
Review: Processes

• A process is an instance of a running program
- A thread is an execution context
- Process can have one or more threads
- Threads share address space (code, data, heap), open files
- Threads have their own stack and register state

• POSIX Thread APIs:
- pthread_create() - Creates a new thread
- pthread_exit() - Destroys current thread
- pthread_join() - Waits for thread to exit

1 / 15



Producer

mutex_t mutex = MUTEX_INITIALIZER;

void producer (void *ignored) {
for (;;) {

item *nextProduced = produce_item ();

mutex_lock (&mutex);
while (count == BUFFER_SIZE) {
mutex_unlock (&mutex); /* <--- Why? */
thread_yield ();
mutex_lock (&mutex);

}

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;
mutex_unlock (&mutex);

}
}

2 / 15



Consumer

void consumer (void *ignored) {
for (;;) {

mutex_lock (&mutex);
while (count == 0) {
mutex_unlock (&mutex);
thread_yield ();
mutex_lock (&mutex);

}

item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;
mutex_unlock (&mutex);

consume_item (nextConsumed);
}

}

3 / 15



Condition variables

• Busy-waiting in application is a bad idea
- Consumes CPU even when a thread can’t make progress
- Unnecessarily slows other threads/processes or wastes power

• Better to inform scheduler of which threads can run

• Typically done with condition variables
• struct cond_t; (pthread_cond_t or cv in OS/161)
• void cond_init (cond_t *, ...);

• void cond_wait (cond_t *c, mutex_t *m);
- Atomically unlock m and sleep until c signaled
- Then re-acquire m and resume executing

• void cond_signal (cond_t *c);
void cond_broadcast (cond_t *c);
- Wake one/all threads waiting on c

4 / 15

http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_cond_destroy.html


Condition variables

• Busy-waiting in application is a bad idea
- Consumes CPU even when a thread can’t make progress
- Unnecessarily slows other threads/processes or wastes power

• Better to inform scheduler of which threads can run
• Typically done with condition variables
• struct cond_t; (pthread_cond_t or cv in OS/161)
• void cond_init (cond_t *, ...);

• void cond_wait (cond_t *c, mutex_t *m);
- Atomically unlock m and sleep until c signaled
- Then re-acquire m and resume executing

• void cond_signal (cond_t *c);
void cond_broadcast (cond_t *c);
- Wake one/all threads waiting on c

4 / 15

http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_cond_destroy.html


Improved producer

mutex_t mutex = MUTEX_INITIALIZER;
cond_t nonempty = COND_INITIALIZER;
cond_t nonfull = COND_INITIALIZER;

void producer (void *ignored) {
for (;;) {

item *nextProduced = produce_item ();

mutex_lock (&mutex);
while (count == BUFFER_SIZE)
cond_wait (&nonfull, &mutex);

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;
cond_signal (&nonempty);
mutex_unlock (&mutex);

}
}

5 / 15



Improved consumer

void consumer (void *ignored) {
for (;;) {

mutex_lock (&mutex);
while (count == 0)
cond_wait (&nonempty, &mutex);

item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;
cond_signal (&nonfull);
mutex_unlock (&mutex);

consume_item (nextConsumed);
}

}

6 / 15



Re-check conditions

• Always re-check condition on wake-up
while (count == 0) /* not if */
cond_wait (&nonempty, &mutex);

• Otherwise, breaks with spurious wakeup or two consumers
- Start where Consumer 1 has mutex but bu�er empty, then:

Consumer 1 Consumer 2 Producer
cond_wait (...); mutex_lock (...);...

count++;
cond_signal (...);

mutex_lock (...); mutex_unlock (...);
if (count == 0)...
use buffer[out] . . .
count--;
mutex_unlock (...);

use buffer[out] . . . ←− No items in bu�er
7 / 15



Condition variables (continued)

• Whymust cond_wait both release mutex & sleep?
• Why not separate mutexes and condition variables?

while (count == BUFFER_SIZE) {
mutex_unlock (&mutex);
cond_wait (&nonfull);
mutex_lock (&mutex);

}

• Can end up stuck waiting when bad interleaving

Producer
while (count == BUFFER_SIZE)
mutex_unlock (&mutex);

cond_wait (&nonfull);

Consumer

mutex_lock (&mutex);
...
count--;
cond_signal (&nonfull);

• Problem: cond_wait & cond_signal do not commute

8 / 15



Condition variables (continued)

• Whymust cond_wait both release mutex & sleep?
• Why not separate mutexes and condition variables?

while (count == BUFFER_SIZE) {
mutex_unlock (&mutex);
cond_wait (&nonfull);
mutex_lock (&mutex);

}
• Can end up stuck waiting when bad interleaving

Producer
while (count == BUFFER_SIZE)
mutex_unlock (&mutex);

cond_wait (&nonfull);

Consumer

mutex_lock (&mutex);
...
count--;
cond_signal (&nonfull);

• Problem: cond_wait & cond_signal do not commute
8 / 15



Condition variables (continued 2)

• Should you hold themutex when calling signal/broadcast?

