Processes

A process is an instance of a program running
Modern OSes run multiple processes simultaneously

Examples (can all run simultaneously):
- gcc file A.c — compiler running on file A
- gcc file B.c — compiler running on file B
- emacs — text editor
- firefox — web browser
Non-examples (implemented as one process):

- Multiple firefox windows or emacs frames (still one process)
Why processes?

- Simplicity of programming

- Higher throughput (better CPU utilization), lower latency

1/23

A process’s view of the world

max
Each process has own view of stack

machine 1

- Its own address space

- Its own open files

- Its own virtual CPU (through preemptive I
multitasking) heap
*(char *)0xc000 different in P; & P, et
Simplifies programming model text

0
- gcc does not care that firefox is running

Sometimes want interaction between processes

- Simplest is through files: emacs edits file, gcc compiles it

- More complicated: Shell/command, Window manager/app.

2/23

Implementing processes

OS keeps data structure for each proc
- Process Control Block (PCB)

- Called proc in Unix, task_struct in Linux,
and just struct thread in OS/161

Tracks state of the process

- Running, ready (runnable), blocked, etc.

Includes information necessary to run

- Registers, virtual memory mappings, etc.

- Open files (including memory mapped files)

Various other data about the process

- Credentials (user/group ID), signal mask,
controlling terminal, priority, accounting
statistics, whether being debugged, which
system call binary emulation in use, ...

Process state

Process ID

User id, etc.

Program counter

Registers

Address space
(VM data structs)

Open files

PCB

3/23

Next few lectures...

Today: Application/Kernel Interface
Details of process and interrupt handler contexts
Virtual Memory Hardware

Virtual Memory Software

4/23

Outline

@ Kernel API

@ Calling Conventions

5/23

System Software Stack

Application
A
5
Syscall Library unprivileged
4 code
privileged
3 code
Kernel

6/23

System Call Interface

System Calls: The application programmer interface (API) that
programmers use to interact with the operating system.

o Processes invoke system calls
o Examples: fork(), waitpid(), open(), close(), ...

o System call interface can have complex calls
- sysctl() Exposes operating system configuration
- ioctl() Controlling devices
¢ We need a mechanism to safely enter and exit the kernel

- Applications can’t call a syscalls directly!

- Remember: kernels provide protection

7/23

Privilege Modes

Hardware provides multiple protection modes (or
domains)
At least two modes:
- Kernel Mode or Privledged Mode — Operating System
- User Mode — Applications
Kernel Mode can access privileged CPU features
- Access all restricted CPU features (e.g., Co-processor 0 on MIPS)

Enable/disable interrupts, setup interrupt handlers
- Control system call interface

- Modify the TLB (virtual memory ... Future lecture)

Allows kernel to protect itself and isolate processes
- Processes cannot read /write kernel memory

- Processes cannot directly call kernel functions

8/23

Mode Transitions

Kernel Mode can only be entered through well defined
entry points

Two classes of entry points provided by the processor:

Interrupts
- Interrupts are generated by devices to signal needing attention
- E.g. Keyboard input is ready
- More on this during our IO lecture!
Exceptions:
- Exceptions are caused by processor

- E.g. Divide by zero, page faults, internal CPU errors

Interrupts and exceptions cause hardware to transfer
control to the interrupt/exception handler, a fixed entry
point in the kernel.

9/23

Interrupts

Interrupt are raised by devices

Interrupt handler is a function in the kernel that services a
device request
Interrupt Process:

- Device signals the processor through a physical pin or bus
message

- Processor interrupts the current program

- Processor begins executing the interrupt handler in privileged
mode

Most interrupts can be disabled, but not all

- Non-maskable interrupts (NMI) is for urgent system requests

10/23

Exceptions

o Exceptions (or faults) are conditions encountered during
execution of a program

- Exceptions are due to multiple reasons:

Program Errors: Divide-by-zero, Illegal instructions

Operating System Requests: Page faults

Hardware Errors: System check (bad memory or internal CPU
failures)

o CPU handles exceptions similar to interrupts

- Processor stops at the instruction that triggered the exception
(usually)

- Control is transferred to a fixed location where the exception
handler is located in privledged mode

e System calls are a class of exceptions!

