
MMU Types

• Memory Management Units (MMU) come in two flavors

• Hardware Managed
- Hardware reloads TLB with pages from a page tables

- Typically hardware page tables are Radix Trees

- Requires complex hardware

- Examples: x86, ARM64, IBM POWER9+

• Software Managed
- Simplier hardware and asks software to reload pages

- Requires fast exception handling and optimized software

- Enables more flexiblity in the TLB (e.g. variable page sizes)

- Examples: MIPS, Sun SPARC, DEC Alpha, ARM and POWER

1 / 24



Today’s Lecture

• x86 Hardware Managed MMU

• MIPS Software Managed MMU
- In your assignment you will implement a Radix tree like x86 for

MIPS!

2 / 24



Outline

1 Intel x86: Hardware MMU

2 MIPS: Software Managed MMU

3 / 24



x86 Paging

• Paging enabled by bits in a control register (%cr0)
- Only privileged OS code can manipulate control registers

• Normally 4KB pages

• %cr3: points to 4KB page directory

• Page directory: 1024 PDEs (page directory entries)
- Each contains physical address of a page table

• Page table: 1024 PTEs (page table entries)
- Each contains physical address of virtual 4K page

- Page table covers 4 MB of Virtual mem

• See intel manual for detailed explanation
- Volume 2 of AMD64 Architecture docs

- Volume 3A of Intel Pentium Manual
4 / 24

http://developer.amd.com/Resources/documentation/guides/Pages/default.aspx#manuals
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html


x86 page translation

*32 bits aligned onto a 4−KByte boundary

Page Directory

Directory Entry

CR3 (PDBR)

Page Table

Page−Table Entry

4−KByte Page

Physical Address

32*

10

12

10

20

0

irectory e f s

31 21 111222

Linear Address

D Tabl O f et

1024 PDE × 1024 PTE = 220 Pages

5 / 24



x86 page directory entry

)

3 1

A v a ila b le fo r s y s te m p ro g ra m m e r ’s u s e

G lo b a l p a g e (Ig n o re d )

P a g e s iz e (0 in d ic a te s 4 K B y te s )

R e s e rv e d (s e t to 0 )

1 2 11 9 8 7 6 5 4 3 2 1 0

P
S

P
CA0

A c c e s s e d

C a c h e d is a b le d

W rite −th ro u g h

U s e r/S u p e rv is o r

R e a d /W rite

P re s e n t

D
P

P
W
T

U
/

S

R
/

W
GA v a ilP a g e −Ta b le B a s e A d d re ss

P a g e −D i r e c t o r y E n t r y (4 −K B y t e P a g e Ta b l e

6 / 24



x86 page table entry

t

31

Available for system programmer’s use

Global Page

Page Table Attribute Index

Dirty

12 11 9 8 7 6 5 4 3 2 1 0

P
CAD

Accessed

Cache Disabled

Write−Through

User/Supervisor

Read/Write

Present

D
P

P
W
T

U
/
S

R
/

W
AvailPage Base Address

Page−Table En ry (4−KByte Page)

P
A
T

G

7 / 24



x86 hardware segmentation
• x86 architecture also supports segmentation

- Segment register base + pointer val = linear address

- Page translation happens on linear addresses

• Two levels of protection and translation check
- Segmentation model has four privilege levels (CPL 0–3)

- Paging only two, so 0–2 = kernel, 3 = user

• Why do you want both paging and segmentation?

