
CPU scheduling

CPU1

CPU2

...

CPUn

P1P2P3. . .Pk

• The scheduling problem:
- Have k jobs ready to run
- Have n ≥ 1 CPUs that can run them

• Which jobs should we assign to which CPU(s)?

1 / 25



Multiprocessor scheduling issues

• Must decide on more than which processes to run
- Must decide on which CPU to run which process

• Moving between CPUs has costs
- More cache misses, depending on architecture more TLB misses too

• Affinity scheduling—try to keep process/thread on same CPU

CPU1

P2

P3

P1

P2

CPU2

P3

P1

P2

P3

CPU3

P1

P2

P3

P1

no affinity

CPU1

P1

P1

P1

P1

CPU2

P2

P2

P2

P2

CPU3

P3

P3

P3

P3

affinity

- But also prevent load imbalances
- Do cost-benefit analysis when deciding to migrate

2 / 25



Outline

1 Lottery Scheduling

2 Stride Scheduling

3 Virtual Time Scheduler

3 / 25



Recall Limitations of BSD scheduler

• Mostly apply to <2.6.23 Linux schedulers, too
• Hard to have isolation / prevent interference

- Priorities are absolute

• Can’t donate CPU (e.g., to server on RPC)
• No flexible control

- E.g., In monte carlo simulations, error is 1/
√
N after N trials

- Want to get quick estimate from new computation
- Leave a bunch running for a while to get more accurate results

• Multimedia applications
- Often fall back to degraded quality levels depending on resources
- Want to control quality of different streams

4 / 25



Lottery scheduling [Waldspurger’94]

• Inspired by economics & free markets
• Issue lottery tickets to processes

- By analogy with FQ, #tickets expresses a process’s weight
- Let pi have ti tickets
- Let T be total # of tickets, T =

∑
i
ti

- Chance of winning next quantum is ti/T .
- Note tickets not used up by lottery (more like season tickets)

• Control expected proportion of CPU for each process
• Can also group processes hierarchically for control

- Subdivide lottery tickets allocated to a particular process
- Modeled as currencies, funded through other currencies

5 / 25

http://www.usenix.org/publications/library/proceedings/osdi/full_papers/waldspurger.pdf


Grace under load change

• Adding/deleting jobs affects all proportionally
• Example

- 4 jobs, 1 ticket each, each job 1/4 of CPU

- Delete one job, each remaining one gets 1/3 of CPU

• A little bit like priority scheduling
- More tickets means higher priority

• But with even one ticket, won’t starve
- Don’t have to worry about absolute priority problem
(e.g., where adding one high-priority job starves everyone)

6 / 25



Lottery ticket transfer

response
serverclient

request
tkt

• Can transfer tickets to other processes
• Perfect for IPC (Inter-Process Communication)

- Client sends request to server
- Client will block until server sends response
- So temporarily donate tickets to server

• Also avoids priority inversion
• How do ticket donation and priority donation differ?

- Consider case of 1,000 equally important processes
- With priority, no difference between 1 and 1,000 donations
- With tickets, recipient amasses more and more tickets

7 / 25



Lottery ticket transfer

response
serverclient

request
tkt

• Can transfer tickets to other processes
• Perfect for IPC (Inter-Process Communication)

- Client sends request to server
- Client will block until server sends response
- So temporarily donate tickets to server

• Also avoids priority inversion
• How do ticket donation and priority donation differ?

- Consider case of 1,000 equally important processes
- With priority, no difference between 1 and 1,000 donations
- With tickets, recipient amasses more and more tickets

7 / 25



Compensation tickets

• What if process only uses fraction f of quantum?
- Say A and B have same number of lottery tickets
- Proc. A uses full quantum, proc. B uses f fraction
- Each wins the lottery as often
- B gets fraction f of B’s CPU time. No fair!

• Solution: Compensation tickets
- Say B uses fraction f of quantum
- Inflate B’s tickets by 1/f until it next wins CPU
- E.g., if B always uses half a quantum, it should get scheduled twice
as often on average

- Helps maximize I/O utilization
(remember matrix multiply vs. grep from last lecture)

8 / 25



Limitations of lottery scheduling

• Unpredictable latencies
• Expected errors ∼ sqrt(na) for na allocations

- E.g., process A should have had 1/3 of CPU yet after 1 minute has
had only 19 seconds

• Useful to distinguish two types of error:
- Absolute error – absolute value of A’s error (1 sec)
- Relative error – A’s error considering only 2 processes, A and B

• Probability of getting k of n quanta is binomial distribution
-
(n
k
)
pk(1− p)n−k

[
p = fraction tickets owned,

(n
k
)

= n!
(k!(n−k)!)

