
Today’s Lecture

• System Calls and Trap Frames

• Switching Processes or Threads

1 / 42



Outline

1 System Calls

2 Switching Threads/Processes

3 System Call Implementation

2 / 42



Execution Contexts

Execution Context: The environment where functions execute
including their arguments, local variables, memory.

• Many different execution contexts!

• Application Context: Application threads

• Kernel Context: Kernel threads, software interrupts, etc

• Interrupt Context: Interrupt handler

• Kernel and Interrupts usually the same context

• Today’s Lecture: transitioning between, saving and
restoring contexts

3 / 42



Application Context

• Application context consists:
- CPU Registers and Stack: arguments, local variables, return

addresses

4 / 42



Calling Conventions

• Registers divided into 2 groups
- Functions free to clobber caller-saved regs

(%eax [return val], %edx, & %ecx on x86)

- But must restore callee-saved ones to
original value upon return (on x86, %ebx,
%esi, %edi, plus %ebp and %esp)

• sp register always base of stack
- Frame pointer (fp) is old sp

• Local variables stored in registers
and on stack

• Function arguments go in
caller-saved regs and on stack

- With x86, all arguments on stack

fp

and temps
Local vars

registers
callee-saved

old frame ptr

arguments
Call

sp

return addr

5 / 42



Procedure Calls

• Some state saved on stack
- Return address, caller-saved registers

• Some state not saved
- Callee-saved regs, global variables, stack pointer

6 / 42



Application Stack
• Application stack is made of up frames containing locals,

arguments, and spilled registers
• Programs begin execution at start

start frame

User Stack 7 / 42



Application Stack
• Application stack is made of up frames containing locals,

arguments, and spilled registers
• Programs begin execution at start

start frame
main() frame

User Stack 8 / 42



Application Stack
• Application stack is made of up frames containing locals,

arguments, and spilled registers
• Programs begin execution at start

start frame
main() frame
printf() frame

User Stack 9 / 42



Application Stack
• Application stack is made of up frames containing locals,

arguments, and spilled registers
• Programs begin execution at start

start frame
main() frame
printf() frame

write() frame

User Stack 10 / 42



Application Stack
• Application stack is made of up frames containing locals,

arguments, and spilled registers
• Programs begin execution at start

start frame
main() frame
printf() frame

write() frame

???

User Stack 11 / 42



Mode Switching: User to Kernel
• trapframe: Saves the application context
• syscall instruction triggers the exception handler

start frame
main() frame
printf() frame

write() frame

User Stack

common exception

trapframe

Kernel Stack
12 / 42



Mode Switching: User to Kernel
• trapframe: Saves the application context
• common exception saves trapframe on the kernel stack!

start frame
main() frame
printf() frame

write() frame

User Stack

common exception

trapframe

mips trap()

Kernel Stack
13 / 42



Mode Switching: User to Kernel
• trapframe: Saves the application context
• Calls mips trap() to decode trap and syscall()

start frame
main() frame
printf() frame

write() frame

User Stack

common exception

trapframe

mips trap()

syscall()

Kernel Stack
14 / 42



Mode Switching: User to Kernel
• trapframe: Saves the application context
• syscall() decodes arguments and calls sys write()

start frame
main() frame
printf() frame

write() frame

User Stack

common exception

trapframe

mips trap()

syscall()
sys write()

Kernel Stack
15 / 42



Returning to User Mode
• trapframe: Saves the application context
• sys write() writes text to console

start frame
main() frame
printf() frame

write() frame

User Stack

common exception

trapframe

mips trap()

syscall()
sys write()

console
driver

Kernel Stack
16 / 42



Returning to User Mode
• trapframe: Saves the application context
• Return from sys write()

start frame
main() frame
printf() frame

write() frame

User Stack

common exception

trapframe

mips trap()

syscall()
sys write()

Kernel Stack
17 / 42



Returning to User Mode
• syscall() stores return value and error in trapframe
• v0: return value/error code, a3: success (1) or failure

start frame
main() frame
printf() frame

write() frame

User Stack

common exception

trapframe

mips trap()

syscall()

Kernel Stack
18 / 42



Returning to User Mode
• mips trap() returns to the instruction following syscall

• v0: return value/error code, a3: success (1) or failure

start frame
main() frame
printf() frame

write() frame

User Stack

common exception

trapframe

mips trap()

Kernel Stack
19 / 42



Returning to User Mode
• common exception restores the application context
• Restores all CPU state from the trapframe

start frame
main() frame
printf() frame

write() frame

User Stack

common exception

trapframe

Kernel Stack
20 / 42



Returning to User Mode
• write() decodes v0 and a3 and updates errno

• errno is where error codes are stored in POSIX

start frame
main() frame
printf() frame

write() frame

User Stack Kernel Stack
21 / 42



Returning to User Mode
• errno is where error codes are stored in POSIX
• printf() gets return value, if -1 then see errno

start frame
main() frame
printf() frame

User Stack Kernel Stack
22 / 42



Outline

1 System Calls

2 Switching Threads/Processes

3 System Call Implementation

23 / 42



Scheduling

• How to pick which process to run

• Scan process table for first runnable?
- Expensive. Weird priorities (small pids do better)

- Divide into runnable and blocked processes

• FIFO/Round-Robin?
- Put threads on back of list, pull them from front

(OS/161 kern/thread/thread.c)

• Priority?
- Give some threads a better shot at the CPU

24 / 42



Preemption

• Can preempt a process when kernel gets control

• Running process can vector control to kernel
- System call, page fault, illegal instruction, etc.

