Want processes to co-exist

0x9000
0S
0x7000
cc
J 0x4000
bochs/pintos
0x3000
emacs
0x0000

o Consider multiprogramming on physical memory
- What happens if emacs needs to expand?
- If emacs needs more memory than is on the machine??
- If emacs has an error and writes to address 0x7100?

- When does gcc have to know it will run at 0x4000?

What if emacs isn’t using its memory?

1/33

Issues in sharing physical memory

e Protection
- A bug in one process can corrupt memory in another
- Must somehow prevent process A from trashing B’s memory
- Also prevent A from even observing B’s memory (ssh-agent)
e Transparency

- A process shouldn’t require particular physical memory bits

- Yes processes often require large amounts of contiguous memory
(for stack, large data structures, etc.)

e Resource exhaustion

- Programmers typically assume machine has “enough” memory

- Sum of sizes of all processes often greater than physical memory

2/33

Virtual memory goals

Is address
legal?
o

app. virtual address S Yes, phys. addr

0x92408
0x30408 3 MMU >

\ m

To fault handler No

kernel

memory

e Give each program its own “virtual” address space

- At run time, Memory-Management Unit relocates each load, store

to actual memory... App doesn’t see physical memory

o Also enforce protection

- Prevent one app from messing with another’s memory

¢ And allow programs to see more memory than exists

- Somehow relocate some memory accesses to disk

3/33

Virtual memory advantages

e Can re-locate program while running

- Run partially in memory, partially on disk

» Most of a process’s memory may be idle (80/20 rule).

gcc emacs
><><
|
kernel kernel
L]

- Write idle parts to disk until needed

- Let other processes use memory of idle part

- Like CPU virtualization: when process not using CPU, switch
(Not using a memory region? switch it to another process)

o Challenge: VM = extra layer, could be slow

4/33

Idea 1: load-time linking

static a.out

Jjump 0x2000

0x3000

0x1000

0Ss

a.out’
jump 0x5000

0x6000

0x4000

o Linker patches addresses of symbols like printf

o Idea: link when process executed, not at compile time

- Determine where process will reside in memory

- Adjust all references within program (using addition)

e Problems?

5/33

Idea 1: load-time linking

static a.out

Jjump 0x2000

0x3000

0x1000

0Ss

a.out’
jump 0x5000

0x6000

0x4000

o Linker patches addresses of symbols like printf

o Idea: link when process executed, not at compile time

- Determine where process will reside in memory

- Adjust all references within program (using addition)

e Problems?

- How to enforce protection

- How to move once already in memory (Consider: data pointers)

- What if no contiguous free region fits program?

5/33

Idea 2: base + bound register

static a.out

Jjump 0x2000

0x3000

0x1000

0Ss

a.out’
jump 0x5000

0x6000

0x4000

Two special privileged registers: base and bound

On each load/store:

- Physical address = virtual address + base

- Check 0 < virtual address < bound, else trap to kernel

How to move process in memory?

What happens on context switch?

6/33

Idea 2: base + bound register

static a.out

Jjump 0x2000

0x3000

0x1000

0Ss

a.out’
jump 0x5000

0x6000

0x4000

Two special privileged registers: base and bound

On each load/store:

- Physical address = virtual address + base

- Check 0 < virtual address < bound, else trap to kernel

How to move process in memory?

- Change base register

What happens on context switch?

6/33

Idea 2: base + bound register

static a.out

Jjump 0x2000

0x3000

0x1000

0Ss

a.out’
jump 0x5000

0x6000

0x4000

Two special privileged registers: base and bound

On each load/store:

- Physical address = virtual address + base

- Check 0 < virtual address < bound, else trap to kernel

How to move process in memory?

- Change base register

What happens on context switch?

- OS must re-load base and bound register

6/33

Definitions

e Programs load/store to virtual (or logical) addresses

¢ Actual memory uses physical (or real) addresses

¢ VM Hardware is Memory Management Unit (MMU)

virtual addrs

CPU

.

