CPU scheduling

CPU;

Pe ... - Py P CPU,

L 2

CPU,

» The scheduling problem:

- Have k jobs ready to run
- Have n > 1 CPUs that can run them

« Which jobs should we assign to which CPU(s)?

1/25

Multiprocessor scheduling issues

» Must decide on more than which processes to run
- Must decide on which CPU to run which process

* Moving between CPUs has costs
- More cache misses, depending on architecture more TLB misses too

o Affinity scheduling—try to keep process/thread on same CPU

1
L}
Py Ps P ! P, Py Ps
Py P, P3 ' Py P, P3
Pg Py Py ' Py P, P
P> Ps P1 : Py Pa Ps
1
CPU, CPU, CPUg ' CPU, CPU, CPUg
L}
L}
no affinity ' affinity

- But also prevent load imbalances
- Do cost-benefit analysis when deciding to migrate

2/25

@ Lottery Scheduling
@ Stride Scheduling

@ Virtual Time Scheduler

3/25

Recall Limitations of BSD scheduler

Mostly apply to < 2.6.23 Linux schedulers, too

Hard to have isolation / prevent interference
- Priorities are absolute

Can’'t donate CPU (e.g., to server on RPC)
No flexible control

- E.g., In monte carlo simulations, error is 1/v/N after N trials
- Want to get quick estimate from new computation
- Leave a bunch running for a while to get more accurate results

Multimedia applications

- Often fall back to degraded quality levels depending on resources
- Want to control quality of different streams

4/25

Lottery scheduling [Waldspurger’94]

Inspired by economics & free markets
 Issue lottery tickets to processes

By analogy with FQ, #tickets expresses a process’s weight
Let p; have t; tickets
Let T be total # of tickets, T = >_ ¢;

i

- Chance of winning next quantumis #;/T.
- Note tickets not used up by lottery (more like season tickets)

Control expected proportion of CPU for each process

Can also group processes hierarchically for control

- Subdivide lottery tickets allocated to a particular process
- Modeled as currencies, funded through other currencies

5/25

http://www.usenix.org/publications/library/proceedings/osdi/full_papers/waldspurger.pdf

Grace under load change

Adding/deleting jobs affects all proportionally

Example
- 4 jobs, 1 ticket each, each job 1/4 of CPU

B 1] 1] e

- Delete one job, each remaining one gets 1/3 of CPU
B o [

A little bit like priority scheduling

- More tickets means higher priority

But with even one ticket, won’t starve

- Don’t have to worry about absolute priority problem
(e.g., where adding one high-priority job starves everyone)

6/25

Lottery ticket transfer

request

R /th\
client server
\/

response

Can transfer tickets to other processes

Perfect for IPC (Inter-Process Communication)
- Client sends request to server
- Client will block until server sends response
- So temporarily donate tickets to server

Also avoids priority inversion

How do ticket donation and priority donation differ?

7125

Lottery ticket transfer

request

R /th\
client server
\/

response

Can transfer tickets to other processes

Perfect for IPC (Inter-Process Communication)
- Client sends request to server
- Client will block until server sends response
- So temporarily donate tickets to server

Also avoids priority inversion

How do ticket donation and priority donation differ?
- Consider case of 1,000 equally important processes
- With priority, no difference between 1 and 1,000 donations
- With tickets, recipient amasses more and more tickets

7125

Compensation tickets

« What if process only uses fraction f of quantum?

Say A and B have same number of lottery tickets
Proc. A uses full quantum, proc. B uses f fraction
Each wins the lottery as often

B gets fraction f of B's CPU time. No fair!

« Solution: Compensation tickets

Say B uses fraction f of quantum
Inflate B’s tickets by 1/f until it next wins CPU

E.g., if B always uses half a quantum, it should get scheduled twice
as often on average

Helps maximize 1/O utilization

(remember matrix multiply vs. grep from last lecture)

8/25

Limitations of lottery scheduling

Unpredictable latencies

Expected errors ~ sqrt(ny) for n, allocations

- E.g., process A should have had 1/3 of CPU yet after 1 minute has
had only 19 seconds

Useful to distinguish two types of error:

- Absolute error — absolute value of A’s error (1 sec)
- Relative error — A’s error considering only 2 processes, A and B

