entry

tlb_probe: Lookup TLB entry

Currently the OS implements segments using paging hardware

In a later assignment you will implement a Radix tree (like x86)

41/43

0S/161 Memory Layout

* Example Memory Layout: user/testbin/sort

7EFE EFEF
XXXX XXXX StaCk
1012 00BO

1000 0000 Data
0040 1A0C

0040 6000 Text + R/0O Data

42/43

Paging in day-to-day use

* Paging Examples
> Demand paging
> Growing the stack
> BSS page allocation
> Shared text
> Shared libraries
> Shared memory
> Copy-on-write (fork, mmap, etc.)

* Next time: detailed discussion on operating system side

43 /43

	Segmentation
	Paging
	Intel x86: Hardware MMU
	MIPS: Software Managed MMU