• Short answer: You don’t – just adds overhead
- Most OSes use “flat mode” – set base = 0, bounds = 0xffffffff

in all segment registers, then forget about it

- x86-64 architecture removes much segmentation support

• Long answer: Has some fringe/incidental uses
- VMware runs guest OS in CPL 1 to trap stack faults

- OpenBSD used CS limit for W∧X when no PTE NX bit

8 / 24



x86 hardware segmentation
• x86 architecture also supports segmentation

- Segment register base + pointer val = linear address

- Page translation happens on linear addresses

• Two levels of protection and translation check
- Segmentation model has four privilege levels (CPL 0–3)

- Paging only two, so 0–2 = kernel, 3 = user

• Why do you want both paging and segmentation?
• Short answer: You don’t – just adds overhead

- Most OSes use “flat mode” – set base = 0, bounds = 0xffffffff
in all segment registers, then forget about it

- x86-64 architecture removes much segmentation support

• Long answer: Has some fringe/incidental uses
- VMware runs guest OS in CPL 1 to trap stack faults

- OpenBSD used CS limit for W∧X when no PTE NX bit
8 / 24



Making paging fast

• x86 PTs require 3 memory references per load/store
- Look up page table address in page directory

- Look up PPN in page table

- Actually access physical page corresponding to virtual address

• For speed, CPU caches recently used translations
- Called a translation lookaside buffer or TLB

- Typical: 64-2K entries, 4-way to fully associative, 95% hit rate

- Each TLB entry maps a VPN→ PPN + protection information

• On each memory reference
- Check TLB, if entry present get physical address fast

- If not, walk page tables, insert in TLB for next time
(Must evict some entry)

9 / 24



TLB details

• TLB operates at CPU pipeline speed =⇒ small, fast

• Complication: what to do when switch address space?
- Flush TLB on context switch (e.g., old x86)

- Tag each entry with associated process’s ID (e.g., MIPS)

• In general, OS must manually keep TLB valid

• E.g., x86 invlpg instruction
- Invalidates a page translation in TLB

- Must execute after changing a possibly used page table entry

- Otherwise, hardware will miss page table change

• More Complex on a multiprocessor (TLB shootdown)

10 / 24



x86 Paging Extensions

• PSE: Page size extensions
- Setting bit 7 in PDE makes a 4MB translation (no PT)

• PAE Page address extensions
- Newer 64-bit PTE format allows 36 bits of physical address

- Page tables, directories have only 512 entries

- Use 4-entry Page-Directory-Pointer Table to regain 2 lost bits

- PDE bit 7 allows 2MB translation

• Long mode PAE
- In Long mode, pointers are 64-bits

- Extends PAE to map 48 bits of virtual address (next slide)

- Why are aren’t all 64 bits of VA usable?

11 / 24



x86 long mode paging

Physical

Page

Page Offset

Table Table Table Table

Page
Page−

DirectoryPointer
Directory

Page−
Page−Map

Level−4

4−Kbyte

Sign Extend Level−4 offset

Page−Map

(PML4)

Virtual Address

Pointer Offset

Page Directory−

Offset

Page Directory Page−Table

Offset

Physical−

01112202129303839474863

Physical

Address

PTE

PDE

PDPE

PML4E

9999

52

52

52

52

1251

CR3Page−Map L4 Base Addr

12

12 / 24



Where does the OS live?
• In its own address space?

- Can’t do this on most hardware (e.g., syscall instruction won’t
switch address spaces)

- Also would make it harder to parse syscall arguments passed as
pointers

• So in the same address space as process
- Use protection bits to prohibit user code from writing kernel

• Typically all kernel text, most data at same VA in every
address space

- On x86, must manually set up page tables for this

- Usually just map kernel in contiguous virtual memory when boot
loader puts kernel into contiguous physical memory

- Some hardware puts physical memory (kernel-only) somewhere in
virtual address space

13 / 24



Outline

1 Intel x86: Hardware MMU

2 MIPS: Software Managed MMU

14 / 24



Very different MMU: MIPS

• Hardware has 64-entry TLB
- References to addresses not in TLB trap to kernel

• Each TLB entry has the following fields:
Virtual page, Pid, Page frame, NC, D, V, Global

• Kernel itself unpaged
- All of physical memory contiguously mapped in high VM

- Kernel uses these pseudo-physical addresses

• User TLB fault hander very efficient
- Two hardware registers reserved for it

- utlb miss handler can itself fault—allow paged page tables

• OS is free to choose page table format!

