MMU Types

e Memory Management Units (MMU) come in two flavors

o Hardware Managed

- Hardware reloads TLB with pages from a page tables

Typically hardware page tables are Radix Trees
- Requires complex hardware
- Examples: x86, ARM64, IBM POWER9+

e Software Managed

- Simplier hardware and asks software to reload pages

- Requires fast exception handling and optimized software

- Enables more flexiblity in the TLB (e.g. variable page sizes)

- Examples: MIPS, Sun SPARC, DEC Alpha, ARM and POWER

1/24

Today’s Lecture

» x86 Hardware Managed MMU
o MIPS Software Managed MMU

- In your assignment you will implement a Radix tree like x86 for
MIPS!

2/24

Outline

@ Intel x86: Hardware MMU

@ MIPS: Software Managed MMU

3/24

x86 Paging

Paging enabled by bits in a control register (%cr0)

- Only privileged OS code can manipulate control registers
Normally 4KB pages
Jcr3: points to 4KB page directory
Page directory: 1024 PDEs (page directory entries)
- Each contains physical address of a page table

Page table: 1024 PTEs (page table entries)
- Each contains physical address of virtual 4K page
- Page table covers 4 MB of Virtual mem

See intel manual for detailed explanation
- Volume 2 of AMD64 Architecture docs

- Volume 3A of Intel Pentium Manual

4/24

http://developer.amd.com/Resources/documentation/guides/Pages/default.aspx#manuals
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

x86 page translation

Linear Address

4-KByte Page

Physical Address

CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary

31 22 21 12 11 0
| Directory | Table | Offset |
12
10 10 Page Table
Page Directory
Page-Table Entry 7%):
—» Directory Entry >
30+ 1024 PDE x 1024 PTE = 2?0 Pages

5/24

x86 page directory entry

Page-Directory Entry (4-KByte Page Table)
12 11 9876543210

. PPlUlR
Page-Table Base Address Avail |G g O|A|C W]/]|/]|P
DTS |W

Available for system programmer’s use —I ‘

Globalpage (Ignored)
Page size (0 indicates 4 KBytes)
Reserved (setto 0)
Accessed
Cache disabled
Wrritethrough
User/Supervisor
Read/Write
Present

6/24

31

x86 page table entry

Page-Table Entry (4-KByte Page)
1211 9876543210

Page Base Address

Avail |G

D|A

PP
clw
D|T

Available for system programmer’s use
Global Page

— |

Page Table Attribute Index

Dirty

Accessed
Cache Disabled

Write-Through

User/Supervisor
Read/Write

Present

7/24

x86 hardware segmentation

» x86 architecture also supports segmentation
- Segment register base + pointer val = linear address
- Page translation happens on linear addresses
o Two levels of protection and translation check
- Segmentation model has four privilege levels (CPL 0-3)
- Paging only two, so 0-2 = kernel, 3 = user

e Why do you want both paging and segmentation?

8/24

x86 hardware segmentation

x86 architecture also supports segmentation
- Segment register base + pointer val = linear address

- Page translation happens on linear addresses
Two levels of protection and translation check

- Segmentation model has four privilege levels (CPL 0-3)

- Paging only two, so 0-2 = kernel, 3 = user
Why do you want both paging and segmentation?
Short answer: You don’t — just adds overhead

- Most OSes use “flat mode” — set base = 0, bounds = Oxffffffff
in all segment registers, then forget about it

- x86-64 architecture removes much segmentation support
Long answer: Has some fringe/incidental uses

- VMware runs guest OS in CPL 1 to trap stack faults

- OpenBSD used CS limit for WAX when no PTE NX bit

8/24

Making paging fast

* x86 PTs require 3 memory references per load/store

- Look up page table address in page directory
- Look up PPN in page table

- Actually access physical page corresponding to virtual address

« For speed, CPU caches recently used translations
- Called a translation lookaside buffer or TLB
- Typical: 64-2K entries, 4-way to fully associative, 95% hit rate
- Each TLB entry maps a VPN — PPN + protection information
¢ On each memory reference

- Check TLB, if entry present get physical address fast

- If not, walk page tables, insert in TLB for next time
(Must evict some entry)

9/24

TLB details

TLB operates at CPU pipeline speed —> small, fast

Complication: what to do when switch address space?
- Flush TLB on context switch (e.g., old x86)
- Tag each entry with associated process’s ID (e.g., MIPS)

In general, OS must manually keep TLB valid

E.g., x86 invlpg instruction

- Invalidates a page translation in TLB
- Must execute after changing a possibly used page table entry

- Otherwise, hardware will miss page table change

More Complex on a multiprocessor (TLB shootdown)

10 /24

x86 Paging Extensions

o PSE: Page size extensions
- Setting bit 7 in PDE makes a 4MB translation (no PT)

o PAE Page address extensions

Newer 64-bit PTE format allows 36 bits of physical address

Page tables, directories have only 512 entries

Use 4-entry Page-Directory-Pointer Table to regain 2 lost bits
PDE bit 7 allows 2MB translation

e Long mode PAE
- In Long mode, pointers are 64-bits
- Extends PAE to map 48 bits of virtual address (next slide)
- Why are aren’t all 64 bits of VA usable?

