
Review: Processes

• A process is an instance of a running program
- A thread is an execution context
- Process can have one or more threads
- Threads share address space (code, data, heap), open files
- Threads have their own stack and register state

• POSIX Thread APIs:
- pthread_create() - Creates a new thread
- pthread_exit() - Destroys current thread
- pthread_join() - Waits for thread to exit

1 / 32

Critical Sections

int total = 0;

void add() {
int i;
for (i=0; i<N; i++) {

total++;
}

}

void sub() {
int i;
for (i=0; i<N; i++) {

total--;
}

}

2 / 32

Critical Sections: Assembly Pseudocode

int total = 0;

void add() {
int i;
/* r8 := &total */
for (i=0; i<N; i++) {

lw r9, 0(r8)
add r9, 1
sw r9, 0(r8)

}
}

void sub() {
int i;
for (i=0; i<N; i++) {

lw r9, 0(r8)
sub r9, 1
sw r9, 0(r8)

}
} 3 / 32

Critical Section: Schedule 1

Thread #1 Thread #2
lw r9, 0(r8)
add r9, 1
sw r9, 0(r8)

lw r9, 0(r8)
sub r9, 1
sw r9, 0(r8)

• Increment completes, then decrements
• Result: total = 0

4 / 32

Critical Section: Schedule 1

Thread #1 Thread #2
lw r9, 0(r8)
add r9, 1
sw r9, 0(r8)

lw r9, 0(r8)
sub r9, 1
sw r9, 0(r8)

• Increment completes, then decrements
• Result: total = 0

4 / 32

Critical Section: Schedule 2

Thread #1 Thread #2
lw r9, 0(r8)

lw r9, 0(r8)
add r9, 1

sub r9, 1
sw r9, 0(r8)

sw r9, 0(r8)

• Both load zero, then stores clobber one another
• Result: total = -1

5 / 32

Critical Section: Schedule 2

Thread #1 Thread #2
lw r9, 0(r8)

lw r9, 0(r8)
add r9, 1

sub r9, 1
sw r9, 0(r8)

sw r9, 0(r8)

• Both load zero, then stores clobber one another
• Result: total = -1

5 / 32

Critical Section: Schedule 3

Thread #1 Thread #2
lw r9, 0(r8) lw r9, 0(r8)
add r9, 1 sub r9, 1

sw r9, 0(r8)
sw r9, 0(r8)

• Both load zero, then stores clobber one another
• Result: total = 1

6 / 32

Critical Section: Schedule 3

Thread #1 Thread #2
lw r9, 0(r8) lw r9, 0(r8)
add r9, 1 sub r9, 1

sw r9, 0(r8)
sw r9, 0(r8)

• Both load zero, then stores clobber one another
• Result: total = 1

6 / 32

Need for Synchronization

• Problem: Data Races occur when no synchronization is
provided

• Options:
- Atomic Instructions: atomically modify value
- Locks: prevent other code from running concurrently

• ... it gets worse!

7 / 32

Program A

int flag1 = 0, flag2 = 0;

void p1 (void *ignored) {
flag1 = 1;
if (!flag2) { critical_section_1 (); }

}

void p2 (void *ignored) {
flag2 = 1;
if (!flag1) { critical_section_2 (); }

}

int main () {
tid id = thread_create (p1, NULL);
p2 ();
thread_join (id);

}

Q: Can both critical sections run?
8 / 32

Program B

int data = 0, ready = 0;

void p1 (void *ignored) {
data = 2000;
ready = 1;

}

void p2 (void *ignored) {
while (!ready)
;

use (data);
}

int main () { ... }

Q: Can use be called with value 0?

9 / 32

Program C

int a = 0, b = 0;

void p1 (void *ignored) {
a = 1;

}

void p2 (void *ignored) {
if (a == 1)
b = 1;

}

void p3 (void *ignored) {
if (b == 1)
use (a);

}

Q: If p1–3 run concurrently, can use be called with value 0?

10 / 32

Correct answers

• Program A: I don’t know
• Program B: I don’t know
• Program C: I don’t know
• Why don’t we know?

- It depends on what machine you use
- If a system provides sequential consistency, then answers all No
- But not all hardware provides sequential consistency

• Note: Examples, other content from

11 / 32

Correct answers

• Program A: I don’t know

• Program B: I don’t know
• Program C: I don’t know
• Why don’t we know?