Usually part of CPU

Accessed w. privileged instructions (e.g., load bound reg)

Physical
addrs

MMU

L

Translates from virtual to physical addresses

memory

Gives per-process view of memory called address space

7/33

Address space

Virtual Address Physical Address
View View

0

0S

8/33

Base+bound trade-offs

o Advantages

- Cheap in terms of hardware: only two registers
- Cheap in terms of cycles: do add and compare in parallel

- Examples: Cray-1 used this scheme

o Disadvantages

9/33

Base+bound trade-offs

o Advantages
- Cheap in terms of hardware: only two registers
- Cheap in terms of cycles: do add and compare in parallel

- Examples: Cray-1 used this scheme

e Disadvantages Free space

- Growing a process is expensive or impossible _

- No way to share code or data (E.g., two
. gce
copies of bochs)

pinfosl

¢ One solution: Multiple segments

- E.g., separate code, stack, data segments

- Possibly multiple data segments

9/33

0x1000

0x3000

0x5000

0x6000

gcc

Text seg
r/o

Stack seg
r/w

Segmentation

Baseé&bound?

Real memory

o Let processes have many base/bound regs

- Address space built from many segments

- Can share/protect memory at segment granularity

» Must specify segment as part of virtual address

0x2000

0x8000

0x6000

10/33

Segmentation mechanics

. fault
Virtual addr n mem
3 P85 ox100Q
))
Seg |128

seg

o Each process has a segment table

o Each VA indicates a segment and offset:
- Top bits of addr select segment, low bits select offset (PDP-10)

- Or segment selected by instruction or operand (means you need
wider “far” pointers to specify segment)
11/33

Segmentation example

Seg Dbase bounds rw _

0 0x4000 Ox6ff 10 virtual physical
1 00000 O0x4ff 11

2 0x3000 Oxfff 11 0x4000 0x4700
3 00

0x3000 /f 0x4000

0x2000 0x3000

0x1500

0x0700

0x0000

 2-bit segment number (1st digit), 12 bit offset (last 3)
- Where is 0x0240? 0x1108? 0x265¢? 0x3002? 0x1600?

12/33

Segmentation trade-offs

o Advantages]
- Multiple segments per process gcc
- Allows sharing! (how?) - 4
- Don’t need entire process in memory
: where?
o Disadvantages gee emacs®

- Requires translation hardware, which could limit performance

Segments not completely transparent to program (e.g., default
segment faster or uses shorter instruction)

n byte segment needs n contiguous bytes of physical memory

Makes fragmentation a real problem.

13 /33

Fragmentation

o Fragmentation = Inability to use free memory

e Over time:

- Variable-sized pieces = many small holes (external fragmentation)

- Fixed-sized pieces = no external holes, but force internal waste
(internal fragmentation)

—

External
: SR ,a,—”””fra mentation
Pintos 292 g

} Unused

(“internal
fragmentation”)

allocated

14 /33

Alternatives to hardware MMU

e Language-level protection (Java)
- Single address space for different modules

- Language enforces isolation
- Singularity OS does this [Hunt]

o Software fault isolation

- Instrument compiler output

- Checks before every store operation prevents modules from
trashing each other

- Google Native Client does this with only about 5% slowdown [Yee]

15/33

http://research.microsoft.com/pubs/52716/tr-2005-135.pdf
http://code.google.com/p/nativeclient/
http://research.google.com/pubs/archive/34913.pdf

Paging

Divide memory up into small pages
Map virtual pages to physical pages
- Each process has separate mapping

Allow OS to gain control on certain operations

- Read-only pages trap to OS on write
- Invalid pages trap to OS on read or write

- OS can change mapping and resume application

Other features sometimes found:

- Hardware can set “accessed” and “dirty” bits
- Control page execute permission separately from read /write

- Control caching or memory consistency of page

16 /33

Paging trade-offs

/7
——
Pages >

typical: 4k-8k

gcc

~__

emacs

/ internal frag
£

o Eliminates external fragmentation

o Simplifies allocation, free, and backing storage (swap)

o Average internal fragmentation of .5 pages per

“segment”