]
- For large n, binomial distribution approximately normal
- Expected value is p, Variance for a single allocation:
p(1− p)2 + (1− p)p2 = p(1− p)(1− p + p) = p(1− p)

- Variance for n allocations = np(1− p), stddev ∼
√
n

9 / 25



Outline

1 Lottery Scheduling

2 Stride Scheduling

3 Virtual Time Scheduler

10 / 25



Stride scheduling [Waldspurger’95]

• Idea: Apply ideas from weighted fair queuing
- Deterministically achieve similar goals to lottery scheduling

• For each process, track:
- tickets – priority (weight) assigned by administrator
- stride ≈ 1/tickets – speed of virtual time while process has CPU
- pass – cumulative virtual CPU time used by process

• Schedule process c with lowest pass
• Then increase: c->pass += c->stride

• Note, can’t use floating point in the kernel
- Saving FP regs too expensive, so make stride & pass integers
- Let stride1 be largish integer (stride for 1 ticket)
- Really set stride = stride1/tickets

11 / 25

https://rcs.uwaterloo.ca/~ali/cs350-f19/sched/readings/stride.pdf


Stride scheduling example

0 5 10

Time (quanta)

0

5

10

15

20
P

a
ss

 V
a

lu
e

stride1 = 6
3 tickets, stride=2
2 tickets, stride = 3
1 ticket, stride = 6

12 / 25



Stride vs. lottery

• Stride offers many advantages of lottery scheduling
- Good control over resource allocation
- Can transfer tickets to avoid priority inversion
- Use inflation/currencies for users to control their CPU fraction

• What are stride’s absolute & relative error?

• Stride Relative error always ≤ 1 quantum
- E.g., say A, B have same number of tickets
- B has had CPU for one more time quantum than A
- B will have larger pass, so A will get scheduled first

• Stride absolute error ≤ n quanta if n processes in system
- E.g., 100 processes each with 1 ticket
- After 99 quanta, one of them still will not have gotten CPU

13 / 25



Stride vs. lottery

• Stride offers many advantages of lottery scheduling
- Good control over resource allocation
- Can transfer tickets to avoid priority inversion
- Use inflation/currencies for users to control their CPU fraction

• What are stride’s absolute & relative error?
• Stride Relative error always ≤ 1 quantum

- E.g., say A, B have same number of tickets
- B has had CPU for one more time quantum than A
- B will have larger pass, so A will get scheduled first

• Stride absolute error ≤ n quanta if n processes in system
- E.g., 100 processes each with 1 ticket
- After 99 quanta, one of them still will not have gotten CPU

13 / 25



Simulation results

0 20 40 60 80 100

0

5

10

E
rr

o
r 

(q
u

a
n

ta
)

(b) Stride 7:3

0 200 400 600 800 1000

0

5

10

M
ea

n
 E

rr
o

r 
(q

u
a

n
ta

)

(a) Lottery 7:3

• Can clearly see
√
n factor for lottery

• Stride doing much better

14 / 25



Outline

1 Lottery Scheduling

2 Stride Scheduling

3 Virtual Time Scheduler

15 / 25



Advanced scheduling with virtual time

• Many modern schedulers employ notion of virtual time
- Idea: Equalize virtual CPU time consumed by different processes
- Higher-priority processes consume virtual time more slowly

• Forms the basis of the current linux scheduler, CFS
• Case study: Borrowed Virtual Time (BVT) [Duda]
• BVT runs process with lowest effective virtual time

- Ai – actual virtual time consumed by process i
- effective virtual time Ei = Ai − (warpi ? Wi : 0)
- Special warp factor allows borrowing against future CPU time
. . . hence name of algorithm

16 / 25

https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/Documentation/scheduler/sched-design-CFS.txt
https://rcs.uwaterloo.ca/~ali/cs350-f19/sched/readings/bvt.pdf


Process weights

• Each process i ’s faction of CPU determined by weight wi

- i should get wi/
∑
j
wj faction of CPU

- So wi is real seconds per virtual second that process i has CPU

• When i consumes t CPU time, track it: Ai += t/wi

• Example: gcc (weight 2), bigsim (weight 1)
- Assuming no IO, runs: gcc, gcc, bigsim, gcc, gcc, bigsim, . . .
- Lots of context switches, not so good for performance

• Add in context switch allowance, C
- Only switch from i to j if Ej ≤ Ei − C/wi

- C is wall-clock time (>> context switch cost), so must divide by wi

- Ignore C if j just became runable. . .why?

