Review: Processes

« Aprocess is an instance of a running program

Athread is an execution context

Process can have one or more threads

Threads share address space (code, data, heap), open files
- Threads have their own stack and register state

o POSIX Thread APls:

- pthread_create() - Creates a new thread
- pthread_exit () - Destroys current thread
- pthread_join() - Waits for thread to exit

1/15



mutex_t mutex = MUTEX_INITIALIZER;

void producer (void *ignored) {
for (53) {
item *nextProduced = produce_item ();

mutex_lock (&mutex);

while (count == BUFFER_SIZE) {
mutex_unlock (&mutex); /* <--- Why? */
thread_yield ();
mutex_lock (&mutex) ;

¥

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

mutex_unlock (&mutex);

2/15



Consumer

void consumer (void *ignored) {
for (;;) {
mutex_lock (&mutex);
while (count == 0) {
mutex_unlock (&mutex);
thread_yield O);
mutex_lock (&mutex);

}

item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

mutex_unlock (&mutex);

consume_item (nextConsumed) ;

3/15



Condition variables

« Busy-waiting in application is a bad idea
- Consumes CPU even when a thread can’t make progress
- Unnecessarily slows other threads/processes or wastes power

o Better to inform scheduler of which threads can run

4/15


http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_cond_destroy.html

Condition variables

« Busy-waiting in application is a bad idea
- Consumes CPU even when a thread can’t make progress
- Unnecessarily slows other threads/processes or wastes power

« Better to inform scheduler of which threads can run
« Typically done with condition variables
e struct cond_t; (pthread_cond_t orcvin OS/161)

e void cond_init (cond_t *, ...);
e void cond_wait (cond_t *c, mutex_t *m);
- Atomically unlock m and sleep until c signaled
- Then re-acquire m and resume executing
e void cond_signal (cond_t *c);
void cond_broadcast (cond_t *c);
- Wake one/all threads waiting on ¢

4/15


http://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_cond_destroy.html

Improved producer

mutex_t mutex = MUTEX_INITIALIZER;
cond_t nonempty = COND_INITIALIZER;
cond_t nonfull = COND_INITIALIZER;

void producer (void *ignored) {
for (53) {

item *nextProduced = produce_item ();

mutex_lock (&mutex);
while (count == BUFFER_SIZE)
cond_wait (&nonfull, &mutex);

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

cond_signal (&nonempty);
mutex_unlock (&mutex);

5/15



Improved consumer

void consumer (void *ignored) {
for (;;) {
mutex_lock (&mutex);
while (count == 0)
cond_wait (&nonempty, &mutex);

item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

cond_signal (&nonfull);
mutex_unlock (&mutex);

consume_item (nextConsumed) ;

6/15



Re-check conditions

» Always re-check condition on wake-up
while (count == 0) /* not if */
cond_wait (&nonempty, &mutex);
» Otherwise, breaks with spurious wakeup or two consumers
- Start where Consumer 1 has mutex but buffer empty, then:

Consumer 1 Consumer 2 Producer
cond_wait (...); mutex_lock (...);
count++;
cond_signal (...);
mutex_lock (...); mutex_unlock (...);

if (count == 0)

use buffer[out] ...
count--;
mutex_unlock (...);

use buffer[out] ... +— Noitems in buffer
7/15



Condition variables (continued)

o Why must cond_wait both release mutex & sleep?

» Why not separate mutexes and condition variables?
while (count == BUFFER_SIZE) {
mutex_unlock (&mutex);
cond_wait (&nonfull);
mutex_lock (&mutex);

¥

8/15



Condition variables (continued)

o Why must cond_wait both release mutex & sleep?

» Why not separate mutexes and condition variables?
while (count == BUFFER_SIZE) {
mutex_unlock (&mutex);
cond_wait (&nonfull);
mutex_lock (&mutex);

}
» Can end up stuck waiting when bad interleaving

Producer Consumer
while (count == BUFFER_SIZE)
mutex_unlock (&mutex);
mutex_lock (&mutex);
count--;
cond_signal (&nonfull);
cond_wait (&nonfull);

» Problem: cond_wait & cond_signal do not commute .



Condition variables (continued 2)

» Should you hold the mutex when calling signal/broadcast?

