
Virtual memory goals

load

app.

kernel

virtual address
0x30408

MMU

Is address
legal?

Yes, phys. addr
0x92408

memorydata

NoTo fault handler

• Give each program its own “virtual” address space
- At run time, Memory-Management Unit relocates each load, store to
actual memory. . . App doesn’t see physical memory

• Enforces protection
• Allows programs to see more memory than exists

1 / 32

MIPS Memory Layout

FFFF FFFF

C000 0000

kseg2: Paged Kernel

BFFF FFFF
A000 0000 kseg1: Phys. Uncached

9FFF FFFF
8000 0000 kseg0: Phys. Cached


Kernel Memory

7FFF FFFF

0000 0000

kuseg: Paged User


User Memory

2 / 32

Heap allocators

• Simplify memory management for application developers
• Applications use malloc() and free() to manage memory

- Backs new/delete in C++ or similar mechanisms

• Uses system calls brk(), sbrk(), or mmap() to ask the kernel to
map pages into the application address space

3 / 32

Virtual memory everywhere

• Used throughout applications and the operating system
• Virtual memory system calls

- Map and unmap memory in userspace
- Mapping files as memory
- Control page permissions and caching behavior

• Larger applications than physical memory
- Large databases or accessing huge files as memory
- Operating system places infrequently used pages on-disk

• Security
- Applications use virtual memory to protect themselves from attack
- E.g. making Write/eXecute pages exclusive

4 / 32

Outline

1 Paging

2 Eviction policies

3 Thrashing

5 / 32

Paging

• Use disk to simulate larger virtual than physical mem
6 / 32

Working set model
#
of

ac
ce

ss
es

virtual address

• Disk much, much slower than memory
- Goal: run at memory speed, not disk speed

• 80/20 rule: 20% of memory gets 80% of memory accesses
- Keep the hot 20% in memory
- Keep the cold 80% on disk

7 / 32

Working set model
#
of

ac
ce

ss
es

virtual address

• Disk much, much slower than memory
- Goal: run at memory speed, not disk speed

• 80/20 rule: 20% of memory gets 80% of memory accesses
Keep the hot 20% in memory

- Keep the cold 80% on disk

7 / 32

Working set model
#
of

ac
ce

ss
es

virtual address

• Disk much, much slower than memory
- Goal: run at memory speed, not disk speed

• 80/20 rule: 20% of memory gets 80% of memory accesses
- Keep the hot 20% in memory
Keep the cold 80% on disk

7 / 32

Paging challenges

• How to resume a process after a fault?
- Need to save state and resume
- Process might have been in the middle of an instruction!

• What to fetch from disk?
- Just needed page or more?

• What to eject?
- How to allocate physical pages amongst processes?
- Which of a particular process’s pages to keep in memory?

8 / 32

Re-starting instructions

• Hardware provides kernel with information about page fault
- Faulting virtual address (In %c0_vaddr reg on MIPS)
- Address of instruction that caused fault (%c0_epc reg)
- Was the access a read or write? Was it an instruction fetch?
Was it caused by user access to kernel-only memory?

• Hardware must allow resuming after a fault
• Idempotent instructions are easy

- E.g., simple load or store instruction can be restarted
- Just re-execute any instruction that only accesses one address

9 / 32

What to fetch

• Bring in page that caused page fault
• Pre-fetch surrounding pages?

- Reading two disk blocks approximately as fast as reading one
- As long as no track/head switch, seek time dominates
- If application exhibits spacial locality, then big win to store and read
multiple contiguous pages

• Also pre-zero unused pages in idle loop
- Need 0-filled pages for stack, heap, anonymously mmapped memory
- Zeroing them only on demand is slower
- Hence, many OSes zero freed pages while CPU is idle

10 / 32

Selecting physical pages

• May need to eject some pages
- More on eviction policy in two slides

• May also have a choice of physical pages
• Direct-mapped physical caches

- Virtual→ Physical mapping can affect performance
- In old days: Physical address A conflicts with kC + A
(where k is any integer, C is cache size)

- Applications can conflict with each other or themselves
- Scientific applications benefit if consecutive virtual pages do not
conflict in the cache

- Many other applications do better with random mapping
- These days: CPUs more sophisticated than kC + A

11 / 32

Superpages

• How should OS make use of “large” mappings
- x86 has 2/4MB pages that might be useful
- Alpha has even more choices: 8KB, 64KB, 512KB, 4MB

• Sometimes more pages in L2 cache than TLB entries
- Don’t want costly TLB misses going to main memory

• Or have two-level TLBs
- Want to maximize hit rate in faster L1 TLB

• OS can transparently support superpages [Navarro]
- “Reserve” appropriate physical pages if possible
- Promote contiguous pages to superpages
- Does complicate evicting (esp. dirty pages) – demote

12 / 32

http://www.usenix.org/events/osdi02/tech/full_papers/navarro/navarro.pdf

Outline

1 Paging

2 Eviction policies

3 Thrashing

13 / 32

Straw man: FIFO eviction

• Evict oldest fetched page in system
• Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• 3 physical pages: 9 page faults

14 / 32

Straw man: FIFO eviction

• Evict oldest fetched page in system
• Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• 3 physical pages: 9 page faults

• 4 physical pages: 10 page faults

14 / 32

Belady’s Anomaly

• More physical memory doesn’t always mean fewer faults

15 / 32

Optimal page replacement

• What is optimal (if you knew the future)?

