Processes

A process is an instance of a program running
Modern OSes run multiple processes simultaneously

Examples (can all run simultaneously):
- gcc file A.c — compiler running on file A
- gcc file B.c — compiler running on file B
- emacs — text editor
- firefox — web browser
Non-examples (implemented as one process):

- Multiple firefox windows or emacs frames (still one process)
Why processes?

- Simplicity of programming

- Higher throughput (better CPU utilization), lower latency

1/45

Speed

o Multiple processes can increase CPU utilization

- Overlap one process’s computation with another’s wait

emacs—-| (Wait for input) I—thaif for inpufi—»

e Multiple processes can reduce latency

- Running A then B requires 100 sec for B to complete

80 s 20 s
A B
- Running A and B concurrently makes B finish faster
A — —
— —
10s

- A is slower than if it had whole machine to itself,
but still < 100 sec unless both A and B completely CPU-bound

2/45

Processes in the real world

e Processes, parallelism fact of life much longer than OSes
have been around
- E.g., say takes 1 worker 10 months to make 1 widget
- Company may hire 100 workers to make 100 widgets
- Latency for first widget >> 1/10 month

- Throughput may be < 10 widgets per month
(if can’t perfectly parallelize task)

- And 100 workers making 10,000 widgets may achieve > 10
widgets/month (e.g., if workers never idly wait for paint to dry)

3/45

A process’s view of the world

max
Each process has own view of stack

machine 1

- Its own address space

- Its own open files

- Its own virtual CPU (through preemptive I
multitasking) heap
*(char *)0xc000 different in P; & P, et
Simplifies programming model text

0
- gcc does not care that firefox is running

Sometimes want interaction between processes

- Simplest is through files: emacs edits file, gcc compiles it

- More complicated: Shell/command, Window manager/app.

4/45

Inter-Process Communication

process A E process A

shared

process B process B

i

kernel M | kernel

(a) (b)

o How can processes interact in real time?

(a) By passing messages through the kernel
(b) By sharing a region of physical memory
(c) Through asynchronous signals or alerts

5/45

Rest of lecture

User view of processes

- Crash course in basic Unix/Linux system call interface
- How to create, kill, and communicate between processes

- Running example: how to implement a shell

Kernel view of processes

- Implementing processes in the kernel
Threads

How to implement threads

6/45

Outline

@ User view of processes

@ Kernel view of processes
® Threads

@ How to implement threads

@ 0S/161

7/45

Creating processes

e int fork (void);

- Create new process that is exact copy of current one
- Returns process ID of new process in “parent”
- Returns 0 in “child”

e int waitpid (int pid, int *stat, int opt);
- pid — process to wait for, or -1 for any

- stat — will contain exit value, or signal
- opt — usually O or WNOHANG

Returns process ID or -1 on error

8/45

Deleting processes

e void exit (int status);
- Current process ceases to exist
- status shows up in waitpid (shifted)

- By convention, status of 0 is success, non-zero error
e int kill (int pid, int sig);

- Sends signal sig to process pid

- SIGTERM most common value, kills process by default
(but application can catch it for “cleanup”)

- SIGKILL stronger, kills process always

9/45

Running programs

e int execve (char *prog, char **argv, char **envp);
- prog — full pathname of program to run
- argv — argument vector that gets passed to main
- envp — environment variables, e.g., PATH, HOME

e Generally called through a wrapper functions

- int execvp (char *prog, char **argv);
Search PATH for prog, use current environment

- int execlp (char *prog, char *arg, ...);
List arguments one at a time, finish with NULL

e Example: minish.c

- Loop that reads a command, then executes it

10 /45

minish.c (simplified)

pid_t pid; char *x*av;

void doexec () {
execvp (av[0], av);
perror (av[0]);

exit (1);
}
/* ... main loop: */
for (5;) {

parse_next_line_of_input (&av, stdin);
switch (pid = fork () {
case -1:
perror ("fork"); break;
case O:
doexec ();
default:
waitpid (pid, NULL, 0); break;
}

} 11/45

Manipulating file descriptors

e int dup2 (int oldfd, int newfd);
- Closes newfd, if it was a valid descriptor
- Makes newfd an exact copy of oldfd

