
Review: Condition variables

• Informs scheduler of which threads can run
• Typically done with condition variables or semaphores
• struct cond_t; (pthread_cond_t or cv in OS/161)
• void cond_init (cond_t *, ...);

• void cond_wait (cond_t *c, mutex_t *m);

- Atomically unlock m and sleep until c signaled
- Then re-acquire m and resume executing

• void cond_signal (cond_t *c);
void cond_broadcast (cond_t *c);

- Wake one/all threads waiting on c

1 / 15

http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_cond_destroy.html


Review: Semaphores [Dijkstra]

• A Semaphore is initialized with an integer N
- sem_create(N)

• Provides two functions:
- sem_wait (S) (originally called P)
- sem_signal (S) (originally called V)

• Guarantees sem_waitwill return only Nmore times than
sem_signal called
- Example: If N == 1, then semaphore acts as amutex with sem_wait
as lock and sem_signal as unlock

• Semaphores give elegant solutions to some problems

2 / 15

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html


Races

• Synchronization used to prevent races
• Races can include:

- Data Race: accessing to shared variables without a lock
. Clang/LLVM ThreadSanitizer can find data races easily

- ABA Races: common concern with wait-free code
. T1: reads n from the value of X
. T2: sets X to m then back to n
. T1: sees X is still n and continues
. E.g. common in wait-free/lock-free stacks and queues

- Locking, unlocking and relocking a resource without checking
- TOCTTOU: Time of Check to Time of Use

. Common class of security bugs

. E.g., checking if a file exists, then opening it
Another program can rename or delete the file inbetween

3 / 15



Races: Data Races

int foo;

void inc()
{

foo++;
}

• Two threads call inc()
• May drop increments or worse
• See: How tomiscompile programs with "benign" data races

4 / 15

http://www.hboehm.info/boehm-hotpar11.pdf


Races: ABA

struct item {
/* data */
struct item *next;

};
typedef struct item *stack_t;

void atomic_push (stack_t *stack, item *i) {
do {
i->next = *stack;

} while (!CAS (stack, i->next, i));
}

item *atomic_pop (stack_t *stack) {
item *i;
do {
i = *stack;

} while (!CAS (stack, i, i->next));
return i;

}
5 / 15



Races: TOCTTOU

find/rm Attacker
mkdir (“/tmp/badetc”)
creat (“/tmp/badetc/passwd”)

readdir (“/tmp”)→ “badetc”
lstat (“/tmp/badetc”)→ DIRECTORY
readdir (“/tmp/badetc”)→ “passwd”

rename (“/tmp/badetc”→ “/tmp/x”)
symlink (“/etc”, “/tmp/badetc”)

unlink (“/tmp/badetc/passwd”)

• Time-of-check-to-time-of-use bug
- find checks that /tmp/badetc is not symlink
- But meaning of file name changes before it is used

6 / 15



Races: TOCTTOU

find/rm Attacker
mkdir (“/tmp/badetc”)
creat (“/tmp/badetc/passwd”)

readdir (“/tmp”)→ “badetc”
lstat (“/tmp/badetc”)→ DIRECTORY
readdir (“/tmp/badetc”)→ “passwd”

rename (“/tmp/badetc”→ “/tmp/x”)
symlink (“/etc”, “/tmp/badetc”)

unlink (“/tmp/badetc/passwd”)

• Time-of-check-to-time-of-use [TOCTTOU] bug
- find checks that /tmp/badetc is not symlink
- But meaning of file name changes before it is used

6 / 15

https://cs.uwaterloo.ca/~mashti/cs350/sched/readings/tocttou.pdf


Deadlocks

/* Globals */
mutex_t la, lb;

Thread #1 Thread #2
/* Both threads acquire a lock */
mutex_lock(&la); mutex_lock(&lb);
/* Deadlock: Both threads own a lock the other wants! */
mutex_lock(&lb); mutex_lock(&la);

• Each thread tries to acquire the lock the other has

• Solution: Obtain locks in the same order
• In-practice: deadlocks can include file locks, CVs,
semaphores

• Queuexfr Problemwas to get you to think about deadlocks

7 / 15



Deadlocks

/* Globals */
mutex_t la, lb;

Thread #1 Thread #2
/* Both threads acquire a lock */
mutex_lock(&la); mutex_lock(&lb);
/* Deadlock: Both threads own a lock the other wants! */
mutex_lock(&lb); mutex_lock(&la);