11/23

MIPS Exception Vectors

o Interrupts, exceptions and system calls are handled
through the same mechanism

* Some processors specially handle system calls for
performance reasons

EX_IRQ O /x
EX_MOD 1 /x
EX_TLBL 2 /*
EX_TLBS 3 /*
EX_ADEL 4 /*
EX_ADES 5 /*
EX_IBE 6 /*
EX_DBE 7 /x
EX_SYS 8 /x
EX_BP 9 /x

EX_RI 10 /x
EX_CPU 11 /x
EX_OVF 12 /x

Interrupt */

TLB Modify (write to read-only page) */
TLB miss on load */

TLB miss on store */

Address error on load */

Address error on store */

Bus error on instruction fetch */
Bus error on data load or store */
Syscall */

Breakpoint */

Illegal instruction */

Coprocessor unusable */

Arithmetic overflow */
12/23

System Calls

System calls are performed by triggering the EX_SYS
exception

First, an application loads the parameters of the system
call into CPU registers

Second, it specifies the system call number in a specific
CPU registers

Finally, executes the syscall instruction to trigger the
EX_SYS exception

- Many processors include similar instructions

- For example, x86 contains the syscall and/or sysenter
instruction, but without using the normal exception handler path

13/23

Hardware Handling in Sys/161

Exception handlers in R3000 are at fixed locations
Processor jumps to these addresses whenever an
exception is encountered

- 0x8000.0000 User TLB Handler (virtual memory)
- 0x8000-0080 General Exception Handler

TLB exceptions are so frequent that they are typically
written in hand optimized assembly, unlike general
exceptions

Remember that 0x8000_0000—0x9FFF _FFFF is mapped to
the first 512MBs of physical memory

14 /23

Hardware Handling Continued

o System Control Coprocessor (CP0) contains exception
handling information

Use the mfc0/mtcO (Move from/to co-processor 0) instructions
cO_status: CPU status include kerner/user mode flag
cO_cause: Cause of the exception

cO_epc: Program counter (PC) where the exception occurred
cO_vaddr: Virtual address associated with the fault
cO_context: Used by OS/161 to store the CPU number

15/23

System Call Operation Details

o Application calls into the C library (e.g., calls write())
e Library executes the syscall instruction

o Kernel exception handler 0x8000_0080 runs

- Switch to kernel stack

- Create a trap frame which contains the program state

Determine the type of exception

Determine the type of system call

Run the function in the kernel (e.g., sys_write())

Restore application state from the trap frame

- Return from exception

e Library wrapper function returns to the application

16 /23

Outline

@ Kernel API

@ Calling Conventions

17/23

How are values passed?

o Application Binary Interface (ABI) defines the contract
between functions an application and system calls.

¢ Operating Systems and Compilers must obey these rules
referred to as the calling convention

o MIPS + OS/161 Calling Convention

System call number in vO

First four arguments in a0, a1, a2, a3
- Remaining arguments passed on the stack

Result success/fail in a3 and return value/error code in v0

18 /23

System Call Numbering

o System calls numbers defined in
kern/include/kern/syscall.h

#define
#define
#define
#define
#define
#define

SYS_fork 0
SYS_vfork 1
SYS_execv 2
SYS__exit 3
SYS_waitpid 4
SYS_getpid 5

19/23

MIPS Calling Conventions

Caller-saved registers are saved before calling another
function

- $t0-$t9: Temporary registers
- $a0-$a3: Argument registers
- $v0-$v1i: Return values
Callee-saved registers are saved inside the function
- $s0-$s7: Saved registers
- $ra: Return address

Calls are made with the jal instruction

Returns are made with the jr instruction

20/23

Functions in MIPS

o A quick review of function calls in MIPS
o Functions are usually called with the jal instruction

e jal: Jump-and-link, calls a function and saves the retrn
address in $ra

foo:
1i $a0l, 1

/* Save caller-save registers */
jal bar /* Call bar */
/* Restore registers */

jr $ra /* Return */

21/23

Functions in MIPS Continued

e Simple functions may not need to save any registers!

» We save callee-saved registers if needed for performance
int bar(int a) {

return 41 + a;

3

bar:
1i $v0, 41
add $v0, $v0, $a0

jr $ra

22/23

Where are registers saved?

Registers are saved in memory in the per-thread stack

A stack frame is all the saved registers and local
variables that must be saved within a single function

Our stack is made up of an array of stack frames

/* Push stack element */
subi $sp, $sp, 8
sw $t1, 4($sp)
sw $t2, 0($sp)

/* Pop stack element */
1w $t1, 4($sp)
1w $t2, 0($sp)
addi $sp, $sp, 8

o Next time we visualize the stack behavior

23/23

	Kernel API
	Calling Conventions

