
CS350: Operating Systems

Lecture 5: Synchronization

Ali Mashtizadeh

University of Waterloo

1 / 32

Outline

1 Synchronization and memory consistency review

2 C11 Atomics

3 Cache coherence – the hardware view

4 Deadlock

5 OS Implementation

2 / 32

Motivation

T(n) = T(1)

(
B +

1

n
(1− B)

)
• Amdahl’s law

I T(1): the time one core takes to complete the task

I B: the fraction of the job that must be serial

I n: the number of cores

• Suppose n were infinity!

• Amdahl’s law places an ultimate limit on parallel speedup

• Problem: synchronization increases serial section size

• Scalable Commutativity Rule: “Whenever interface operations commute, they can
be implemented in a way that scales” [Clements]

3 / 32

http://web.mit.edu/amdragon/www/pubs/commutativity-sosp13.pdf

Locking Basics

pthread_mutex_t m;

pthread_mutex_lock(&m);
cnt = cnt + 1; /* critical section */
pthread_mutex_unlock(&m);

• Only one thread can hold a lock at a time

• Makes critical section atomic

• When do you need a lock?

I Anytime two or more threads touch data and at least one writes

• Rule: Never touch data unless you hold the right lock

4 / 32

Fine-grained Locking

struct list_head *hash_tbl[1024];

/* Coarse-grained Locking */
mutex_t m;
mutex_lock(&m);
struct list_head *pos = hash_tbl[hash(key)];
/* walk list and find entry */
mutex_unlock(&m);

/* Fine-grained Locking */
mutex_t bucket[1024];
int index = hash(key);
mutex_lock(&bucket[index]);
struct list_head *pos = hash_tbl[index];
/* walk list and find entry */
mutex_unlock(&bucket[index]);

• Which of these is better?

5 / 32

Memory reordering danger

• Suppose no sequential consistency & don’t compensate

• Hardware could violate program order

Program order on CPU #1 View on CPU #2

read/write: v->lock = 1; v->lock = 1;
read: register = v->val;
write: v->val = register + 1;
write: v->lock = 0; v->lock = 0;

/* danger */
v->val = register + 1;

• If atomic_inc called at /* danger */, bad val ensues!

6 / 32

Ordering requirements

void atomic_inc (var *v) {
while (test_and_set (&v->lock))
;

v->val++;
/* danger */
v->lock = 0;

}

• Must ensure all CPUs see the following:

1. v->lock was set before v->val was read and written

2. v->lock was cleared after v->val was written
• How does #1 get assured on x86?

I Recall test_and_set uses xchgl %eax,(%edx)

I xchgl instruction always “locked,” ensuring barrier

• How to ensure #2 on x86?

I Might need fence instruction after, e.g., non-temporal stores

7 / 32

Ordering requirements

void atomic_inc (var *v) {
while (test_and_set (&v->lock))
;

v->val++;
/* danger */
v->lock = 0;

}

• Must ensure all CPUs see the following:

1. v->lock was set before v->val was read and written

2. v->lock was cleared after v->val was written
• How does #1 get assured on x86?

I Recall test_and_set uses xchgl %eax,(%edx)
I xchgl instruction always “locked,” ensuring barrier

• How to ensure #2 on x86?

I Might need fence instruction after, e.g., non-temporal stores

7 / 32

Ordering requirements

void atomic_inc (var *v) {
while (test_and_set (&v->lock))
;

v->val++;
asm volatile ("sfence" ::: "memory");
v->lock = 0;

}

• Must ensure all CPUs see the following:

1. v->lock was set before v->val was read and written

2. v->lock was cleared after v->val was written
• How does #1 get assured on x86?

I Recall test_and_set uses xchgl %eax,(%edx)
I xchgl instruction always “locked,” ensuring barrier

• How to ensure #2 on x86?
I Might need fence instruction after, e.g., non-temporal stores

7 / 32

MIPS Spinlocks

• LL rt, offset(rb) – Load Linked
I rt← memory[rb+offset]

• SC rt, offset(base) – Store conditional (sets rt 0 if not atomic)
I if atomic w.r.t. prior LL memory[rb+offset]← rt, rt← 1
I else rt← 0

spinlock_data_t spinlock_data_testandset(spinlock_data_t *sd)
ll v0, 0(a0) # v0 = *sd (Load Linked)
addi t1, zero, 1 # t1 = 1
sc t1, 0(a0) # *sd = t1 (Store Conditional)
bne t1, zero, 1f # if SC not failed
nop # branch delay slot
addi v0, zero, 1 # return 1 on failure

1: j ra # return to caller
nop # branch delay slot

• MIPS I (SYS/161) is sequentially consistent→ no barriers needed

• Later MIPS processors need SYNCmemory barrier
8 / 32

OS/161 Spinlock Acquire

void spinlock_acquire(struct spinlock *lk)
{
struct cpu *mycpu;

splraise(IPL_NONE, IPL_HIGH);

/* this must work before curcpu initialization */
if (CURCPU_EXISTS()) {
mycpu = curcpu->c_self;
if (lk->lk_holder == mycpu) {
panic("Deadlock on spinlock %p\n", lk);

}
} else {
mycpu = NULL;

}
...