• Each thread tries to acquire the lock the other has
• Solution: Obtain locks in the same order

• In-practice: deadlocks can include file locks, CVs,
semaphores

• Queuexfr Problemwas to get you to think about deadlocks

7 / 15



Deadlocks

/* Globals */
mutex_t la, lb;

Thread #1 Thread #2
/* Both threads acquire a lock */
mutex_lock(&la); mutex_lock(&lb);
/* Deadlock: Both threads own a lock the other wants! */
mutex_lock(&lb); mutex_lock(&la);

• Each thread tries to acquire the lock the other has
• Solution: Obtain locks in the same order
• In-practice: deadlocks can include file locks, CVs,
semaphores

• Queuexfr Problemwas to get you to think about deadlocks

7 / 15



Deadlocks: Solutions

• Lock Ranking/Ordering
- Always enforce a consistent ordering among locks
- O�en developer builds enforces extra lock ranking violations
- VMware ESX: static ordering maintained by developers
- FreeBSD:witness kernel option dynamically monitors lock order

• Deadlock Detection
- O�en expensive to run in production
- E.g. might run detection when locks are asleep too long
- Clang/LLVM ThreadSanitizer finds deadlocks in developer builds

• Lock Order for arrays of locks
- Choose lock order sorted by address or array indices

8 / 15



Mesa vs. Hoare CVs

• WARNING: Use Mesa CVs in CS350
• Mesa CVs:

- void cond_wait (cond_t *c, mutex_t *m);
. Atomically unlock m and sleep until c signaled
. Then re-acquire m and resume executing

- void cond_signal (cond_t *c);
void cond_broadcast (cond_t *c);
. Wake one/all threads waiting on c

• Hoare CVs:
- void cond_wait (cond_t *c, mutex_t *m);

. Sleep until c signaled, then resume

. Lock m is sent to/recieved from signalling thread
- void cond_signal (cond_t *c, mutex_t *m);
void cond_broadcast (cond_t *c, mutex_t *m);
. Wake one/all threads waiting on c and pass m to it.

9 / 15



Mesa vs. Hoare CVs Continued

• Mesa CVs:
- Possible race in reacquiring lock
- Shared state must be rechecked
- Simple implementation
- Used bymost languages/operating systems
- Either su�er from double sleep/wakeup or requires wait morphing

• Hoare CVs:
- Lock passed around (no race)
- Shared state does not need to be rechecked
- Complex implementation (requires modifying lock code)
- Used in many books
- Thread wakes up immediately, no double sleep/wakeup

10 / 15



Barriers

• Another primitive: wait for N threads to complete
• Useful to gate phases of a program/computation
• struct barrier_t; (pthread_barrier_t)
• void barrier_init (barrier_t *b, int N);

• void barrier_destroy(barrier_t *b);

• void barrier_wait (barrier_t *b);

- Wait for N threads to reach the wait
- Then allow N threads to proceed

11 / 15

http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_barrier_wait.html


Read/Write Locks

• Allowsmultiple readers/single writer
• struct rwlock_t; (pthread_rwlock_t)
• void rwlock_init (rwlock_t *b, ...);

• void rwlock_destroy(rwlock_t *b);

• void rwlock_unlock (rwlock_t *b);

• void rwlock_rdlock (rwlock_t *b);

• int rwlock_tryrdlock (rwlock_t *b);

- Acquire read lock

• void rwlock_wrlock (rwlock_t *b);

• int rwlock_trywrlock (rwlock_t *b);

- Acquire write lock
- Blocks new readers and waits for readers to complete

12 / 15

http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_rwlock_destroy.html


Monitors

• Monitors are essentially mutex locks
• O�en contain a condition variable like feature
• Variations exist in most modern programming languages
• Less error prone thanmutexes

13 / 15



lock_guard in C++11

• Automatically acquires/releases a C++11 mutex
• No CV-like functionality

#include <thread>
#include <mutex>

int foo;
std::mutex myMutex;

void inc() {
std::lock_guard<std::mutex> lock(myMutex);
foo++;

}

14 / 15



Monitors in Java

• Per-object monitors
• Java doesn’t use CVs
• Uses a single wait queue for locks and notify API
• Queue supports mutex locks and notify/notifyAll/wait
• C# uses a similar implementation

public class SynchronizedCounter {
private int foo;
public synchronized void inc() {

foo++;
}
public void dec() {

synchronized (this) {
foo--;

}
}

}

15 / 15