9/15



Condition variables (continued 2)

» Should you hold the mutex when calling signal/broadcast?
» Case 1: Holding the mutex

Waiter is woken up by signal

Waiter immediately sleeps waiting for mutex

This causes two context switches

Pthread implementations solve this through wait morphing
Thread is automatically moved from the cv to mutex wait queue

9/15



Condition variables (continued 2)

» Should you hold the mutex when calling signal/broadcast?
» Case 1: Holding the mutex

Waiter is woken up by signal

Waiter immediately sleeps waiting for mutex

This causes two context switches

Pthread implementations solve this through wait morphing
Thread is automatically moved from the cv to mutex wait queue

» Case 2: Not holding the mutex

- Signal occurs just before call to cond_wait
- Stuck in infinite wait

9/15



Semaphores [Dijkstra]

« A Semaphore is initialized with an integer N

- sem_create(N)

Provides two functions:

- sem_wait (S) (originally called P)
- sem_signal (S) (originally called V)

Guarantees sem_wait will return only N more times than
sem_signal called

- Example: If N == 1, then semaphore acts as a mutex with sem_wait
as lock and sem_signal as unlock

Semaphores give elegant solutions to some problems

Linux primarily uses semaphores for sleeping locks
- sema_init,down_interruptible, up,...
- Also weird reader-writer semaphores, rw_semaphore [Love]

10/15


http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html
http://www.linuxjournal.com/article/5833

Using a Semaphore as a Mutex

o Wecanusea semaphore as a mutex
semaphore *s = sem_create(1);

/* Acquire the lock */

sem_wait(s); /* Semaphore count is now 0 */
/* critical section */

/* Release the lock */

sem_signal(s); /* Seamphore count is now 1 */

1/15



Using a Semaphore as a Mutex

e Wecanusea semaphore as a mutex
semaphore *s = sem_create(1);

/* Acquire the lock */

sem_wait(s); /* Semaphore count is now 0 */
/* critical section */

/* Release the lock */

sem_signal(s); /* Seamphore count is now 1 */

» Couple important differences:

- Mutex requires the same thread to acquire/relase the lock
- Allows mutexes to implement priority inversion

1/15



Semaphore producer/consumer

« Initialize full to 0 (block consumer when buffer empty)
o Initialize empty to N (block producer when queue full)

void producer (void *ignored) {
for (;;) {
item *nextProduced = produce_item ();
sem_wait (&empty) ;
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
sem_signal (&full);

3
}
void consumer (void *ignored) {
for (5;) {
sem_wait (&full);
item *nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
sem_signal (&empty);
consume_item (nextConsumed) ;
}

} 12/15



Various synchronization mechanisms

» Other more esoteric primitives you might encounter

- Plan 9 used a rendezvous mechanism
- Haskell uses MVars (like channels of depth 1)

» Many synchronization mechanisms equally expressive
- Pintos implements locks, condition vars using semaphores

- Could have been vice versa
- Can even implement condition variables in terms of mutexes

+ Why base everything around semaphore implementation?

- High-level answer: no particularly good reason

- If you want only one mechanism, can’t be condition variables
(interface fundamentally requires mutexes)

- Unlike condition variables, sem_wait and sem_signal commute,
eliminating problem of condition variables w/o mutexes

13/15


http://doc.cat-v.org/plan_9/4th_edition/papers/sleep

Semaphores and CVs 0S/161

struct semaphore *sem_create(const char *name, int count);
void sem_destroy(struct semaphore *sem);

void P(struct semaphore *sem) ;

void V(struct semaphore *sem);

struct cv *cv_create(const char *name);

void cv_destroy(struct cv *cv);

void cv_wait(struct cv *cv, struct lock *lock);

/* Ignore the lock parameter on signal and broadcast */
/* We will discuss this next class */

void cv_signal(struct cv *cv, struct lock *lock);

void cv_broadcast(struct cv *cv, struct lock *lock);

14/15



Implementation of Pand V

» See os161/kern/thread/synch.c

void P(struct semaphore *sem) {

spinlock_acquire (&sem->sem_lock) ;

while (sem->sem_count == 0) {
wchan_lock(sem->sem_wchan) ;
spinlock_release(&sem->sem_lock) ;
wchan_sleep(sem->sem_wchan) ;
spinlock_acquire(&sem->sem_lock) ;

}

sem->sem_count--;

spinlock_release(&sem->sem_lock) ;

}

void V(struct semaphore *sem) {
spinlock_acquire (&sem->sem_lock) ;
sem->sem_count++;
wchan_wakeone (sem->sem_wchan) ;
spinlock_release(&sem->sem_lock) ;

15/15