17 / 25



Process weights

• Each process i ’s faction of CPU determined by weight wi

- i should get wi/
∑
j
wj faction of CPU

- So wi is real seconds per virtual second that process i has CPU

• When i consumes t CPU time, track it: Ai += t/wi

• Example: gcc (weight 2), bigsim (weight 1)
- Assuming no IO, runs: gcc, gcc, bigsim, gcc, gcc, bigsim, . . .
- Lots of context switches, not so good for performance

• Add in context switch allowance, C
- Only switch from i to j if Ej ≤ Ei − C/wi

- C is wall-clock time (>> context switch cost), so must divide by wi

- Ignore C if j just became runable to avoid affecting response time

17 / 25



BVT example

0

20

real time

40

v
ir
tu

a
l 
ti
m

e

60

80

100

120

140

160

180

0 3 6 9 12 15 18 21 24 27

bigsim
gcc

• gcc has weight 2, bigsim weight 1, C = 2, no I/O
- bigsim consumes virtual time at twice the rate of gcc
- Processes run for C time after lines cross before context switch

18 / 25



Sleep/wakeup

• Must lower priority (increase Ai) after wakeup
- Otherwise process with very low Ai would starve everyone

• Bound lag with Scheduler Virtual Time (SVT)
- SVT is minimum Aj for all runnable threads j
- When waking i from voluntary sleep, set Ai ← max(Ai ,SVT )

• Note voluntary/involuntary sleep distinction
- E.g., Don’t reset Aj to SVT after page fault
- Faulting thread needs a chance to catch up
- But do set Ai ← max(Ai ,SVT ) after socket read

• Note: Even with SVT Ai can never decrease
- After short sleep, might have Ai > SVT, so max(Ai ,SVT ) = Ai

- i never gets more than its fair share of CPU in long run

19 / 25



gcc wakes up after I/O

0

50

100

150

200

250

300

350

400

0 15 30

gcc
bigsim

• gcc’s Ai gets reset to SVT on wakeup
- Otherwise, would be at lower (blue) line and starve bigsim

20 / 25



Real-time threads

• Also want to support time-critical tasks
- E.g., mpeg player must run every 10 clock ticks

• Recall Ei = Ai − (warpi ? Wi : 0)
- Wi is warp factor – gives thread precedence
- Just give mpeg player i large Wi factor
- Will get CPU whenever it is runable
- But long term CPU share won’t exceed wi/

∑
j
wj

• Note Wi only matters when warpi is true
- Can set warpi with a syscall, or have it set in signal handler
- Also gets cleared if i keeps using CPU for Li time
- Li limit gets reset every Ui time
- Li = 0 means no limit – okay for small Wi value

21 / 25



Running warped

gcc

−60

−40

−20

0

20

40

60

80

100

120

0 5 10 15 20 25

mpeg
bigsim

• mpeg player runs with −50 warp value
- Always gets CPU when needed, never misses a frame

22 / 25



Warped thread hogging CPU

−60

−40

−20

0

20

40

60

80

100

120

0 5 10 15 20 25

gcc
bigsim
mpeg

• mpeg goes into tight loop at time 5
• Exceeds Li at time 10, so warpi ← false

23 / 25



BVT example: Search engine

• Common queries 150 times faster than uncommon
- Have 10-thread pool of threads to handle requests
- Assign Wi a value sufficient to process fast query (e.g., 50)

• Example 1: one slow query, small trickle of fast queries
- Fast queries come in, warped by 50, execute immediately
- Slow query runs in background
- Good for turnaround time

• Example 2: one slow query, but many fast queries
- At first, only fast queries run
- But SVT is bounded by Ai of slow query thread i
- Recall fast query thread j gets Aj = max(Aj ,SVT ) = Aj ; eventually
SVT < Aj and a bit later Aj − warpj > Ai .

- At that point thread i will run again, so no starvation

24 / 25



Real-time scheduling

• Two categories:
- Soft real time—miss deadline and CD will sound funny
- Hard real time—miss deadline and plane will crash

• System must handle periodic and aperiodic events
- E.g., processes A, B, C must be scheduled every 100, 200,
500 msec, require 50, 30, 100 msec respectively

- Schedulable if
∑ CPU

period ≤ 1 (not counting switch time)

• Variety of scheduling strategies
- E.g., first deadline first
(works if schedulable, otherwise fails spectacularly)

25 / 25


	Lottery Scheduling
	Stride Scheduling
	Virtual Time Scheduler