17 /33

Simplified allocation

physical

gcce
memory

emacs

o Allocate any physical page to any process

 Can store idle virtual pages on disk

|

Disk

18 /33

Paging data structures

o Pages are fixed size, e.g., 4K
- Least significant 12 (log, 4K) bits of address are page offset
- Most significant bits are page number

o Each process has a page table
- Maps virtual page numbers (VPNs) to physical page numbers (PPNs)
- Also includes bits for protection, validity, etc.

e On memory access: Translate VPN to PPN,

then add offset

Virtual addr mem
.] ((1<<12)|128) | oxt000
1
VAN page table seg s
Prot] VPN [PPN
" PPN

>
*“invalid”
D P N P
19/33

Example: Paging on PDP-11

¢ 64K virtual memory, 8K pages

- Separate address space for instructions & data

- Le., can’t read your own instructions with a load

 Entire page table stored in registers

- 8 Instruction page translation registers

- 8 Data page translations

e Swap 16 machine registers on each context switch

20/33

x86 Paging

Paging enabled by bits in a control register (%cr0)

- Only privileged OS code can manipulate control registers
Normally 4KB pages
Jcr3: points to 4KB page directory
Page directory: 1024 PDEs (page directory entries)
- Each contains physical address of a page table

Page table: 1024 PTEs (page table entries)
- Each contains physical address of virtual 4K page
- Page table covers 4 MB of Virtual mem

See intel manual for detailed explanation
- Volume 2 of AMD64 Architecture docs

- Volume 3A of Intel Pentium Manual

21/33

http://developer.amd.com/Resources/documentation/guides/Pages/default.aspx#manuals
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

x86 page translation

Linear Address

4-KByte Page

Physical Address

CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary

31 22 21 12 11 0
| Directory | Table | Offset |
12
10 10 Page Table
Page Directory
Page-Table Entry 7%):
—»1 Directory Entry >
30+ 1024 PDE x 1024 PTE = 2?0 Pages

22/33

x86 page directory entry

Page-Directory Entry (4-KByte Page Table)
12 11 9876543210

. PPlUlR
Page-Table Base Address Avail |G g O|A|C W]/]|/]|P
DTS |W

Available for system programmer’s use —I ‘

Globalpage (Ignored)
Page size (0 indicates 4 KBytes)
Reserved (setto 0)
Accessed
Cache disabled
Wrritethrough
User/Supervisor
Read/Write
Present

23/33

31

x86 page table entry

Page-Table Entry (4-KByte Page)
1211 9876543210

Page Base Address

Avail |G

D|A

PP
clw
D|T

Available for system programmer’s use
Global Page

— |

Page Table Attribute Index

Dirty

Accessed
Cache Disabled

Write-Through

User/Supervisor
Read/Write

Present

24/33

x86 hardware segmentation

» x86 architecture also supports segmentation
- Segment register base + pointer val = linear address
- Page translation happens on linear addresses
o Two levels of protection and translation check
- Segmentation model has four privilege levels (CPL 0-3)
- Paging only two, so 0-2 = kernel, 3 = user

e Why do you want both paging and segmentation?

25/33

x86 hardware segmentation

x86 architecture also supports segmentation
- Segment register base + pointer val = linear address

- Page translation happens on linear addresses
Two levels of protection and translation check

- Segmentation model has four privilege levels (CPL 0-3)

- Paging only two, so 0-2 = kernel, 3 = user
Why do you want both paging and segmentation?
Short answer: You don’t — just adds overhead

- Most OSes use “flat mode” — set base = 0, bounds = Oxffffffff
in all segment registers, then forget about it

- x86-64 architecture removes much segmentation support
Long answer: Has some fringe/incidental uses