- Replace page that will not be used for longest period of time

• Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• With 4 physical pages:

16 / 32

Optimal page replacement

• What is optimal (if you knew the future)?
- Replace page that will not be used for longest period of time

• Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• With 4 physical pages:

16 / 32

LRU page replacement

• Approximate optimal with least recently used
- Because past often predicts the future

• Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• With 4 physical pages: 8 page faults

• Problem 1: Can be pessimal – example?

- Looping over memory (then want MRU eviction)

• Problem 2: How to implement?
17 / 32

LRU page replacement

• Approximate optimal with least recently used
- Because past often predicts the future

• Example—reference string 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• With 4 physical pages: 8 page faults

• Problem 1: Can be pessimal – example?
- Looping over memory (then want MRU eviction)

• Problem 2: How to implement?
17 / 32

Straw man LRU implementations

• Stamp PTEs with timer value
- E.g., CPU has cycle counter
- Automatically writes value to PTE on each page access
- Scan page table to find oldest counter value = LRU page
- Problem: Would double memory traffic!

• Keep doubly-linked list of pages
- On access remove page, place at tail of list
- Problem: again, very expensive

• What to do?
- Just approximate LRU, don’t try to do it exactly

18 / 32

Clock algorithm

• Use accessed bit supported by most hardware
- E.g., Pentium will write 1 to A bit in PTE on first access
- Software managed TLBs like MIPS can do the same

• Do FIFO but skip accessed pages
• Keep pages in circular FIFO list
• Scan:

- page’s A bit = 1, set to 0 & skip
- else if A = 0, evict

• A.k.a. second-chance replacement

A = 0

A = 0

A = 1

A = 0

A = 1

A = 1
A = 0

A = 0

A = 1

A = 0

A = 1
A = 0

19 / 32

Clock algorithm

• Use accessed bit supported by most hardware
- E.g., Pentium will write 1 to A bit in PTE on first access
- Software managed TLBs like MIPS can do the same

• Do FIFO but skip accessed pages
• Keep pages in circular FIFO list
• Scan:

- page’s A bit = 1, set to 0 & skip
- else if A = 0, evict

• A.k.a. second-chance replacement

A = 0

A = 0

A = 1

A = 0

A = 1

A = 1
A = 0

A = 0

A = 1

A = 0

A = 0
A = 0

19 / 32

Clock algorithm

• Use accessed bit supported by most hardware
- E.g., Pentium will write 1 to A bit in PTE on first access
- Software managed TLBs like MIPS can do the same

• Do FIFO but skip accessed pages
• Keep pages in circular FIFO list
• Scan:

- page’s A bit = 1, set to 0 & skip
- else if A = 0, evict

• A.k.a. second-chance replacement

A = 0

A = 0

A = 1

A = 0

A = 1

A = 1
A = 0

A = 0

A = 1

A = 0

A = 0
A = 0

19 / 32

Clock algorithm (continued)

• Large memory may be a problem
- Most pages referenced in long interval

• Add a second clock hand
- Two hands move in lockstep
- Leading hand clears A bits
- Trailing hand evicts pages with A=0

A = 0

A = 0

A = 1

A = 0

A = 1

A = 1
A = 0

A = 0

A = 1

A = 0

A = 1

A = 1

• Can also take advantage of hardware Dirty bit
- Each page can be (Unaccessed, Clean), (Unaccessed, Dirty),
(Accessed, Clean), or (Accessed, Dirty)

- Consider clean pages for eviction before dirty
• Or use n-bit accessed count instead just A bit

- On sweep: count = (A << (n− 1)) | (count >> 1)
- Evict page with lowest count

20 / 32

Clock algorithm (continued)

• Large memory may be a problem
- Most pages referenced in long interval

• Add a second clock hand
- Two hands move in lockstep
- Leading hand clears A bits
- Trailing hand evicts pages with A=0

A = 0

A = 0

A = 1

A = 0

A = 1

A = 1
A = 0

A = 0

A = 1

A = 0

A = 0

A = 1

• Can also take advantage of hardware Dirty bit
- Each page can be (Unaccessed, Clean), (Unaccessed, Dirty),
(Accessed, Clean), or (Accessed, Dirty)

- Consider clean pages for eviction before dirty
• Or use n-bit accessed count instead just A bit

- On sweep: count = (A << (n− 1)) | (count >> 1)
- Evict page with lowest count

20 / 32

Clock algorithm (continued)

