
CPU scheduling

CPU1

CPU2

...

CPUn

P1P2P3. . .Pk

• The scheduling problem:
- Have k jobs ready to run
- Have n ≥ 1 CPUs that can run them

• Which jobs should we assign to which CPU(s)?

1 / 28

Outline

1 Textbook scheduling

2 Priority scheduling

2 / 28

When do we schedule CPU?

new

ready running

terminated

waiting

admitted

interrupt

scheduler
dispatch exit

I/O or event
completion

I/O or event wait

• Scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from new/waiting to ready
4. Exits

• Non-preemptive schedules use 1 & 4 only
• Preemptive schedulers run at all four points

3 / 28

Scheduling criteria

• Why do we care?
- What goals should we have for a scheduling algorithm?

• Throughput – # of processes that complete per unit time
- Higher is better

• Turnaround time – time for each process to complete
- Lower is better

• Response time – time from request to first response
- I.e., time between waiting→ready transition and ready→running
(e.g., key press to echo, not launch to exit)

- Lower is better

• Above criteria are affected by secondary criteria
- CPU utilization – fraction of time CPU doing productive work
- Waiting time – time each process waits in ready queue

4 / 28

Scheduling criteria

• Why do we care?
- What goals should we have for a scheduling algorithm?

• Throughput – # of processes that complete per unit time
- Higher is better

• Turnaround time – time for each process to complete
- Lower is better

• Response time – time from request to first response
- I.e., time between waiting→ready transition and ready→running
(e.g., key press to echo, not launch to exit)

- Lower is better

• Above criteria are affected by secondary criteria
- CPU utilization – fraction of time CPU doing productive work
- Waiting time – time each process waits in ready queue

4 / 28

Example: FCFS Scheduling

• Run jobs in order that they arrive
- Called “First-come first-served” (FCFS)
- E.g., P1 needs 24 sec, while P2 and P3 need 3.
- P2, P3 arrived immediately after P1, get:

P1 P2 P3

0 24 27 30

• Dirt simple to implement—how good is it?
• Throughput: 3 jobs / 30 sec = 0.1 jobs/sec
• Turnaround Time: P1 : 24, P2 : 27, P3 : 30

- Average TT: (24 + 27 + 30)/3 = 27

• Can we do better?

5 / 28

FCFS continued

• Suppose we scheduled P2, P3, then P1

- Would get:

P1P2 P3

0 3 6 30

• Throughput: 3 jobs / 30 sec = 0.1 jobs/sec
• Turnaround time: P1 : 30, P2 : 3, P3 : 6

- Average TT: (30 + 3 + 6)/3 = 13 – much less than 27

• Lesson: scheduling algorithm can reduce TT
- Minimizing waiting time can improve RT and TT

• What about throughput?

6 / 28

View CPU and I/O devices the same

• CPU is one of several devices needed by users’ jobs
- CPU runs compute jobs, Disk drive runs disk jobs, etc.
- With network, part of job may run on remote CPU

• Scheduling 1-CPU system with n I/O devices like scheduling
asymmetric (n + 1)-CPU multiprocessor
- Result: all I/O devices + CPU busy =⇒ n+1 fold speedup!

• Example: disk-bound grep + CPU-bound matrix multiply
- Overlap them just right? throughput will be almost doubled

wait for
disk

wait for
disk

wait for
diskgrep

matrix
multiply

wait for CPU

7 / 28

Bursts of computation & I/O

• Jobs contain I/O and computation
- Bursts of computation
- Then must wait for I/O

• To Maximize throughput
- Must maximize CPU utilization
- Also maximize I/O device utilization

• How to do?
- Overlap I/O & computation from
multiple jobs

- Means response time very important
for I/O-intensive jobs: I/O device will be
idle until job gets small amount of CPU
to issue next I/O request

8 / 28

Histogram of CPU-burst times

• What does this mean for FCFS?
9 / 28

FCFS Convoy effect

• CPU-bound jobs will hold CPU until exit or I/O
(but I/O rare for CPU-bound thread)
- long periods where no I/O requests issued, and CPU held
- Result: poor I/O device utilization

• Example: one CPU-bound job, many I/O bound
- CPU-bound job runs (I/O devices idle)
- CPU-bound job blocks
- I/O-bound job(s) run, quickly block on I/O
- CPU-bound job runs again
- I/O completes
- CPU-bound job continues while I/O devices idle

• Simple hack: run process whose I/O completed
- What is a potential problem?

10 / 28

SJF Scheduling

• Shortest-job first (SJF) attempts to minimize TT
- Schedule the job whose next CPU burst is the shortest
- Misnomer unless “job” = one CPU burst with no I/O

• Two schemes:
- Non-preemptive – once CPU given to the process it cannot be
preempted until completes its CPU burst

- Preemptive – if a new process arrives with CPU burst length less
than remaining time of current executing process, preempt (Known
as the Shortest-Remaining-Time-First or SRTF)

• What does SJF optimize?