- May put current process to sleep—e.g., read from disk

- May make other process runnable—e.g., fork, write to pipe

• Periodic timer interrupt
- If running process used up quantum, schedule another

• Device interrupt
- Disk request completed, or packet arrived on network

- Previously waiting process becomes runnable

- Schedule if higher priority than current running proc.

• Changing running process is called a context switch
25 / 42



Context switch

26 / 42



Context switch details

• Very machine dependent. Typical things include:
- Save program counter and integer registers (always)

- Save floating point or other special registers

- Save condition codes

- Change virtual address translations

• Non-negligible cost
- Save/restore floating point registers expensive

. Optimization: only save if process used floating point

- May require flushing TLB (memory translation hardware)
. HW Optimization 1: don’t flush kernel’s own data from TLB
. HW Optimization 2: use tag to avoid flushing any data

- Usually causes more cache misses (switch working sets)

27 / 42



Switching Processes
• Starts with a timer interrupt or sleeping in a system call
• Interrupts user process in the middle of the execution

start frame
main() frame

User Stack

common exception

trapframe

Kernel Stack 1
28 / 42



Switching Processes
• common execution saves the trapframe
• mips trap() notices a EX IRQ

start frame
main() frame

User Stack

common exception

trapframe

mips trap()

Kernel Stack 1
29 / 42



Switching Processes
• Calls mainbus interrupt to handle the IRQ
• On many machines there are multiple IRQ sources!

start frame
main() frame

User Stack

common exception

trapframe

mips trap()

mainbus interrupt

Kernel Stack 1
30 / 42



Switching Processes
• mainbus interrupt reads the bus interrupt pins
• Determins the source, in this case a timer interrupt

start frame
main() frame

User Stack

common exception

trapframe

mips trap()

mainbus interrupt

timer interrupt

Kernel Stack 1
31 / 42



Switching Processes
• Timers trigger processing events in the OS
• Most importantly, calling the CPU scheduler

start frame
main() frame

User Stack

common exception

trapframe

mips trap()

mainbus interrupt

timer interrupt

Kernel Stack 1
32 / 42



Switching Processes
• thread yield() calls into scheduler to pick next thread
• Calls thread switch() to switch threads

start frame
main() frame

User Stack

common exception

trapframe

mips trap()

mainbus interrupt

timer interrupt

thread yield

Kernel Stack 1
33 / 42



Switching Processes
• thread switch: saves and restores kernel thread state
• Switching processes is a switch between kernel threads!

start frame
main() frame

User Stack

common exception

trapframe

mips trap()

mainbus interrupt

timer interrupt

thread yield

thread switch

switchframe

Kernel Stack 1
34 / 42



Switching Processes
• thread switch saves thread state onto the stack
• switchframe: contains the kernel context!

common exception

trapframe

mips trap()

mainbus interrupt

timer interrupt

thread yield

thread switch

switchframe

Kernel Stack 1

common exception

trapframe

mips trap()

mainbus interrupt

timer interrupt

thread yield

thread switch

switchframe

Kernel Stack 2
35 / 42



Switching Processes
• thread switch restores thread state from the stack
• switchframe: contains the kernel context

common exception

trapframe

mips trap()

mainbus interrupt

timer interrupt

thread yield

thread switch

switchframe

Kernel Stack 1

common exception

trapframe

mips trap()

mainbus interrupt

timer interrupt

thread yield

Kernel Stack 2
36 / 42



Switching Processes
• Returns from the device code
• mips trap() returns

common exception

trapframe

mips trap()

mainbus interrupt

timer interrupt

thread yield

thread switch

switchframe

Kernel Stack 1

common exception

trapframe

mips trap()

Kernel Stack 2
37 / 42



Switching Processes
• common exception restores the trapframe
• trapframe: contains the application context!

common exception

trapframe

mips trap()

mainbus interrupt

timer interrupt

thread yield

thread switch

switchframe

Kernel Stack 1

common exception

trapframe

Kernel Stack 2
38 / 42



Outline

1 System Calls

2 Switching Threads/Processes

3 System Call Implementation

39 / 42



Creating processes

• int fork (void);

- Create new process that is exact copy of current one

- Returns process ID of new process in “parent”

- Returns 0 in “child”

• Creates a new kernel thread thread fork()

• Duplicates all process structures

• Duplicates trapframe with modified return value

• Calls mips usermode() to restore trapframe

40 / 42



Deleting processes

• void exit (int status);

- Current process ceases to exist

- status shows up in waitpid (shifted)

- By convention, status of 0 is success, non-zero error

• Cleans up memory and most resources

• Set state to zombie process (no longer runnable)

41 / 42



Cleaning up processes

• int waitpid (int pid, int *stat, int opt);

- pid – process to wait for, or -1 for any

- stat – will contain exit value, or signal

- opt – usually 0 or WNOHANG

- Returns process ID or -1 on error

• Searches for zombie processes

• Retrieves exit status code and frees proc struct

42 / 42


	System Calls
	Switching Threads/Processes
	System Call Implementation