- Two file descriptors will share same offset
(1seek on one will affect both)

e int fcntl (int fd, F_SETFD, int val)

- Sets close on exec flag if val = 1, clears if val =0

- Makes file descriptor non-inheritable by spawned programs

e Example: redirsh.c

- Loop that reads a command and executes it

- Recognizes command < input > output 2> errlog

12 /45

redirsh.c

void doexec (void) {
int fd;
if (infile) { /* non-NULL for "command < infile" */
if ((fd = open (infile, O_RDONLY)) < 0) {
perror (infile);
exit (1);
}
if (fd '= 0) {
dup2 (fd, 0);
close (fd);
}
}

/* ... do same for outfile—fd 1, errfile—fd 2 ... */

execvp (av[0], av);
perror (av([0]);
exit (1);
} 13/45

Pipes
e int pipe (int fds[2]);
- Returns two file descriptors in £ds [0] and fds[1]

- Writes to fds[1] will be read on fds [0]
When last copy of fds[1] closed, £ds [0] will return EOF

Returns 0 on success, -1 on error

¢ Operations on pipes
- read/write/close — as with files
- When £ds[1] closed, read(£ds[0]) returns 0 bytes
- When fds[0] closed, write(£fds[1]):
> Kills process with SIGPIPE
> Or if signal ignored, fails with EPIPE

o Example: pipesh.c
- Sets up pipeline commandl | command2 | command3 ...

14 /45

pipesh.c (simplified)

void doexec (void) {
while (outcmd) {

int pipefds([2]; pipe (pipefds);

switch (fork () {

case -1:
perror ("fork"); exit (1);

case 0O:
dup2 (pipefds[1], 1);
close (pipefds[0]); close (pipefds[1]);
outcmd = NULL;
break;

default:
dup2 (pipefds[0], 0);
close (pipefds[0]); close (pipefds[1]);
parse_command_line (&av, &outcmd, outcmd);
break;

3

} 15 /45

Why fork?

Most calls to fork followed by execve
Could also combine into one spawn system call

Occasionally useful to fork one process

- Unix dump utility backs up file system to tape

- If tape fills up, must restart at some logical point

- Implemented by forking to revert to old state if tape ends
Real win is simplicity of interface

- Tons of things you might want to do to child:

Manipulate file descriptors, environment, resource limits, etc.

- Yet fork requires no arguments at all

16 /45

Spawning process w/o fork

o Without fork, require tons of different options
o Example: Windows CreateProcess system call

- Also CreateProcessAsUser, CreateProcessWithLogonW,
CreateProcessWithTokenV, ...

BOOL WINAPI CreateProcess(

_In_opt_ LPCTSTR lpApplicationName,

_Inout_opt_ LPTSTR lpCommandLine,

_In_opt_ LPSECURITY_ATTRIBUTES lpProcessAttributes,
_In_opt_ LPSECURITY_ATTRIBUTES 1lpThreadAttributes,
In BOOL bInheritHandles,

In DWORD dwCreationFlags,

_In_opt_ LPVOID lpEnvironment,

_In_opt_ LPCTSTR 1lpCurrentDirectory,

In LPSTARTUPINFO 1lpStartupInfo,

Out LPPROCESS_INFORMATION lpProcessInformation

)

17 /45

http://msdn.microsoft.com/en-us/library/ms682425(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682429(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682431(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682434(v=VS.85).aspx

Outline

@ User view of processes

@ Kernel view of processes
® Threads

@ How to implement threads

@ 0S/161

18 /45

Implementing processes

OS keeps data structure for each proc
- Process Control Block (PCB)

- Called proc in Unix, task_struct in Linux,
and just struct thread in OS/161

Tracks state of the process

- Running, ready (runnable), blocked, etc.

Includes information necessary to run

- Registers, virtual memory mappings, etc.

- Open files (including memory mapped files)

Various other data about the process

- Credentials (user/group ID), signal mask,
controlling terminal, priority, accounting
statistics, whether being debugged, which
system call binary emulation in use, ...

Process state

Process ID

User id, etc.