Probability of getting k of n quanta is binomial distribution

- (Dpk(—p)ynk [p = fraction tickets owned, (}) = W}

- For large n, binomial distribution approximately normal

- Expected value is p, Variance for a single allocation:
p(1 —p)? + (1 —p)p? =p(1 —p)(1 —p+p) =p(1 —p)

- Variance for n allocations = np(1 — p), stddev ~ /n

9/25

@ Lottery Scheduling
@ Stride Scheduling

@ Virtual Time Scheduler

10/25

Stride scheduling [Waldspurger’95]

Idea: Apply ideas from weighted fair queuing
- Deterministically achieve similar goals to lottery scheduling

For each process, track:
- tickets — priority (weight) assigned by administrator
- stride ~ 1/tickets — speed of virtual time while process has CPU
- pass — cumulative virtual CPU time used by process

Schedule process ¢ with lowest pass

Then increase: c->pass += c->stride

Note, can’t use floating point in the kernel

- Saving FP regs too expensive, so make stride & pass integers
- Let stridey be largish integer (stride for 1 ticket)
- Really set stride = strideq /tickets

11/25

https://rcs.uwaterloo.ca/~ali/cs350-f19/sched/readings/stride.pdf

Stride scheduling example

stridey = 6
27 & 3tickets, stride=2
1 o 2 tickets, stride = 3
5] o 1ticket, stride = 6

O/‘
DD/M//
5—:/

o 5 10
Time (quanta)

Pass Value
°

12/25

Stride vs. lottery

« Stride offers many advantages of lottery scheduling

- Good control over resource allocation
- Can transfer tickets to avoid priority inversion
- Use inflation/currencies for users to control their CPU fraction

« What are stride’s absolute & relative error?

13/25

Stride vs. lottery

Stride offers many advantages of lottery scheduling

- Good control over resource allocation
- Can transfer tickets to avoid priority inversion
- Use inflation/currencies for users to control their CPU fraction

What are stride’s absolute & relative error?

Stride Relative error always < 1 quantum
- E.g., say A, B have same number of tickets
- B has had CPU for one more time quantum than A
- B will have larger pass, so A will get scheduled first

Stride absolute error < n quanta if n processes in system

- E.g., 100 processes each with 1 ticket
- After 99 quanta, one of them still will not have gotten CPU

13/25

Simulation results

10 10
_
S
= =
g S
) g
e =
: £
= 5 e 549
= =
é =

(a) Lottery 7:3 (b) Stride 7:3
9 : : : : : o AP AR AN AAAAN
200 400 600 800 1000 20 40 60 80 100

» Can clearly see /n factor for lottery

« Stride doing much better

14/25

@ Lottery Scheduling
@ Stride Scheduling

@ Virtual Time Scheduler

15/25

Advanced scheduling with virtual time

Many modern schedulers employ notion of virtual time

- |dea: Equalize virtual CPU time consumed by different processes
- Higher-priority processes consume virtual time more slowly

Forms the basis of the current linux scheduler, CFS
Case study: Borrowed Virtual Time (BVT) [Duda]
BVT runs process with lowest effective virtual time

- A; — actual virtual time consumed by process i
- effective virtual time E; = A; — (warp; ? W; : 0)

- Special warp factor allows borrowing against future CPU time
...hence name of algorithm

16/25

https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/Documentation/scheduler/sched-design-CFS.txt
https://rcs.uwaterloo.ca/~ali/cs350-f19/sched/readings/bvt.pdf

Process weights

Each process i’s faction of CPU determined by weight w;
- i should get w;/ > w; faction of CPU
j

- So w; is real seconds per virtual second that process i has CPU

When i consumes t CPU time, track it: A; +=t/w;

Example: gcc (weight 2), bigsim (weight 1)
- Assuming no IO, runs: gcc, gcc, bigsim, gcc, gec, bigsim, ...
- Lots of context switches, not so good for performance
Add in context switch allowance, C
- Only switch fromitojif E; < E; — C/w;
- C is wall-clock time (>> context switch cost), so must divide by w;
- Ignore C if j just became runable...why?

