
CPU scheduling
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• The scheduling problem:
- Have k jobs ready to run
- Have n ≥ 1 CPUs that can run them

• Which jobs should we assign to which CPU(s)?
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Multiprocessor scheduling issues

• Must decide on more than which processes to run
- Must decide on which CPU to run which process

• Moving between CPUs has costs
- More cache misses, depending on architecture more TLB misses too

• Affinity scheduling—try to keep process/thread on same CPU
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- But also prevent load imbalances
- Do cost-benefit analysis when deciding to migrate
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Recall Limitations of BSD scheduler

• Mostly apply to <2.6.23 Linux schedulers, too
• Hard to have isolation / prevent interference

- Priorities are absolute

• Can’t donate CPU (e.g., to server on RPC)
• No flexible control

- E.g., In monte carlo simulations, error is 1/
√
N after N trials

- Want to get quick estimate from new computation
- Leave a bunch running for a while to get more accurate results

• Multimedia applications
- Often fall back to degraded quality levels depending on resources
- Want to control quality of different streams
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Lottery scheduling [Waldspurger’94]

• Inspired by economics & free markets
• Issue lottery tickets to processes

- By analogy with FQ, #tickets expresses a process’s weight
- Let pi have ti tickets
- Let T be total # of tickets, T =

∑
i
ti

- Chance of winning next quantum is ti/T .
- Note tickets not used up by lottery (more like season tickets)

• Control expected proportion of CPU for each process
• Can also group processes hierarchically for control

- Subdivide lottery tickets allocated to a particular process
- Modeled as currencies, funded through other currencies
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http://www.usenix.org/publications/library/proceedings/osdi/full_papers/waldspurger.pdf


Grace under load change

• Adding/deleting jobs affects all proportionally
• Example

- 4 jobs, 1 ticket each, each job 1/4 of CPU

- Delete one job, each remaining one gets 1/3 of CPU

• A little bit like priority scheduling
- More tickets means higher priority

• But with even one ticket, won’t starve
- Don’t have to worry about absolute priority problem
(e.g., where adding one high-priority job starves everyone)
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Lottery ticket transfer

response
serverclient

request
tkt

• Can transfer tickets to other processes
• Perfect for IPC (Inter-Process Communication)

- Client sends request to server
- Client will block until server sends response
- So temporarily donate tickets to server

• Also avoids priority inversion
• How do ticket donation and priority donation differ?

- Consider case of 1,000 equally important processes
- With priority, no difference between 1 and 1,000 donations
- With tickets, recipient amasses more and more tickets
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Compensation tickets

• What if process only uses fraction f of quantum?
- Say A and B have same number of lottery tickets
- Proc. A uses full quantum, proc. B uses f fraction
- Each wins the lottery as often
- B gets fraction f of B’s CPU time. No fair!

• Solution: Compensation tickets
- Say B uses fraction f of quantum
- Inflate B’s tickets by 1/f until it next wins CPU
- E.g., if B always uses half a quantum, it should get scheduled twice
as often on average

- Helps maximize I/O utilization
(remember matrix multiply vs. grep from last lecture)
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Limitations of lottery scheduling

• Unpredictable latencies
• Expected errors ∼ sqrt(na) for na allocations

- E.g., process A should have had 1/3 of CPU yet after 1 minute has
had only 19 seconds

• Useful to distinguish two types of error:
- Absolute error – absolute value of A’s error (1 sec)
- Relative error – A’s error considering only 2 processes, A and B

• Probability of getting k of n quanta is binomial distribution
-
(n
k
)
pk(1− p)n−k

[
p = fraction tickets owned,

(n
k
)

= n!
(k!(n−k)!)

]
- For large n, binomial distribution approximately normal
- Expected value is p, Variance for a single allocation:
p(1− p)2 + (1− p)p2 = p(1− p)(1− p + p) = p(1− p)

- Variance for n allocations = np(1− p), stddev ∼
√
n
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Stride scheduling [Waldspurger’95]

• Idea: Apply ideas from weighted fair queuing
- Deterministically achieve similar goals to lottery scheduling

• For each process, track:
- tickets – priority (weight) assigned by administrator
- stride ≈ 1/tickets – speed of virtual time while process has CPU
- pass – cumulative virtual CPU time used by process

• Schedule process c with lowest pass
• Then increase: c->pass += c->stride

• Note, can’t use floating point in the kernel
- Saving FP regs too expensive, so make stride & pass integers
- Let stride1 be largish integer (stride for 1 ticket)
- Really set stride = stride1/tickets
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https://rcs.uwaterloo.ca/~ali/cs350-f19/sched/readings/stride.pdf


Stride scheduling example
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stride1 = 6
3 tickets, stride=2
2 tickets, stride = 3
1 ticket, stride = 6
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Stride vs. lottery

• Stride offers many advantages of lottery scheduling
- Good control over resource allocation
- Can transfer tickets to avoid priority inversion
- Use inflation/currencies for users to control their CPU fraction

• What are stride’s absolute & relative error?