Program counter

Registers

Address space
(VM data structs)

Open files

PCB

19 /45

Process states

admitted interrupt exit terminated

scheduler dispatch

I/O or event completion I/0 or event wait

e Process can be in one of several states

new & terminated at beginning & end of life
running — currently executing (or will execute on kernel return)
ready — can run, but kernel has chosen different process to run

waiting — needs async event (e.g., disk operation) to proceed

o Which process should kernel run?

if 0 runnable, run idle loop (or halt CPU), if 1 runnable, run it
20/45

Scheduling

How to pick which process to run

Scan process table for first runnable?
- Expensive. Weird priorities (small pids do better)
- Divide into runnable and blocked processes
FIFO/Round-Robin?

- Put threads on back of list, pull them from front
— st
(OS/161 kern/thread/thread.c)

Priority?
- Give some threads a better shot at the CPU

21/45

Scheduling policy

o Want to balance multiple goals
- Fairness — don’t starve processes
- Priority — reflect relative importance of procs

- Deadlines — must do x (play audio) by certain time

Throughput — want good overall performance

- Efficiency — minimize overhead of scheduler itself

e No universal policy

- Many variables, can’t optimize for all

- Conlflicting goals (e.g., throughput or priority vs. fairness)

* We will spend a whole lecture on this topic

22/45

Preemption

Can preempt a process when kernel gets control

Running process can vector control to kernel

- System call, page fault, illegal instruction, etc.

- May put current process to sleep—e.g., read from disk

- May make other process runnable—e.g., fork, write to pipe
Periodic timer interrupt

- If running process used up quantum, schedule another

Device interrupt

- Disk request completed, or packet arrived on network
- Previously waiting process becomes runnable

- Schedule if higher priority than current running proc.

Changing running process is called a context switch

23/45

process Py

executing J-L

~

>idle

Context switch

operating system process P,
interrupt or system call
| save state into PCB, |
: idle
L]
[reload state from PCB,|)
interrupt or system call executing

| T

| save state into PCB; |

| reload state from PCBO|

executing]'[\—l

X

~r

idle

24/45

Context switch details

¢ Very machine dependent. Typical things include:

Save program counter and integer registers (always)

Save floating point or other special registers
- Save condition codes

- Change virtual address translations

e Non-negligible cost
- Save/restore floating point registers expensive
> Optimization: only save if process used floating point
- May require flushing TLB (memory translation hardware)
> HW Optimization 1: don’t flush kernel’s own data from TLB
> HW Optimization 2: use tag to avoid flushing any data

- Usually causes more cache misses (switch working sets)

25/45

Outline

@ User view of processes

@ Kernel view of processes
© Threads

@ How to implement threads

@ 0S/161

26/45

Threads

| code H data H files I ‘ code H data H files ‘
‘ stack l Iregistersl‘registers“registers‘

‘ stack H stack H stack ‘
thread —> <«

— thread

single-threaded process

multithreaded process

o A thread is a schedulable execution context

- Program counter, stack, registers, ...

e Simple programs use one thread per process

e But can also have multi-threaded programs

- Multiple threads running in same process’s address space

27/45

Why threads?

¢ Most popular abstraction for concurrency
- Lighter-weight abstraction than processes

- All threads in one process share memory, file descriptors, etc.
o Allows one process to use multiple CPUs or cores

o Allows program to overlap I/O and computation
- Same benefit as OS running emacs & gcc simultaneously
- E.g., threaded web server services clients simultaneously:

for (5;) {
fd = accept_client (O;
thread_create (service_client, &fd);

}

e Most kernels have threads, too
- Typically at least one kernel thread for every process

28/45

Thread package API

tid thread_create (void (*fn) (void *), void *);
- Create a new thread, run fn with arg

void thread_exit ();
- Destroy current thread

void thread join (tid thread);
- Wait for thread thread to exit
Plus lots of support for synchronization [in 3 weeks]
See [Birell] for good introduction
Can have preemptive or non-preemptive threads
- Preemptive causes more race conditions
- Non-preemptive can’t take advantage of multiple CPUs

- Before prevalent SMPs, most kernels non-preemptive

29/45

https://rcs.uwaterloo.ca/~ali/cs350-f19/sched/readings/birrell.pdf

Kernel threads

<«— user thread

g
b & égh

o Can implement thread create as a system call

e To add thread_create to an OS that doesn’t have it:

