
Processes

• A process is an instance of a program running

• Modern OSes run multiple processes simultaneously

• Examples (can all run simultaneously):
- gcc file A.c – compiler running on file A

- gcc file B.c – compiler running on file B

- emacs – text editor

- firefox – web browser

• Non-examples (implemented as one process):
- Multiple firefox windows or emacs frames (still one process)

• Why processes?
- Simplicity of programming

- Higher throughput (better CPU utilization), lower latency

1 / 23



A process’s view of the world

• Each process has own view of
machine

- Its own address space

- Its own open files

- Its own virtual CPU (through preemptive
multitasking)

• *(char *)0xc000 different in P1 & P2

• Simplifies programming model
- gcc does not care that firefox is running

• Sometimes want interaction between processes
- Simplest is through files: emacs edits file, gcc compiles it

- More complicated: Shell/command, Window manager/app.

2 / 23



Implementing processes
• OS keeps data structure for each proc

- Process Control Block (PCB)

- Called proc in Unix, task struct in Linux,
and just struct thread in OS/161

• Tracks state of the process
- Running, ready (runnable), blocked, etc.

• Includes information necessary to run
- Registers, virtual memory mappings, etc.

- Open files (including memory mapped files)

• Various other data about the process
- Credentials (user/group ID), signal mask,

controlling terminal, priority, accounting
statistics, whether being debugged, which
system call binary emulation in use, . . .

Open files

Registers

Program counter

Address space
(VM data structs)

Process state
Process ID

User id, etc.

PCB

3 / 23



Next few lectures...

• Today: Application/Kernel Interface

• Details of process and interrupt handler contexts

• Virtual Memory Hardware

• Virtual Memory Software

4 / 23



Outline

1 Kernel API

2 Calling Conventions

5 / 23



System Software StackSystem Call So�ware Stack

Application

Syscall Library unprivileged
code

privileged
code

Kernel

1

2

3

4

5

5 / 436 / 23



System Call Interface

System Calls: The application programmer interface (API) that
programmers use to interact with the operating system.

• Processes invoke system calls

• Examples: fork(), waitpid(), open(), close(), ...

• System call interface can have complex calls
- sysctl() Exposes operating system configuration

- ioctl() Controlling devices

• We need a mechanism to safely enter and exit the kernel
- Applications can’t call a syscalls directly!

- Remember: kernels provide protection

7 / 23



Privilege Modes
• Hardware provides multiple protection modes (or

domains)

• At least two modes:
- Kernel Mode or Privledged Mode – Operating System

- User Mode – Applications

• Kernel Mode can access privileged CPU features
- Access all restricted CPU features (e.g., Co-processor 0 on MIPS)

- Enable/disable interrupts, setup interrupt handlers

- Control system call interface

- Modify the TLB (virtual memory ... Future lecture)

• Allows kernel to protect itself and isolate processes
- Processes cannot read/write kernel memory

- Processes cannot directly call kernel functions

8 / 23



Mode Transitions
• Kernel Mode can only be entered through well defined

entry points

• Two classes of entry points provided by the processor:

• Interrupts
- Interrupts are generated by devices to signal needing attention

- E.g. Keyboard input is ready

- More on this during our IO lecture!

• Exceptions:
- Exceptions are caused by processor

- E.g. Divide by zero, page faults, internal CPU errors

• Interrupts and exceptions cause hardware to transfer
control to the interrupt/exception handler, a fixed entry
point in the kernel.

9 / 23



Interrupts

• Interrupt are raised by devices

• Interrupt handler is a function in the kernel that services a
device request

• Interrupt Process:
- Device signals the processor through a physical pin or bus

message

- Processor interrupts the current program

- Processor begins executing the interrupt handler in privileged
mode

• Most interrupts can be disabled, but not all
- Non-maskable interrupts (NMI) is for urgent system requests

10 / 23



Exceptions

• Exceptions (or faults) are conditions encountered during
execution of a program

- Exceptions are due to multiple reasons:

- Program Errors: Divide-by-zero, Illegal instructions

- Operating System Requests: Page faults

- Hardware Errors: System check (bad memory or internal CPU
failures)

• CPU handles exceptions similar to interrupts
- Processor stops at the instruction that triggered the exception

(usually)

- Control is transferred to a fixed location where the exception
handler is located in privledged mode

• System calls are a class of exceptions!