- Gives minimum average waiting time for a given set of processes

11 / 28

SJF Scheduling

• Shortest-job first (SJF) attempts to minimize TT
- Schedule the job whose next CPU burst is the shortest
- Misnomer unless “job” = one CPU burst with no I/O

• Two schemes:
- Non-preemptive – once CPU given to the process it cannot be
preempted until completes its CPU burst

- Preemptive – if a new process arrives with CPU burst length less
than remaining time of current executing process, preempt (Known
as the Shortest-Remaining-Time-First or SRTF)

• What does SJF optimize?
- Gives minimum average waiting time for a given set of processes

11 / 28

Examples

Process Arrival Time Burst Time
P1 0 7
P2 2 4
P3 4 1
P4 5 4

• Non-preemptive
P1 P3 P2 P4

0 7 8 12 16
• Preemptive

P1 P2 P3 P2 P4 P1

0 2 4 5 7 11 16
• Drawbacks?

12 / 28

SJF limitations

• Doesn’t always minimize average TT
- Only minimizes waiting time
- Example where turnaround time might be suboptimal?

- Overall longer job has shorter bursts

• Can lead to unfairness or starvation
• In practice, can’t actually predict the future
• But can estimate CPU burst length based on past

- Exponentially weighted average a good idea
- tn actual length of process’s nth CPU burst
- τn+1 estimated length of proc’s (n + 1)st

- Choose parameter α where 0 < α ≤ 1
- Let τn+1 = αtn + (1− α)τn

13 / 28

SJF limitations

• Doesn’t always minimize average TT
- Only minimizes waiting time
- Example where turnaround time might be suboptimal?
- Overall longer job has shorter bursts

• Can lead to unfairness or starvation
• In practice, can’t actually predict the future
• But can estimate CPU burst length based on past

- Exponentially weighted average a good idea
- tn actual length of process’s nth CPU burst
- τn+1 estimated length of proc’s (n + 1)st

- Choose parameter α where 0 < α ≤ 1
- Let τn+1 = αtn + (1− α)τn

13 / 28

Exp. weighted average example

14 / 28

Round robin (RR) scheduling

P1 P2 P3 P1 P2 P1

• Solution to fairness and starvation
- Preempt job after some time slice or quantum
- When preempted, move to back of FIFO queue
- (Most systems do some flavor of this)

• Advantages:
- Fair allocation of CPU across jobs
- Low average waiting time when job lengths vary
- Good for responsiveness if small number of jobs

• Disadvantages?

15 / 28

RR disadvantages

• Varying sized jobs are good . . .what about same-sized jobs?
• Assume 2 jobs of time=100 each:

0 1

P1 P2

2 3

P1 P2

4 5

P1 P2

6 198 199 200

P1 P2· · ·

• Even if context switches were free. . .
- What would average turnaround time be with RR?

199.5

- How does that compare to FCFS?

150

16 / 28

RR disadvantages

• Varying sized jobs are good . . .what about same-sized jobs?
• Assume 2 jobs of time=100 each:

0 1

P1 P2

2 3

P1 P2

4 5

P1 P2

6 198 199 200

P1 P2· · ·

• Even if context switches were free. . .
- What would average turnaround time be with RR? 199.5
- How does that compare to FCFS? 150

16 / 28

Context switch costs

• What is the cost of a context switch?

• Brute CPU time cost in kernel
- Save and restore resisters, etc.
- Switch address spaces (expensive instructions)

• Indirect costs: cache, buffer cache, & TLB misses

CPU cache

P1

CPU cache

P2

17 / 28

Context switch costs

• What is the cost of a context switch?
• Brute CPU time cost in kernel

- Save and restore resisters, etc.
- Switch address spaces (expensive instructions)

• Indirect costs: cache, buffer cache, & TLB misses

CPU cache

P1

CPU cache

P2

17 / 28

Context switch costs

• What is the cost of a context switch?
• Brute CPU time cost in kernel

- Save and restore resisters, etc.
- Switch address spaces (expensive instructions)

• Indirect costs: cache, buffer cache, & TLB misses

CPU cache

P1

CPU cache

P2

CPU cache

P1

17 / 28

Time quantum

• How to pick quantum?
- Want much larger than context switch cost
- Majority of bursts should be less than quantum
- But not so large system reverts to FCFS

• Typical values: 1–100 msec

18 / 28

Turnaround time vs. quantum

19 / 28

Two-level scheduling

• Switching to swapped out process very expensive
- Swapped out process has most memory pages on disk
- Will have to fault them all in while running
- One disk access costs ∼10ms. On 1GHz machine, 10ms = 10
million cycles!