15 / 24



MIPS Memory Layout
FFFF FFFF

C000 0000

kseg2: Paged Kernel

BFFF FFFF

A000 0000
kseg1: Phys. Uncached

9FFF FFFF

8000 0000
kseg0: Phys. Cached


Kernel Memory

7FFF FFFF

0000 0000

useg: Paged User


User Memory

16 / 24



MIPS Translation Lookaside Buffer
• TLB Entries: 64 - 64-bit entries containing:

- PID: Process ID (tagged TLB)

- N: No Cache - disables caching for memory mapped I/O

- D: Writeable - makes the page writeable

- V: Valid

- G: Global - ignores the PID during lookups

3233343536373839404142434445464748495051525354555657585960616263

Frame Number (VPN) PID

012345678910111213141516171819202122232425262728293031

Physical Page Number (PPN) ND V G

• Page Sizes: Multiples of 4 from 4 kiB–16 MiB
- 4 kiB, 16 kiB, 64 kiB, 256 kiB, 1 MiB, 4 MiB, 16 MiB

17 / 24



TLB PID and Global Bit

• Process ID (PID) allows multiple processes to coexist
- We don’t need to flush the TLB on context switch

- By setting the process ID

- Only flush TLB entries when reusing a PID

- Current PID is stored in c0 entryhi

• Global bit
- Used for pages shared across all address spaces in kseg2 or useg

- Ensures the TLB ignores the PID field

- Typically in most hardware a TLB flush doesn’t flush global pages

18 / 24



TLB Instructions

• MIPS co-processor 0 (COP0) provides the TLB
functionality

• tlbwr: TLB write a random slot

• tlbwi: TLB write a specific slot

• tlbr: TLB read a specific slot

• tlbp: Probe the slot containing an address

• For each of these instructions you must load the
following registers

- c0 entryhi: high bits of TLB entry

- c0 entrylo: low bits of TLB entry

- c0 index: TLB Index

19 / 24



Hardware Lookup Exceptions

• TLB Exceptions:
- UTLB Miss: Generated when the accessing useg without matching

TLB entry

- TLB Miss: Generated when the accessing kseg2 without matching
entry

- TLB Mod: Generated when writing to read-only page

• UTLB handler is seperate from general exception
handler

- UTLBs are very frequent and require a hand optimized path

- 64 entry TLB with 4 kiB pages covers 256 kiB of memory

- Modern machines have workloads with far more memory

- Require more entries (expensive hardware) or larger pages

20 / 24



Hardware Lookup Algorithm

• If most significant bit (MSB) is 1 and in user mode→
address error exception.

• If no VPN match→ TLB miss exception if MSB is 1,
otherwise UTLB miss.

• If PID mismatches and global bit not set→ generate a
TLB miss or UTLB miss.

• If valid bit not set→ TLB miss.

• Write to read-only page→ TLB mod exception.

• If N bit is set directly access device memory (disable
cache)

21 / 24



OS/161 Assembly Wrappers

• tlb random: Write random TLB entry

• tlb write: Write specific TLB entry

• tlb read: Read specific TLB entry

• tlb probe: Lookup TLB entry

• Currently the OS implements segments using paging
hardware

• In a later assignment you will implement a Radix tree
(like x86)

22 / 24



OS/161 Memory Layout
• Example Memory Layout: user/testbin/sort
7FFF FFFF

xxxx xxxx
Stack

1012 00B0

1000 0000
Data

0040 1A0C

0040 0000
Text + R/O Data

23 / 24



Paging in day-to-day use

• Paging Examples
- Demand paging

- Growing the stack

- BSS page allocation

- Shared text

- Shared libraries

- Shared memory

- Copy-on-write (fork, mmap, etc.)

• Next time: detailed discussion on MIPS

24 / 24


	Intel x86: Hardware MMU
	MIPS: Software Managed MMU