- Start with process abstraction in kernel
- thread_create like process creation with features stripped out
> Keep same address space, file table, etc., in new process

> rfork/clone syscalls actually allow individual control

o Faster than a process, but still very heavy weight

30/45

Limitations of kernel-level threads

e Every thread operation must go through kernel

- create, exit, join, synchronize, or switch for any reason

- On my laptop: syscall takes 100 cycles, fn call 5 cycles

- Result: threads 10x-30x slower when implemented in kernel
e One-size fits all thread implementation

- Kernel threads must please all people

- Maybe pay for fancy features (priority, etc.) you don’t need
¢ General heavy-weight memory requirements

- E.g., requires a fixed-size stack within kernel

- Other data structures designed for heavier-weight processes

31/45

User threads

S

<«— kernel thread

e An alternative: implement in user-level library
- One kernel thread per process

- thread_create, thread_exit, etc., just library functions
32/45

Implementing user-level threads

Allocate a new stack for each thread create
Keep a queue of runnable threads

Replace networking system calls (read/write/etc.)

- If operation would block, switch and run different thread

Schedule periodic timer signal (setitimer)

- Switch to another thread on timer signals (preemption)

Multi-threaded web server example

- Thread calls read to get data from remote web browser

- "“Fake” read function makes read syscall in non-blocking mode
No data? schedule another thread

- On timer or when idle check which connections have new data

33/45

Outline

@ User view of processes

@ Kernel view of processes
® Threads

@ How to implement threads

@ 0S/161

34/45

Background: calling conventions

Registers divided into 2 groups

- Functions free to clobber caller-saved regs
(%heax [return val], %edx, & %ecx on x86)

- But must restore callee-saved ones to
original value upon return (on x86, %ebx,
hesi, hedi, plus %ebp and %esp)

sp register always base of stack

- Frame pointer (fp) is old sp

Local variables stored in registers
and on stack

Function arguments go in
caller-saved regs and on stack

- With x86, all arguments on stack

fp

sp

Call
arguments

return addr

old frame ptr

callee-saved
registers

Local vars
and temps

35/45

Background: procedure calls

save active caller registers

call foo —s saves used callee registers
..do stuff...
restores callee registers

jumps back to pc
restore caller r‘egs‘/\I

e

e Some state saved on stack

- Return address, caller-saved registers

e Some state not saved

- Callee-saved regs, global variables, stack pointer

36/45

Threads vs. procedures

Threads may resume out of order:
- Cannot use LIFO stack to save state
- General solution: one stack per thread
Threads switch less often:
- Don’t partition registers (why?)
Threads can be involuntarily interrupted:
- Synchronous: procedure call can use compiler to save state
- Asynchronous: thread switch code saves all registers
More than one than one thread can run at a time:

- Procedure call scheduling obvious: Run called procedure
- Thread scheduling: What to run next and on which CPU?

37/45

Example user threads implementation

o Per-thread state in thread control block structure

typedef struct tcb {

uintptr_t long md_esp; /* Stack pointer of thread */
char *t_stack; /* Bottom of thread’s stack */
VAN ¥

¥
o Machine-dependent thread-switch function:

- void thread_md_switch (tcb *current, tcb *next);

¢ Machine-dependent thread initialization function:

- void thread md_init (tcb *t, void (*fn) (void %),
void *arg);

38/45

1386 thread md switch

pushl %ebp; movl %esp,%ebp # Save
pushl %ebx; pushl %esi; pushl %edi # Save

movl
movl
movl
movl

popl
popl
ret

Yhedx
Yeax

8 (%ebp) , hedx
12 (%ebp) , %eax
%hesp, (hedx)
(%heax) ,%hesp

H H HH

frame pointer
callee-saved regs

thread_current
thread_next

%edx->md_esp = ’%esp
%esp = heax->md_esp

%hedi; popl %esi; popl %ebx # Restore callee saved regs

+*+

hebp

Restore frame pointer

Resume execution

e This is literally switch code from simple thread library

- Nothing magic happens here

- You will see very similar code in OS/161
kern/arch/mips/switch.S

39/45

1386 thread md switch

current next
stack stack
next next
current current
, return addr return addr
hesp -
old %ebp
%ebx
Y%esi
Y%edi

e This is literally switch code from simple thread library
- Nothing magic happens here