• Stride Relative error always ≤ 1 quantum
- E.g., say A, B have same number of tickets
- B has had CPU for one more time quantum than A
- B will have larger pass, so A will get scheduled first

• Stride absolute error ≤ n quanta if n processes in system
- E.g., 100 processes each with 1 ticket
- After 99 quanta, one of them still will not have gotten CPU
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Simulation results
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• Can clearly see
√
n factor for lottery

• Stride doing much better
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Advanced scheduling with virtual time

• Many modern schedulers employ notion of virtual time
- Idea: Equalize virtual CPU time consumed by different processes
- Higher-priority processes consume virtual time more slowly

• Forms the basis of the current linux scheduler, CFS
• Case study: Borrowed Virtual Time (BVT) [Duda]
• BVT runs process with lowest effective virtual time

- Ai – actual virtual time consumed by process i
- effective virtual time Ei = Ai − (warpi ? Wi : 0)
- Special warp factor allows borrowing against future CPU time
. . . hence name of algorithm
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https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/Documentation/scheduler/sched-design-CFS.txt
https://rcs.uwaterloo.ca/~ali/cs350-f19/sched/readings/bvt.pdf


Process weights

• Each process i ’s faction of CPU determined by weight wi

- i should get wi/
∑
j
wj faction of CPU

- So wi is real seconds per virtual second that process i has CPU

• When i consumes t CPU time, track it: Ai += t/wi

• Example: gcc (weight 2), bigsim (weight 1)
- Assuming no IO, runs: gcc, gcc, bigsim, gcc, gcc, bigsim, . . .
- Lots of context switches, not so good for performance

• Add in context switch allowance, C
- Only switch from i to j if Ej ≤ Ei − C/wi

- C is wall-clock time (>> context switch cost), so must divide by wi

- Ignore C if j just became runable. . .why?

17 / 25



Process weights

• Each process i ’s faction of CPU determined by weight wi

- i should get wi/
∑
j
wj faction of CPU

- So wi is real seconds per virtual second that process i has CPU

• When i consumes t CPU time, track it: Ai += t/wi

• Example: gcc (weight 2), bigsim (weight 1)
- Assuming no IO, runs: gcc, gcc, bigsim, gcc, gcc, bigsim, . . .
- Lots of context switches, not so good for performance

• Add in context switch allowance, C
- Only switch from i to j if Ej ≤ Ei − C/wi

- C is wall-clock time (>> context switch cost), so must divide by wi

- Ignore C if j just became runable to avoid affecting response time
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BVT example
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• gcc has weight 2, bigsim weight 1, C = 2, no I/O
- bigsim consumes virtual time at twice the rate of gcc
- Processes run for C time after lines cross before context switch
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Sleep/wakeup

• Must lower priority (increase Ai) after wakeup
- Otherwise process with very low Ai would starve everyone

• Bound lag with Scheduler Virtual Time (SVT)
- SVT is minimum Aj for all runnable threads j
- When waking i from voluntary sleep, set Ai ← max(Ai ,SVT )

• Note voluntary/involuntary sleep distinction
- E.g., Don’t reset Aj to SVT after page fault
- Faulting thread needs a chance to catch up
- But do set Ai ← max(Ai ,SVT ) after socket read

• Note: Even with SVT Ai can never decrease
- After short sleep, might have Ai > SVT, so max(Ai ,SVT ) = Ai

- i never gets more than its fair share of CPU in long run
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gcc wakes up after I/O
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• gcc’s Ai gets reset to SVT on wakeup
- Otherwise, would be at lower (blue) line and starve bigsim
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Real-time threads

• Also want to support time-critical tasks
- E.g., mpeg player must run every 10 clock ticks

• Recall Ei = Ai − (warpi ? Wi : 0)
- Wi is warp factor – gives thread precedence
- Just give mpeg player i large Wi factor
- Will get CPU whenever it is runable
- But long term CPU share won’t exceed wi/

∑
j
wj

• Note Wi only matters when warpi is true
- Can set warpi with a syscall, or have it set in signal handler
- Also gets cleared if i keeps using CPU for Li time
- Li limit gets reset every Ui time
- Li = 0 means no limit – okay for small Wi value
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Running warped
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• mpeg player runs with −50 warp value
- Always gets CPU when needed, never misses a frame
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Warped thread hogging CPU
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• mpeg goes into tight loop at time 5
• Exceeds Li at time 10, so warpi ← false

23 / 25



BVT example: Search engine

• Common queries 150 times faster than uncommon
- Have 10-thread pool of threads to handle requests
- Assign Wi a value sufficient to process fast query (e.g., 50)

• Example 1: one slow query, small trickle of fast queries
- Fast queries come in, warped by 50, execute immediately
- Slow query runs in background
- Good for turnaround time

• Example 2: one slow query, but many fast queries
- At first, only fast queries run
- But SVT is bounded by Ai of slow query thread i
- Recall fast query thread j gets Aj = max(Aj ,SVT ) = Aj ; eventually
SVT < Aj and a bit later Aj − warpj > Ai .

- At that point thread i will run again, so no starvation
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Real-time scheduling

• Two categories:
- Soft real time—miss deadline and CD will sound funny
- Hard real time—miss deadline and plane will crash

• System must handle periodic and aperiodic events
- E.g., processes A, B, C must be scheduled every 100, 200,
500 msec, require 50, 30, 100 msec respectively

- Schedulable if
∑ CPU

period ≤ 1 (not counting switch time)

• Variety of scheduling strategies
- E.g., first deadline first
(works if schedulable, otherwise fails spectacularly)
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