- VMware runs guest OS in CPL 1 to trap stack faults

- OpenBSD used CS limit for WAX when no PTE NX bit

25/33

Making paging fast

* x86 PTs require 3 memory references per load/store

- Look up page table address in page directory
- Look up PPN in page table

- Actually access physical page corresponding to virtual address

« For speed, CPU caches recently used translations
- Called a translation lookaside buffer or TLB
- Typical: 64-2K entries, 4-way to fully associative, 95% hit rate
- Each TLB entry maps a VPN — PPN + protection information
¢ On each memory reference

- Check TLB, if entry present get physical address fast

- If not, walk page tables, insert in TLB for next time
(Must evict some entry)

26/33

TLB details

TLB operates at CPU pipeline speed —> small, fast

Complication: what to do when switch address space?
- Flush TLB on context switch (e.g., old x86)
- Tag each entry with associated process’s ID (e.g., MIPS)

In general, OS must manually keep TLB valid

E.g., x86 invlpg instruction

- Invalidates a page translation in TLB
- Must execute after changing a possibly used page table entry

- Otherwise, hardware will miss page table change

More Complex on a multiprocessor (TLB shootdown)

27/33

x86 Paging Extensions

o PSE: Page size extensions
- Setting bit 7 in PDE makes a 4MB translation (no PT)

o PAE Page address extensions

Newer 64-bit PTE format allows 36 bits of physical address

Page tables, directories have only 512 entries

Use 4-entry Page-Directory-Pointer Table to regain 2 lost bits
PDE bit 7 allows 2MB translation

e Long mode PAE
- In Long mode, pointers are 64-bits
- Extends PAE to map 48 bits of virtual address (next slide)
- Why are aren’t all 64 bits of VA usable?

28/33

x86 long mode paging

Virtual Address
63 48 47 3938 30 29 2120 1211 0
. Page-Map Page Directory— | Page Director Page-Table Physical—-
Sign Extend Level-4 offset Piinter Offseyt ® Offset Y %)ffset P ’ Offset
(PML4) sel age Offse
A9 A9 A9 9 12
Page-
Page-Map Directory Page— P 4—Kb.yte
Level-4 Pointer Directory age Physical
Table Table Table Table Page
PTE %
52
—» PDPE
L 52 Physical
PMLAE 52 1 Ad}:,;lress
—» PDE
51 12
Page-Map L4 Base Addr ' CR3

29/33

Where does the OS live?

¢ In its own address space?

- Can’t do this on most hardware (e.g., syscall instruction won't
switch address spaces)

- Also would make it harder to parse syscall arguments passed as
pointers
¢ So in the same address space as process

- Use protection bits to prohibit user code from writing kernel

o Typically all kernel text, most data at same VA in every
address space
- On x86, must manually set up page tables for this

- Usually just map kernel in contiguous virtual memory when boot
loader puts kernel into contiguous physical memory

- Some hardware puts physical memory (kernel-only) somewhere in
virtual address space

30/33

Very different MMU: MIPS

Hardware has 64-entry TLB
- References to addresses not in TLB trap to kernel
Each TLB entry has the following fields:
Virtual page, Pid, Page frame, NC, D, V, Global
Kernel itself unpaged
- All of physical memory contiguously mapped in high VM
- Kernel uses these pseudo-physical addresses
User TLB fault hander very efficient
- Two hardware registers reserved for it

- utlb miss handler can itself fault—allow paged page tables

OS is free to choose page table format!

31/33

FFFF

C000

BFFF
AO0O

OFFF
8000

TFFF

0000

FFFF

0000

FFFF
0000

FFFF
0000

FFFF

0000

MIPS Memory Layout

kseg?2: Paged Kernel

ksegl: Phys. Uncached

kseg0: Phys. Cached

useg: Paged User

Kernel Memory

User Memory

32/33

Paging in day-to-day use

e Paging Examples
- Demand paging

Growing the stack

BSS page allocation
Shared text

- Shared libraries

- Shared memory

- Copy-on-write (fork, mmap, etc.)

¢ Next time: detailed discussion on MIPS

33/33