• Large memory may be a problem
- Most pages referenced in long interval

• Add a second clock hand
- Two hands move in lockstep
- Leading hand clears A bits
- Trailing hand evicts pages with A=0

A = 0

A = 0

A = 1

A = 0

A = 1

A = 1
A = 0

A = 0

A = 1

A = 0

A = 0

A = 1

• Can also take advantage of hardware Dirty bit
- Each page can be (Unaccessed, Clean), (Unaccessed, Dirty),
(Accessed, Clean), or (Accessed, Dirty)

- Consider clean pages for eviction before dirty
• Or use n-bit accessed count instead just A bit

- On sweep: count = (A << (n− 1)) | (count >> 1)
- Evict page with lowest count

20 / 32

Other replacement algorithms

• Random eviction
- Dirt simple to implement
- Not overly horrible (avoids Belady & pathological cases)

• LFU (least frequently used) eviction
- Instead of just A bit, count # times each page accessed
- Least frequently accessed must not be very useful
(or maybe was just brought in and is about to be used)

- Decay usage counts over time (for pages that fall out of usage)

• MFU (most frequently used) algorithm
- Because page with the smallest count was probably just brought in
and has yet to be used

• Neither LFU nor MFU used very commonly

21 / 32

Naïve paging

• Naïve page replacement: 2 disk I/Os per page fault
22 / 32

Page buffering

• Idea: reduce # of I/Os on the critical path
• Keep pool of free page frames

- On fault, still select victim page to evict
- But read fetched page into already free page
- Can resume execution while writing out victim page
- Then add victim page to free pool

• Can also yank pages back from free pool
- Contains only clean pages, but may still have data
- If page fault on page still in free pool, recycle

23 / 32

Page allocation

• Allocation can be global or local
• Global allocation doesn’t consider page ownership

- E.g., with LRU, evict least recently used page of any proc
- Works well if P1 needs 20% of memory and P2 needs 70%:

P1 P2

- Doesn’t protect you from memory pigs
(imagine P2 keeps looping through array that is size of mem)

• Local allocation isolates processes (or users)
- Separately determine how much memory each process should have
- Then use LRU/clock/etc. to determine which pages to evict within
each process

24 / 32

Outline

1 Paging

2 Eviction policies

3 Thrashing

25 / 32

Thrashing

Thrashing is when an application is in a constantly swapping pages in
and out preventing the application from making forward progress at
any reasonable rate.

• Processes require more memory than system has
- Each time one page is brought in, another page, whose contents will
soon be referenced, is thrown out

- Processes will spend all of their time blocked, waiting for pages to be
fetched from disk

- I/O devs at 100% utilization but system not getting much useful work
done

• What we wanted: virtual memory the size of disk with access time
the speed of physical memory

• What we got: memory with access time of disk
26 / 32

Reasons for thrashing

• Access pattern has no temporal locality (past 6= future)

(80/20 rule has broken down)
• Hot memory does not fit in physical memory

P1

memory

• Each process fits individually, but too many for system
P1 P2

P3 P4
P5 P6

P7 P8
P9 P10

P11P12
P13P14

P15P16

memory

- At least this case is possible to address

27 / 32

Multiprogramming & Thrashing

• Must shed load when thrashing
28 / 32

Dealing with thrashing

• Approach 1: working set
- Thrashing viewed from a caching perspective: given locality of
reference, how big a cache does the process need?

- Or: how much memory does the process need in order to make
reasonable progress (its working set)?

- Only run processes whose memory requirements can be satisfied

• Approach 2: page fault frequency
- Thrashing viewed as poor ratio of fetch to work
- PFF = page faults / instructions executed
- If PFF rises above threshold, process needs more memory.
Not enough memory on the system? Swap out.

- If PFF sinks below threshold, memory can be taken away

29 / 32

Working sets
wo

rk
in
g
se

ts
iz
e

time

Transitions

• Working set changes across phases
- Baloons during phase transitions

30 / 32

Calculating the working set

• Working set: all pages process will access in next T time
- Can’t calculate without predicting future

• Approximate by assuming past predicts future
- So working set ≈ pages accessed in last T time

• Keep idle time for each page
• Periodically scan all resident pages in system

- A bit set? Clear it and clear the page’s idle time
- A bit clear? Add CPU consumed since last scan to idle time
- Working set is pages with idle time < T

31 / 32

Two-level scheduler

• Divide processes into active & inactive
- Active – means working set resident in memory
- Inactive – working set intentionally not loaded

• Balance set: union of all active working sets
- Must keep balance set smaller than physical memory

• Use long-term scheduler [recall from lecture 4]
- Moves procs active→ inactive until balance set small enough
- Periodically allows inactive to become active
- As working set changes, must update balance set

• Complications
- How to chose idle time threshold T?
- How to pick processes for active set
- How to count shared memory (e.g., libc.so)

32 / 32

	Paging
	Eviction policies
	Thrashing