}

9 / 32

OS/161 Spinlock Acquire Con’t

void spinlock_acquire(struct spinlock *lk)
{
...
while (1) {
/*
* First check if the lock is busy to reduce
* coherence traffic (more on this later).
*/
if (spinlock_data_get(&lk->lk_lock) != 0) {
continue;

}
/* Attempt to acquire the lock */
if (spinlock_data_testandset(&lk->lk_lock) != 0) {
continue;

}
break;

}
lk->lk_holder = mycpu;

}

10 / 32

11 / 32

Outline

1 Synchronization and memory consistency review

2 C11 Atomics

3 Cache coherence – the hardware view

4 Deadlock

5 OS Implementation

11 / 32

Atomics and Portability

• Lots of variation in atomic instructions, consistency models, compiler behavior

• Results in complex code when writing portable kernels and applications

• Still a big problem today: Your laptop is x86, your cell phone is ARM

I x86: Total Store Order Consistency Model, CISC

I arm: Relaxed Consistency Model, RISC

• Fortunately, the new C11 standard has builtin support for atomics

I Enable in GCC with the -std=c11 flag

• Also available in C++11, but not discussed today...

12 / 32

C11 Atomics: Basics

• Portable support for synchronization

• New atomic type: e.g., _Atomic(int) foo
I All standard ops (e.g., +, −, /, ∗) become sequentially consistent

I Plus new intrinsics available (cmpxchg, atomic increment, etc.)

• atomic_flag is a special type
I Atomic boolean value without support for loads and stores

I Must be implemented lock-free

I All other types might require locks, depending on the size and architecture

• Fences also available to replace hand-coded memory barrier assembly

13 / 32

Memory Ordering

• several choices available

1. memory_order_relaxed: no memory ordering

2. memory_order_consume
3. memory_order_acquire
4. memory_order_release
5. memory_order_acq_rel
6. memory_order_seq_cst: full sequential consistency

• What happens if the chosen model is mistakenly too weak? Too Strong?

• Suppose thread 1 releases and thread 2 acquires

I Thread 1’s precedingwrites can’t move past the release store

I Thread 2’s subsequent reads can’t move before the acquire load

I Warning: other threads might see a completely different order

14 / 32

Example 1: Atomic Counters

_Atomic(int) packet_count;

void recv_packet(...) {
...
atomic_fetch_add_explicit(&packet_count, 1,

memory_order_relaxed);
...

}

15 / 32

Example 2: Producer, Consumer

struct message msg_buf;
_Atomic(_Bool) msg_ready;

void send(struct message *m) {
msg_buf = *m;
atomic_thread_fence(memory_order_release);
atomic_store_explicit(&msg_ready, 1,

memory_order_relaxed);
}

struct message *recv(void) {
_Bool ready = atomic_load_explicit(&msg_ready,

memory_order_relaxed);
if (!ready)

return NULL;
atomic_thread_fence(memory_order_acquire);
return &msg_buf;

}

16 / 32

Example 3: A Spinlock

• Spinlocks are similar to Mutexes

• Kernel’s use these for small critical regions

I Busy wait for others to release the lock

I No sleeping and yielding to other Threads

void spin_lock(atomic_flag *lock) {
while(atomic_flag_test_and_set_explicit(lock,

memory_order_acquire)) {}
}

void spin_unlock(atomic_flag *lock) {
atomic_flag_clear_explicit(lock, memory_order_release);

}

17 / 32

Outline

1 Synchronization and memory consistency review

2 C11 Atomics

3 Cache coherence – the hardware view

4 Deadlock

5 OS Implementation

18 / 32

Overview

• Coherence

I concerns accesses to a single memory location

I makes sure stale copies do not cause problems

• Consistency

I concerns apparent ordering between multiple locations

19 / 32

Multicore Caches

• Performance requires caches

• Caches create an opportunity for cores to disagree about memory

• Bus-based approaches

I “Snoopy” protocols, each CPU listens to memory bus

I Use write through and invalidate when you see a write bits

I Bus-based schemes limit scalability

• Modern CPUs use networks (e.g., hypertransport, UPI)

• Cache is divided into chuncks of bytes called cache lines

I 64-bytes is a typical size

20 / 32

3-state Coherence Protocol (MSI)

• Each cache line is one of three states:

• Modified (sometimes called Exclusive)

I One cache has a valid copy

I That copy is stale (needs to be written back to memory)

I Must invalidate all copies before entering this state

• Shared

I One or more caches (and memory) have a valid copy

• Invalid

I Doesn’t contain any data

• Transitions can take 100–2000 cycles

21 / 32

Core and Bus Actions

• Core has three actions:

• Read (load)

I Read without intent to modify, data can come from memory or another cache

I Cacheline enters shared state

• Write (store)

I Read with intent to modify, must invalidate all other cache copies

I Cacheline in shared (some protocols have an exclusive state)