- It depends on what machine you use
- If a system provides sequential consistency, then answers all No
- But not all hardware provides sequential consistency

• Note: Examples, other content from

11 / 32

Correct answers

• Program A: I don’t know
• Program B: I don’t know

• Program C: I don’t know
• Why don’t we know?

- It depends on what machine you use
- If a system provides sequential consistency, then answers all No
- But not all hardware provides sequential consistency

• Note: Examples, other content from

11 / 32

Correct answers

• Program A: I don’t know
• Program B: I don’t know
• Program C: I don’t know
• Why don’t we know?

- It depends on what machine you use
- If a system provides sequential consistency, then answers all No
- But not all hardware provides sequential consistency

• Note: Examples, other content from [Adve & Gharachorloo]

11 / 32

https://cs.uwaterloo.ca/~mashti/cs350/sched/readings/shmem-tut.pdf

Sequential Consistency

Definition
Sequential consistency: The result of execution is as if all operations
were executed in some sequential order, and the operations of each
processor occurred in the order specified by the program.
– Lamport

• Boils down to two requirements:
1. Maintaining program order on individual processors
2. Ensuringwrite atomicity

• Without SC (Sequential Consistency), multiple CPUs can be
“worse”—i.e., less intuitive—than preemptive threads
- Result may not correspond to any instruction interleaving on 1 CPU

• Why doesn’t all hardware support sequential consistency?
12 / 32

https://cs.uwaterloo.ca/~mashti/cs350/sched/readings/sequential-consistency.pdf

SC thwarts hardware optimizations

• Complicates write bu�ers
- E.g., read flagn before flag(2− n)written through in Program A

• Can’t re-order overlapping write operations
- Concurrent writes to di�erent memory modules
- Coalescing writes to same cache line

• Complicates non-blocking reads
- E.g., speculatively prefetch data in Program B

• Makes cache coherencemore expensive
- Must delay write completion until invalidation/update (Program B)
- Can’t allow overlapping updates if no globally visible order
(Program C)

13 / 32

SC thwarts compiler optimizations

• Codemotion
• Caching value in register

- Collapse multiple loads/stores of same address into one operation

• Common subexpression elimination
- Could cause memory location to be read fewer times

• Loop blocking
- Re-arrange loops for better cache performance

• So�ware pipelining
- Move instructions across iterations of a loop to overlap instruction
latency with branch cost

14 / 32

Memory Model

• Sequential Consistency: statements execute in program order
• Compilers/HW reorder loads/stores for performance
• Language-level Memory Model

- C/Java: sequential consistency for race free programs
- Compiler must be aware of synchronization
- Language provides barriers and atomics

• Processor-level Memory Model
- TSO: Total Store Order - X86, SPARC (default)
- PSO: Partial Store Order - SPARC PSO
- RMO: Relaxed Memory Order - Alpha, POWER, ARM, PA-RISC,
SPARC RMO, x86 OOS

- Evenmore nuanced variations between architectures!

15 / 32

TSO and PSO and RMO, OhMy!

Example from SPARC V9 Architecture Manual:
P1 : s t # 1 , [A] / / 0

s t # 1 , [B] / / 1
P2 : l d [A] , %r 1 / / 2

ld [B] , %r2 / / 3
P3 : ld [B] , %r 1 / / 4

ld [A] , %r2 / / 5

• TSO: 0 occur before 1, 2 before 3, 4 before 5
• PSO: stores can occur in any order
• RMO: stores/loads can occur in any order e.g. 5,3,0,2,1,4
• Barrier instructions allow one to limit reorders
• SPARC: MEMBAR instruction

- MEMBAR #StoreStore,#StoreLoad,#LoadStore,#LoadLoad
- MEMBAR #Sync - Everything

16 / 32

x86 atomicity

• x86 uses TSO (with a few exceptions)
• lock prefix makes amemory instruction atomic

- Usually locks bus for duration of instruction (expensive!)
- Can avoid locking if memory already exclusively cached
- All lock instructions totally ordered
- Other memory instructions cannot be re-ordered with locked ones

• xchg instruction is always locked (even without prefix)
• Special barrier (or “fence”) instructions can prevent
re-ordering
- lfence – can’t be reordered with reads (or later writes)
- sfence – can’t be reordered with writes
(e.g., use a�er non-temporal stores, before setting a ready flag)

- mfence – can’t be reordered with reads or writes

17 / 32

x86 atomicity: data races

• What about a single-instruction add?
- E.g., i386 allows single instruction addl $1,_count
- So implement count++/--with one instruction
- Now are we safe?