• Case 1: Holding themutex
- Waiter is woken up by signal
- Waiter immediately sleeps waiting for mutex
- This causes two context switches
- Pthread implementations solve this through wait morphing
- Thread is automatically moved from the cv to mutex wait queue

• Case 2: Not holding themutex
- Signal occurs just before call to cond_wait
- Stuck in infinite wait

9 / 15



Condition variables (continued 2)

• Should you hold themutex when calling signal/broadcast?
• Case 1: Holding themutex

- Waiter is woken up by signal
- Waiter immediately sleeps waiting for mutex
- This causes two context switches
- Pthread implementations solve this through wait morphing
- Thread is automatically moved from the cv to mutex wait queue

• Case 2: Not holding themutex
- Signal occurs just before call to cond_wait
- Stuck in infinite wait

9 / 15



Condition variables (continued 2)

• Should you hold themutex when calling signal/broadcast?
• Case 1: Holding themutex

- Waiter is woken up by signal
- Waiter immediately sleeps waiting for mutex
- This causes two context switches
- Pthread implementations solve this through wait morphing
- Thread is automatically moved from the cv to mutex wait queue

• Case 2: Not holding themutex
- Signal occurs just before call to cond_wait
- Stuck in infinite wait

9 / 15



Semaphores [Dijkstra]

• A Semaphore is initialized with an integer N
- sem_create(N)

• Provides two functions:
- sem_wait (S) (originally called P)
- sem_signal (S) (originally called V)

• Guarantees sem_waitwill return only Nmore times than
sem_signal called
- Example: If N == 1, then semaphore acts as amutex with sem_wait
as lock and sem_signal as unlock

• Semaphores give elegant solutions to some problems
• Linux primarily uses semaphores for sleeping locks

- sema_init, down_interruptible, up, . . .
- Also weird reader-writer semaphores, rw_semaphore [Love]

10 / 15

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html
http://www.linuxjournal.com/article/5833


Using a Semaphore as a Mutex

• We can use a semaphore as amutex

semaphore *s = sem_create(1);

/* Acquire the lock */
sem_wait(s); /* Semaphore count is now 0 */
/* critical section */
/* Release the lock */
sem_signal(s); /* Seamphore count is now 1 */

• Couple important di�erences:
- Mutex requires the same thread to acquire/relase the lock
- Allows mutexes to implement priority inversion

11 / 15



Using a Semaphore as a Mutex

• We can use a semaphore as amutex

semaphore *s = sem_create(1);

/* Acquire the lock */
sem_wait(s); /* Semaphore count is now 0 */
/* critical section */
/* Release the lock */
sem_signal(s); /* Seamphore count is now 1 */

• Couple important di�erences:
- Mutex requires the same thread to acquire/relase the lock
- Allows mutexes to implement priority inversion

11 / 15



Semaphore producer/consumer

• Initialize full to 0 (block consumer when bu�er empty)
• Initialize empty to N (block producer when queue full)

void producer (void *ignored) {
for (;;) {

item *nextProduced = produce_item ();
sem_wait (&empty);
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
sem_signal (&full);

}
}
void consumer (void *ignored) {

for (;;) {
sem_wait (&full);
item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
sem_signal (&empty);
consume_item (nextConsumed);

}
} 12 / 15



Various synchronizationmechanisms

• Other more esoteric primitives youmight encounter
- Plan 9 used a rendezvous mechanism
- Haskell uses MVars (like channels of depth 1)

• Many synchronizationmechanisms equally expressive
- Pintos implements locks, condition vars using semaphores
- Could have been vice versa
- Can even implement condition variables in terms of mutexes

• Why base everything around semaphore implementation?
- High-level answer: no particularly good reason
- If you want only onemechanism, can’t be condition variables
(interface fundamentally requires mutexes)

- Unlike condition variables, sem_wait and sem_signal commute,
eliminating problem of condition variables w/o mutexes

13 / 15

http://doc.cat-v.org/plan_9/4th_edition/papers/sleep


Semaphores and CVs OS/161

struct semaphore *sem_create(const char *name, int count);
void sem_destroy(struct semaphore *sem);
void P(struct semaphore *sem);
void V(struct semaphore *sem);

struct cv *cv_create(const char *name);
void cv_destroy(struct cv *cv);
void cv_wait(struct cv *cv, struct lock *lock);
/* Ignore the lock parameter on signal and broadcast */
/* We will discuss this next class */
void cv_signal(struct cv *cv, struct lock *lock);
void cv_broadcast(struct cv *cv, struct lock *lock);

14 / 15



Implementation of P and V

• See os161/kern/thread/synch.c
void P(struct semaphore *sem) {

spinlock_acquire(&sem->sem_lock);
while (sem->sem_count == 0) {

wchan_lock(sem->sem_wchan);
spinlock_release(&sem->sem_lock);
wchan_sleep(sem->sem_wchan);
spinlock_acquire(&sem->sem_lock);

}
sem->sem_count--;
spinlock_release(&sem->sem_lock);

}

void V(struct semaphore *sem) {
spinlock_acquire(&sem->sem_lock);
sem->sem_count++;
wchan_wakeone(sem->sem_wchan);
spinlock_release(&sem->sem_lock);

}
15 / 15