• Evict

I Writeback contents to memory if modified

I Discard if in shared state

22 / 32

Implications for Multithreaded Design

• Lesson #1: Avoid false sharing
I Processor shares data in cache line chunks

I Avoid placing data used by different threads in the same cache line

• Lesson #2: Align structures to cache lines
I Place related data you need to access together

I Alignment in C11/C++11: alignas(64) struct foo f;

• Lesson #3: Pad data structures
I Arrays of structures lead to false sharing

I Add unused fields to ensure alignment

• Lesson #4: Avoid contending on cache lines
I Reduce costly cache coherence traffic

I Advanced algorithms spin on a cache line local to a core (e.g., MCS Locks)
23 / 32

Outline

1 Synchronization and memory consistency review

2 C11 Atomics

3 Cache coherence – the hardware view

4 Deadlock

5 OS Implementation

24 / 32

The deadlock problem

mutex_t m1, m2;

void f1(void *ignored) {
lock(m1);
lock(m2);
/* critical section */
unlock(m2);
unlock (m1);

}

void f2 (void *ignored) {
lock(m2);
lock(m1);
/* critical section */
unlock(m1);
unlock(m2);

}

• Lesson: Dangerous to acquire locks in different orders
25 / 32

More deadlocks

• Same problem with condition variables

I Suppose resource 1 managed by c1, resource 2 by c2
I A has 1, waits on c2, B has 2, waits on c1

• Or have combined mutex/condition variable deadlock:

mutex_t a, b;
cond_t c;

- lock(a); lock(b); while (!ready) wait(b, c);
unlock(b); unlock (a);

- lock(a); lock(b); ready = true; signal(c);
unlock(b); unlock(a);

• Lesson: Dangerous to hold locks when crossing abstraction barriers!

I I.e., lock (a) then call function that uses condition variable

26 / 32

Deadlock conditions

1. Limited access (mutual exclusion):

I Resource can only be shared with finite users

2. No preemption:

I Once resource granted, cannot be taken away

3. Multiple independent requests (hold and wait):

I Don’t ask all at once
(wait for next resource while holding current one)

4. Circularity in graph of requests

• All of 1–4 necessary for deadlock to occur

• Two approaches to dealing with deadlock:

I Pro-active: prevention

I Reactive: detection + corrective action
27 / 32

Prevent by eliminating one condition

1. Limited access (mutual exclusion):

I Buy more resources, split into pieces, or virtualize to make ”infinite” copies

I Threads: threads have copy of registers = no lock

2. No preemption:

I Physical memory: virtualized with VM, can take physical page away and give to
another process!

3. Multiple independent requests (hold and wait):

I Wait on all resources at once (must know in advance)

4. Circularity in graph of requests

I Single lock for entire system: (problems?)

I Partial ordering of resources (next)

28 / 32

Cycles and deadlock

• View system as graph

I Processes and Resources are nodes

I Resource Requests and Assignments are edges

• If graph has no cycles→ no deadlock

• If graph contains a cycle

I Definitely deadlock if only one instance per resource

I Otherwise, maybe deadlock, maybe not

• Prevent deadlock with partial order on resources

I E.g., always acquire mutex m1 before m2

I Statically assert lock ordering (e.g., VMware ESX)

I Dynamically find potential deadlocks [Witness]

29 / 32

https://www.freebsd.org/cgi/man.cgi?witness(4)

Outline

1 Synchronization and memory consistency review

2 C11 Atomics

3 Cache coherence – the hardware view

4 Deadlock

5 OS Implementation

30 / 32

Wait Channels

• OS locks (except spinlocks) use wait channels to manage sleeping threads

• void wchan_sleep(struct wchan *wc);
I Blocks calling thread on wait channnel wc
I Causes a context switch (e.g., thread_yield)

• void wchan_wakeall(struct wchan *wc);
I Unblocks all threads sleeping on the wait channel

• void wchan_wakeone(struct wchan *wc);
I Unblocks one threads sleeping on the wait channel

• void wchan_lock(struct wchan *wc);
I Lock wait channel operations

I Prevents a race between sleep and wakeone

31 / 32

OS/161 Semaphores

P(struct semaphore *sem) {
spinlock_acquire(&sem->sem_lock);
while (sem->sem count == 0) {
/* Locking the wchan prevents a race on sleep */
wchan_lock(sem->sem wchan);
/* Release spinlock before sleeping */
spinlock_release(&sem->sem_lock);
/* Wait channel protected by it's own lock */
wchan_sleep(sem->sem wchan);
/* Recheck condition, no locks held */
spinlock_acquire(&sem->sem_lock);

}
sem->sem count--;
spinlock release(&sem->sem lock);

}

V(struct semaphore *sem) {
spinlock_acquire(&sem->sem_lock);
sem->count++;
wchan_wakeone(sem->sem wchan);
spinlock_release(&sem->sem_lock);

}
32 / 32

	Synchronization and memory consistency review
	C11 Atomics
	Cache coherence – the hardware view
	Deadlock
	OS Implementation