- You will see very similar code in OS/161
kern/arch/mips/switch.S

39/45

hebp, %hesp

e This is literally switch code from simple thread library
- Nothing magic happens here

1386 thread md switch

current next
stack stack
next next

current current

return addr

return addr

old %ebp

old %ebp

%ebx

Y%esi

Y%edi

- You will see very similar code in OS/161
kern/arch/mips/switch.S

39/45

1386 thread md switch

current next
stack stack
next next

current current

return addr

return addr

, old %ebp old %ebp
hebp
hebx %ebx
hesi %esi
hedi hedi
hesp

e This is literally switch code from simple thread library
- Nothing magic happens here

- You will see very similar code in OS/161
kern/arch/mips/switch.S

39/45

1386 thread md switch

current next
stack stack
next next

current current

return addr

return addr

, old %ebp old %ebp
hebp
hebx %ebx
hesi %esi
hedi hedi

hesp

e This is literally switch code from simple thread library
- Nothing magic happens here

- You will see very similar code in OS/161
kern/arch/mips/switch.S

39/45

1386 thread md switch

current next
stack stack
next next
current current
return addr return addr ,
hesp
old %ebp
%ebx callee-saved
Yesi registers
restored
Y%edi

e This is literally switch code from simple thread library
- Nothing magic happens here

- You will see very similar code in OS/161
kern/arch/mips/switch.S

39/45

Limitations of user-level threads

Can’t take advantage of multiple CPUs or cores

A blocking system call blocks all threads

- Can replace read to handle network connections
- But usually OSes don't let you do this for disk

- So one uncached disk read blocks all threads
A page fault blocks all threads

Possible deadlock if one thread blocks on another

- May block entire process and make no progress

- [More on deadlock in future lectures.]

40/45

User threads on kernel threads

333

§<— user thread

<«—kernel thread

o User threads implemented on kernel threads

- Multiple kernel-level threads per process

- thread_create, thread_exit still library functions as before
e Sometimes called 7 : m threading

- Have n user threads per m kernel threads

(Simple user-level threads are 7 : 1, kernel threads 1 : 1) .

Limitations of n : m threading

o Many of same problems as 7 : 1 threads
- Blocked threads, deadlock, ...

o Hard to keep same # ktrheads as available CPUs
- Kernel knows how many CPUs available
- Kernel knows which kernel-level threads are blocked
- But tries to hide these things from applications for transparency

- So user-level thread scheduler might think a thread is running
while underlying kernel thread is blocked

o Kernel doesn’t know relative importance of threads

- Might preempt kthread in which library holds important lock

42/45

Lessons

Threads best implemented as a library

- But kernel threads not best interface on which to do this

Better kernel interfaces have been suggested
- See Scheduler Activations [Anderson et al.]
- Maybe too complex to implement on existing OSes (some have
added then removed such features, now Windows is trying it)
Today shouldn’t dissuade you from using threads
- Standard user or kernel threads are fine for most purposes
- Use kernel threads if I/O concurrency main goal
- Use n : m threads for highly concurrent (e.g,. scientific
applications) with many thread switches
...though concurrency/synchronization lectures may
- Concurrency greatly increases the complexity of a program!

- Leads to all kinds of nasty race conditions

43/45

http://www.cs.washington.edu/homes/tom/pubs/sched_act.pdf

Outline

@ User view of processes

@ Kernel view of processes
® Threads

@ How to implement threads

@ 0S/161

44/45

0OS/161 Differences

int thread_fork(const char *name,
struct proc *proc,
void (*entrypoint) (void *datal, unsigned long data2),
void *datal, unsigned long data2);

» OS/161 supports fork, exec, exit, and wait

- You will implement these functions in Assignments 2a/2b

OS/161 only contains thread in the kernel

One thread per process

To create a thread call: thread_fork()

Don’t be confused it is just another variant of
thread create!

45/45

	User view of processes
	Kernel view of processes
	Threads
	How to implement threads
	OS/161