• Not atomic onmultiprocessor! (operation 6= instruction)
- Will experience exact same race condition
- Can potentially make atomic with lock prefix
- But lock potentially very expensive
- Compiler won’t generate it, assumes you don’t want penalty

• Need solution to critical section problem
- Place count++ and count-- in critical section
- Protect critical sections from concurrent execution

18 / 32

x86 atomicity: data races

• What about a single-instruction add?
- E.g., i386 allows single instruction addl $1,_count
- So implement count++/--with one instruction
- Now are we safe?

• Not atomic onmultiprocessor! (operation 6= instruction)
- Will experience exact same race condition
- Can potentially make atomic with lock prefix
- But lock potentially very expensive
- Compiler won’t generate it, assumes you don’t want penalty

• Need solution to critical section problem
- Place count++ and count-- in critical section
- Protect critical sections from concurrent execution

18 / 32

Compare and Swap/Exchange

• x86: cmpxchg Compare and Exchange
• SPARC Architecture: Compare and Swap

- cas addr, r1, r2
- if (*addr == r1) then swap *addr and r2

• Some hardware supports double compare and swap
- Useful for so�ware transactional memory, atomic doubly linked
lists

19 / 32

Desired properties of solution

• Mutual Exclusion
- Only one thread can be in critical section at a time

• Progress
- Say no process currently in critical section (C.S.)
- One of the processes trying to enter will eventually get in

• Bounded waiting
- Once a thread T starts trying to enter the critical section, there is a
bound on the number of times other threads get in

• Note progress vs. bounded waiting
- If no thread can enter C.S., don’t have progress
- If thread Awaiting to enter C.S. while B repeatedly leaves and
re-enters C.S. ad infinitum, don’t have bounded waiting

20 / 32

Peterson’s solution

• Still assuming sequential consistency
• Assume two threads, T0 and T1
• Variables

- int not_turn; // not this thread’s turn to enter C.S.
- bool wants[2]; // wants[i] indicates if Ti wants to enter C.S.

• Code:

for (;;) { /* assume i is thread number (0 or 1) */
wants[i] = true;
not_turn = i;
while (wants[1-i] && not_turn == i)
/* other thread wants in and not our turn, so loop */;

Critical_section ();
wants[i] = false;
Remainder_section ();

}

21 / 32

Does Peterson’s solution work?

for (;;) { /* code in thread i */
wants[i] = true;
not_turn = i;
while (wants[1-i] && not_turn == i)
/* other thread wants in and not our turn, so loop */;

Critical_section ();
wants[i] = false;
Remainder_section ();

}

• Mutual exclusion – can’t both be in C.S.
- Would mean wants[0] == wants[1] == true,
so not_turnwould have blocked one thread from C.S.

• Progress – given demand, one thread can always enter C.S.
- If T1−i doesn’t want C.S., wants[1-i] == false, so Ti won’t loop
- If both threads want in, one thread is not the not_turn thread

• Bounded waiting – similar argument to progress
- If Ti wants lock and T1−i tries to re-enter, T1−i will set
not_turn = 1 - i, allowing Ti in 22 / 32

Mutexes

• Peterson expensive, only works for 2 processes
- Can generalize to n, but for some fixed n

• Must adapt to machinememorymodel if not SC
- If you needmachine-specific barriers anyway, might as well take
advantage of other instructions helpful for synchronization

• Want to insulate programmer from implementing
synchronization primitives

• Thread packages typically providemutexes:
void mutex_init (mutex_t *m, ...);
void mutex_lock (mutex_t *m);
int mutex_trylock (mutex_t *m);
void mutex_unlock (mutex_t *m);

- Only one thread acuires m at a time, others wait

23 / 32

Simple Spinlock in C11

typedef struct Spinlock {
alignas(CACHELINE) _Atomic(uint64_t) lck;

} Mutex;

void Spinlock_Init(Spinlock *m) {
atomic_store(&m->lck, 0);

}

void Spinlock_Lock(Spinlock *m) {
while (atomic_exchange(&m->lck, 1) == 1)