11 / 23



MIPS Exception Vectors
• Interrupts, exceptions and system calls are handled

through the same mechanism
• Some processors specially handle system calls for

performance reasons

EX_IRQ 0 /* Interrupt */
EX_MOD 1 /* TLB Modify (write to read-only page) */
EX_TLBL 2 /* TLB miss on load */
EX_TLBS 3 /* TLB miss on store */
EX_ADEL 4 /* Address error on load */
EX_ADES 5 /* Address error on store */
EX_IBE 6 /* Bus error on instruction fetch */
EX_DBE 7 /* Bus error on data load or store */
EX_SYS 8 /* Syscall */
EX_BP 9 /* Breakpoint */
EX_RI 10 /* Illegal instruction */
EX_CPU 11 /* Coprocessor unusable */
EX_OVF 12 /* Arithmetic overflow */

12 / 23



System Calls

• System calls are performed by triggering the EX SYS

exception

• First, an application loads the parameters of the system
call into CPU registers

• Second, it specifies the system call number in a specific
CPU registers

• Finally, executes the syscall instruction to trigger the
EX SYS exception

- Many processors include similar instructions

- For example, x86 contains the syscall and/or sysenter
instruction, but without using the normal exception handler path

13 / 23



Hardware Handling in Sys/161

• Exception handlers in R3000 are at fixed locations

• Processor jumps to these addresses whenever an
exception is encountered

- 0x8000 0000 User TLB Handler (virtual memory)

- 0x8000 0080 General Exception Handler

• TLB exceptions are so frequent that they are typically
written in hand optimized assembly, unlike general
exceptions

• Remember that 0x8000 0000–0x9FFF FFFF is mapped to
the first 512MBs of physical memory

14 / 23



Hardware Handling Continued

• System Control Coprocessor (CP0) contains exception
handling information

- Use the mfc0/mtc0 (Move from/to co-processor 0) instructions

- c0 status: CPU status include kerner/user mode flag

- c0 cause: Cause of the exception

- c0 epc: Program counter (PC) where the exception occurred

- c0 vaddr: Virtual address associated with the fault

- c0 context: Used by OS/161 to store the CPU number

15 / 23



System Call Operation Details

• Application calls into the C library (e.g., calls write())

• Library executes the syscall instruction

• Kernel exception handler 0x8000 0080 runs
- Switch to kernel stack

- Create a trap frame which contains the program state

- Determine the type of exception

- Determine the type of system call

- Run the function in the kernel (e.g., sys write())

- Restore application state from the trap frame

- Return from exception

• Library wrapper function returns to the application

16 / 23



Outline

1 Kernel API

2 Calling Conventions

17 / 23



How are values passed?

• Application Binary Interface (ABI) defines the contract
between functions an application and system calls.

• Operating Systems and Compilers must obey these rules
referred to as the calling convention

• MIPS + OS/161 Calling Convention
- System call number in v0

- First four arguments in a0, a1, a2, a3

- Remaining arguments passed on the stack

- Result success/fail in a3 and return value/error code in v0

18 / 23



System Call Numbering

• System calls numbers defined in
kern/include/kern/syscall.h

#define SYS_fork 0
#define SYS_vfork 1
#define SYS_execv 2
#define SYS__exit 3
#define SYS_waitpid 4
#define SYS_getpid 5
...

19 / 23



MIPS Calling Conventions

• Caller-saved registers are saved before calling another
function

- $t0-$t9: Temporary registers

- $a0-$a3: Argument registers

- $v0-$v1: Return values

• Callee-saved registers are saved inside the function
- $s0-$s7: Saved registers

- $ra: Return address

• Calls are made with the jal instruction

• Returns are made with the jr instruction

20 / 23



Functions in MIPS

• A quick review of function calls in MIPS

• Functions are usually called with the jal instruction

• jal: Jump-and-link, calls a function and saves the retrn
address in $ra

foo:
li $a0, 1

/* Save caller-save registers */

jal bar /* Call bar */

/* Restore registers */

jr $ra /* Return */

21 / 23



Functions in MIPS Continued

• Simple functions may not need to save any registers!

• We save callee-saved registers if needed for performance

int bar(int a) {
return 41 + a;

}

bar:
li $v0, 41
add $v0, $v0, $a0

jr $ra

22 / 23



Where are registers saved?

• Registers are saved in memory in the per-thread stack

• A stack frame is all the saved registers and local
variables that must be saved within a single function

• Our stack is made up of an array of stack frames

/* Push stack element */
subi $sp, $sp, 8
sw $t1, 4($sp)
sw $t2, 0($sp)

/* Pop stack element */
lw $t1, 4($sp)
lw $t2, 0($sp)
addi $sp, $sp, 8

• Next time we visualize the stack behavior
23 / 23


	Kernel API
	Calling Conventions