17/25

Process weights

Each process i’s faction of CPU determined by weight w;
- i should get w;/ > w; faction of CPU
j

- So w; is real seconds per virtual second that process i has CPU

When i consumes t CPU time, track it: A; +=t/w;

Example: gcc (weight 2), bigsim (weight 1)
- Assuming no IO, runs: gcc, gcc, bigsim, gcc, gec, bigsim, ...
- Lots of context switches, not so good for performance
Add in context switch allowance, C
- Only switch fromitojif E; < E; — C/w;
- C is wall-clock time (>> context switch cost), so must divide by w;
- Ignore C if j just became runable to avoid affecting response time

17/25

BVT example

180 - - -
gcc —a—
160 | bigsim —e—

140
120
100
80 r
60 r
40 r
20 1

0

virtual time

0 3 6 9 12 15 18 21 24 27
real time
» gcc has weight 2, bigsim weight 1, C = 2, no I/O
- bigsim consumes virtual time at twice the rate of gcc

- Processes run for C time after lines cross before context switch
18/25

Sleep/wakeup

Must lower priority (increase A;) after wakeup

- Otherwise process with very low A; would starve everyone

Bound lag with Scheduler Virtual Time (SVT)

- SVT is minimum A; for all runnable threads j
- When waking i from voluntary sleep, set A; < max(A;, SVT)

Note voluntary/involuntary sleep distinction
- E.g., Don't reset A; to SVT after page fault
- Faulting thread needs a chance to catch up
- But do set A; + max(A;, SVT) after socket read

Note: Even with SVT A; can never decrease

- After short sleep, might have A; > SVT, so max(A;, SVT) = A,
- i never gets more than its fair share of CPU in long run

19/25

gcc wakes up after 1/0

400 - 2

gcc —a—
350 bigsim —e—
300 ¢

250
200
150
100
50 r

0

0 15 30

e gcc’s A; gets reset to SVT on wakeup
- Otherwise, would be at lower (blue) line and starve bigsim

20/25

Real-time threads

« Also want to support time-critical tasks
- E.g., mpeg player must run every 10 clock ticks

* Recall E; = A; — (warp; ? W, : 0)
- W, is warp factor — gives thread precedence
- Just give mpeg player i large W; factor
- Will get CPU whenever it is runable
- But long term CPU share won't exceed w;/ > w;
j

» Note W; only matters when warp; is true

Can set warp; with a syscall, or have it set in signal handler
Also gets cleared if i keeps using CPU for L; time

L; limit gets reset every U, time

- L; = 0 means no limit — okay for small W; value

21/25

Running warped

120 . .
gcc —a—
100 | bigsim —e—
go | Mpeg —E8—
60
40
20

0 5 10 15 20 25
e mpeg player runs with —50 warp value
- Always gets CPU when needed, never misses a frame

22/25

Warped thread hogging CPU

120 . .
gcc —a— S
100 bigsim —e— 7
I\
go MPe9 TET i
60 | o 8 -
40 | “74‘3/
20 |
0
20
_40}
0
-60 ' : ' '
0 5 10 15 20 25

* mpeg goes into tight loop at time 5
» Exceeds L; at time 10, so warp; < false

23/25

BVT example: Search engine

» Common queries 150 times faster than uncommon

- Have 10-thread pool of threads to handle requests

- Assign W; a value sufficient to process fast query (e.g., 50)
o Example 1: one slow query, small trickle of fast queries

- Fast queries come in, warped by 50, execute immediately
- Slow query runs in background
- Good for turnaround time

o Example 2: one slow query, but many fast queries

At first, only fast queries run
But SVT is bounded by A; of slow query thread i

Recall fast query thread j gets A; = max(A;, SVT) = A;; eventually
SVT < A; and a bit later A; — warp; > A;.

At that point thread i will run again, so no starvation

24/25

Real-time scheduling

« Two categories:
- Soft real time—miss deadline and CD will sound funny
- Hard real time—miss deadline and plane will crash

« System must handle periodic and aperiodic events

- E.g., processes A, B, C must be scheduled every 100, 200,
500 msec, require 50, 30, 100 msec respectively

- Schedulable if » pi:g 5

o Variety of scheduling strategies

- E.g., first deadline first
(works if schedulable, otherwise fails spectacularly)

< 1 (not counting switch time)

25/25

	Lottery Scheduling
	Stride Scheduling
	Virtual Time Scheduler