;
}

void Spinlock_Unlock(Spinlock *m) {
atomic_store(&m->lck, 0);

}

24 / 32

Atomics in C11

Where’s the barriers?
// Implicit Sequential Consistency
C atomic_load(const volatile A* obj);
// Explicit Consistency
C atomic_load_explicit(const volatile A* obj,

memory_order order);
// Barrier or Fence
void atomic_thread_fence(memory_order order);

enum memory_order {
memory_order_relaxed,
memory_order_consume,
memory_order_acquire,
memory_order_release,
memory_order_acq_rel,
memory_order_seq_cst

};

25 / 32

Pre-C11 Compilers (including OS/161)

• Use assembly routines for compiler barriers:
- asm("" ::: "memory");
- Compiler will not reorder loads/stores nor cache values

• Use volatile keyword
- volatile originally meant for accessing device memory
- loads/stores to volatile variables will not be reordered with
respect to other volatile operations

- Use of volatile is deprecated onmodern compilers
- volatile operations are not atomics!
- Use volatilewith inline assembly to use atomics

26 / 32

Spinlocks in OS/161

struct spinlock {
volatile spinlock_data_t lk_lock;
struct cpu *lk_holder;

}

void spinlock_init(struct spinlock *lk);
void spinlock_acquire(struct spinlock *lk);
void spinlock_release(struct spinlock *lk);

• Spinlocks based on using spinlock_data_testandset
• Spinlocks don’t yield CPU, i.e., they spin
• Raise the interupt level to prevent preemption

27 / 32

MIPS Atomics

/* return value 0 indicates lock was acquired */
spinlock_data_testandset(volatile spinlock_data_t *sd)
{
spinlock_data_t x,y;
y = 1;
__asm volatile(
".set push;" /* save assembler mode */
".set mips32;" /* allow MIPS32 instructions */
".set volatile;" /* avoid unwanted optimization */
"ll \%0, 0(\%2);" /* x = *sd */
"sc \%1, 0(\%2);" /* *sd = y; y = success? */
".set pop" /* restore assembler mode */
: "=r" (x), "+r" (y) : "r" (sd));

if (y == 0) { return 1; }
return x;

}

28 / 32

MIPS Atomics: Continued

• Load Linked ll: Loads a value andmonitors memory for
changes

• Store Conditional sc: Stores if memory didn’t change
• sc can fail for multiple reasons

- Value from llwasmodified by another processor
- An interrupt preempted the thread between ll and sc

• Otherwise scwill succeed returning 1
• On failure we can retry the operation
• Powerful primitives

- Can implement any read-modify-write operation
- For example, atomic add or increment
- Some architectures are implemented this way internally

29 / 32

Mutex Locks in OS/161

• Provide mutual exclusion like spinlocks
• Yield the CPUwhen waiting on the lock
• Mutex locks deal with priority inversion

- Problem: Low priority thread sleeps while holding lock then a high
priority thread wants the lock

- Mutex locks typically boost the priority of the lower thread to
unblock the higher thread

struct lock *mylock = lock_create("LockName");

lock_aquire(mylock);
/* critical section} */
lock_release(mylock);

30 / 32

Thread Blocking

• Sometimes a thread will need to wait for something, e.g.:
- wait for a lock to be released by another thread
- wait for data from a (relatively) slow device
- wait for input from a keyboard
- wait for busy device to become idle

• When a thread blocks, it stops running:
- the scheduler chooses a new thread to run
- a context switch from the blocking thread to the new thread
occurs,

- the blocking thread is queued in await queue (not on the ready list)

• Eventually, a blocked thread is signaled and awakened by
another thread.

31 / 32

Wait Channels in OS/161

• Wait channels are used to implement thread blocking in
OS/161

• Many di�erent wait channels holding threads sleeping for
di�erent reasons

• Similar primitives exist in most operating systems
• void wchan_sleep(struct wchan *wc);

- blocks calling thread on wait channel wc
- causes a context switch, like thread_yield

• void wchan_wakeall(struct wchan *wc);
- Unblocks all threads sleeping on the wait channel

• void wchan_wakeone(struct wchan *wc);
- Unblocks one threads sleeping on the wait channel

• void wchan_lock(struct wchan *wc);
- Prevent operations on the wait channel
- More on this later

32 / 32