11/24

x86 long mode paging

Virtual Address
63 48 47 3938 30 29 2120 1211 0
. Page-Map Page Directory— | Page Director Page-Table Physical—-
Sign Extend Level-4 offset Piinter Offseyt ® Offset Y %)ffset P ’ Offset
(PML4) sel age Offse
A9 A9 A9 9 12
Page-
Page-Map Directory Page— P 4—Kb.yte
Level-4 Pointer Directory age Physical
Table Table Table Table Page
PTE %
52
—» PDPE
L 52 Physical
PMLAE 52 1 Ad}:,;lress
—» PDE
51 12
Page-Map L4 Base Addr ' CR3

12 /24

Where does the OS live?

¢ In its own address space?

- Can’t do this on most hardware (e.g., syscall instruction won't
switch address spaces)

- Also would make it harder to parse syscall arguments passed as
pointers
¢ So in the same address space as process

- Use protection bits to prohibit user code from writing kernel

o Typically all kernel text, most data at same VA in every
address space
- On x86, must manually set up page tables for this

- Usually just map kernel in contiguous virtual memory when boot
loader puts kernel into contiguous physical memory

- Some hardware puts physical memory (kernel-only) somewhere in
virtual address space

13 /24

Outline

@ Intel x86: Hardware MMU

@ MIPS: Software Managed MMU

14 /24

Very different MMU: MIPS

Hardware has 64-entry TLB
- References to addresses not in TLB trap to kernel
Each TLB entry has the following fields:
Virtual page, Pid, Page frame, NC, D, V, Global
Kernel itself unpaged
- All of physical memory contiguously mapped in high VM
- Kernel uses these pseudo-physical addresses
User TLB fault hander very efficient
- Two hardware registers reserved for it

- utlb miss handler can itself fault—allow paged page tables

OS is free to choose page table format!

15/24

FFFF

C000

BFFF
AO0O

OFFF
8000

TFFF

0000

FFFF

0000

FFFF
0000

FFFF
0000

FFFF

0000

MIPS Memory Layout

kseg?2: Paged Kernel

ksegl: Phys. Uncached

kseg0: Phys. Cached

useg: Paged User

Kernel Memory

User Memory

16 /24

MIPS Translation Lookaside Buffer

o TLB Entries: 64 - 64-bit entries containing:
- PID: Process ID (tagged TLB)
- N: No Cache - disables caching for memory mapped 1/O

D: Writeable - makes the page writeable
- V: Valid
- G: Global - ignores the PID during lookups

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Frame Number (VPN) PID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 121110 9 8 7 6 5 4 3 2 1 0

Physical Page Number (PPN) NDIVIG

o Page Sizes: Multiples of 4 from 4 kiB-16 MiB
- 4 kiB, 16 kiB, 64 kiB, 256 kiB, 1 MiB, 4 MiB, 16 MiB

17 /24

TLB PID and Global Bit

o Process ID (PID) allows multiple processes to coexist

- We don’t need to flush the TLB on context switch
- By setting the process ID

Only flush TLB entries when reusing a PID

Current PID is stored in cO_entryhi

o Global bit

- Used for pages shared across all address spaces in kseg?2 or useg
- Ensures the TLB ignores the PID field
- Typically in most hardware a TLB flush doesn’t flush global pages

18 /24

TLB Instructions

MIPS co-processor 0 (COP0) provides the TLB
functionality

tlbwr: TLB write a random slot

tlbwi: TLB write a specific slot

tlbr: TLB read a specific slot

tlbp: Probe the slot containing an address

For each of these instructions you must load the
following registers

- cO_entryhi: high bits of TLB entry

- cO_entrylo: low bits of TLB entry

- cO_index: TLB Index

19 /24

Hardware Lookup Exceptions

o TLB Exceptions:
- UTLB Miss: Generated when the accessing useg without matching
TLB entry

- TLB Miss: Generated when the accessing kseg2 without matching
entry

- TLB Mod: Generated when writing to read-only page

o UTLB handler is seperate from general exception
handler
- UTLBs are very frequent and require a hand optimized path
- 64 entry TLB with 4 kiB pages covers 256 kiB of memory
- Modern machines have workloads with far more memory

- Require more entries (expensive hardware) or larger pages

20/24

Hardware Lookup Algorithm

If most significant bit (MSB) is 1 and in user mode —
address error exception.

If no VPN match — TLB miss exception if MSB is 1,
otherwise UTLB miss.

If PID mismatches and global bit not set — generate a
TLB miss or UTLB miss.

If valid bit not set — TLB miss.
Write to read-only page — TLB mod exception.

If N bit is set directly access device memory (disable
cache)

21/24

0S/161 Assembly Wrappers

tlb_random: Write random TLB entry

tlb_write: Write specific TLB entry

tlb_read: Read specific TLB entry

tlb_probe: Lookup TLB entry

Currently the OS implements segments using paging
hardware

¢ In a later assignment you will implement a Radix tree
(like x86)

22/24

0S/161 Memory Layout

o Example Memory Layout: user/testbin/sort

7FFF FFFF
Stack
XXXX XXXX
1012 00BO
1000 0000 Data
0040 1A0C
0040 0000 Text + R/O Data

23/24

Paging in day-to-day use

e Paging Examples
- Demand paging

Growing the stack

BSS page allocation
Shared text

- Shared libraries

- Shared memory

- Copy-on-write (fork, mmap, etc.)

¢ Next time: detailed discussion on MIPS

24 /24

	Intel x86: Hardware MMU
	MIPS: Software Managed MMU