• Context-switch-cost aware scheduling
- Run in-core subset for “a while”
- Then swap some between disk and memory

• How to pick subset? How to define “a while”?
- View as scheduling memory before scheduling CPU
- Swapping in process is cost of memory “context switch”
- So want “memory quantum” much larger than swapping cost

20 / 28

Outline

1 Textbook scheduling

2 Priority scheduling

21 / 28

Priority scheduling

• Associate a numeric priority with each process
- E.g., smaller number means higher priority (Unix/BSD)

• Give CPU to the process with highest priority
- Can be done preemptively or non-preemptively

• Note SJF is priority scheduling where priority is the predicted next
CPU burst time

• Starvation – low priority processes may never execute
• Solution?

- Aging: increase a process’s priority as it waits

22 / 28

Priority scheduling

• Associate a numeric priority with each process
- E.g., smaller number means higher priority (Unix/BSD)

• Give CPU to the process with highest priority
- Can be done preemptively or non-preemptively

• Note SJF is priority scheduling where priority is the predicted next
CPU burst time

• Starvation – low priority processes may never execute
• Solution?

- Aging: increase a process’s priority as it waits

22 / 28

Multilevel feeedback queues (BSD)

0 . . . 3

4 . . . 7

8 . . . 11

...

124 . . . 127

tail

tail

tail

tail

• Every runnable process on one of 32 run queues
- Kernel runs process on highest-priority non-empty queue
- Round-robins among processes on same queue

• Process priorities dynamically computed
- Processes moved between queues to reflect priority changes
- If a process gets higher priority than running process, run it

• Idea: Favor interactive jobs that use less CPU
23 / 28

Process priority

• p_nice – user-settable weighting factor
• p_estcpu – per-process estimated CPU usage

- Incremented whenever timer interrupt found process running
- Decayed every second while process runnable

p_estcpu←
(

2 · load
2 · load + 1

)
p_estcpu + p_nice

- Load is sampled average of length of run queue plus short-term
sleep queue over last minute

• Run queue determined by p_usrpri/4

p_usrpri← 50 +
(

p_estcpu
4

)
+ 2 · p_nice

(value clipped if over 127)
24 / 28

Sleeping process increases priority

• p_estcpu not updated while asleep
- Instead p_slptime keeps count of sleep time

• When process becomes runnable

p_estcpu←
(2 · load
2 · load + 1

)p_slptime

× p_estcpu

- Approximates decay ignoring nice and past loads

• Previous description based on [McKusick] (The Design and
Implementation of the 4.4BSD Operating System)

25 / 28

http://proquest.safaribooksonline.com/9780768685275/ch04lev1sec4

Thread scheduling

• With thread library, have two scheduling decisions:
- Local Scheduling – Thread library decides which user thread to put
onto an available kernel thread

- Global Scheduling – Kernel decides which kernel thread to run next

• Can expose to the user
- E.g., pthread_attr_setscope allows two choices
- PTHREAD_SCOPE_SYSTEM – thread scheduled like a process
(effectively one kernel thread bound to user thread – Will return
ENOTSUP in user-level pthreads implementation)

- PTHREAD_SCOPE_PROCESS – thread scheduled within the current
process (may have multiple user threads multiplexed onto kernel
threads)

26 / 28

Thread dependencies

• Assume H at high priority, L at low priority
- L acquires lock l.
- Scenario 1: H tries to acquire l, fails, spins. L never gets to run.
- Scenario 2: H tries to acquire l, fails, blocks. M enters system at
medium priority. L never gets to run.

- Both scenes are examples of priority inversion

• Scheduling = deciding who should make progress
- A thread’s importance should increase with the importance of those
that depend on it

- Naïve priority schemes violate this

27 / 28

Priority donation

• Assume higher number = higher priority
• Example 1: L (prio 2), M (prio 4), H (prio 8)

- L holds lock l
- M waits on l, L’s priority raised to L1 = max(M,L) = 4
- Then H waits on l, L’s priority raised to max(H,L1) = 8

• Example 2: Same L,M,H as above
- L holds lock l, M holds lock l2
- M waits on l, L’s priority now L1 = 4 (as before)
- Then H waits on l2. M’s priority goes to M1 = max(H,M) = 8, and L’s
priority raised to max(M1,L1) = 8

• Example 3: L (prio 2), M1, . . .M1000 (all prio 4)
- L has l, and M1, . . . ,M1000 all block on l. L’s priority is
max(L,M1, . . . ,M1000) = 4.

28 / 28

	Textbook scheduling
	Priority scheduling

