
Processes

• A process is an instance of a program running

• Modern OSes run multiple processes simultaneously

• Examples (can all run simultaneously):
- gcc file A.c – compiler running on file A

- gcc file B.c – compiler running on file B

- emacs – text editor

- firefox – web browser

• Non-examples (implemented as one process):
- Multiple firefox windows or emacs frames (still one process)

• Why processes?
- Simplicity of programming

- Higher throughput (better CPU utilization), lower latency

1 / 45

Speed
• Multiple processes can increase CPU utilization

- Overlap one process’s computation with another’s wait

• Multiple processes can reduce latency
- Running A then B requires 100 sec for B to complete

- Running A and B concurrently makes B finish faster

- A is slower than if it had whole machine to itself,
but still < 100 sec unless both A and B completely CPU-bound

2 / 45

Processes in the real world

• Processes, parallelism fact of life much longer than OSes
have been around

- E.g., say takes 1 worker 10 months to make 1 widget

- Company may hire 100 workers to make 100 widgets

- Latency for first widget >> 1/10 month

- Throughput may be < 10 widgets per month
(if can’t perfectly parallelize task)

- And 100 workers making 10,000 widgets may achieve > 10
widgets/month (e.g., if workers never idly wait for paint to dry)

3 / 45

A process’s view of the world

• Each process has own view of
machine

- Its own address space

- Its own open files

- Its own virtual CPU (through preemptive
multitasking)

• *(char *)0xc000 different in P1 & P2

• Simplifies programming model
- gcc does not care that firefox is running

• Sometimes want interaction between processes
- Simplest is through files: emacs edits file, gcc compiles it

- More complicated: Shell/command, Window manager/app.

4 / 45

Inter-Process Communication

• How can processes interact in real time?

(a) By passing messages through the kernel

(b) By sharing a region of physical memory

(c) Through asynchronous signals or alerts

5 / 45

Rest of lecture

• User view of processes
- Crash course in basic Unix/Linux system call interface

- How to create, kill, and communicate between processes

- Running example: how to implement a shell

• Kernel view of processes
- Implementing processes in the kernel

• Threads

• How to implement threads

6 / 45

Outline

1 User view of processes

2 Kernel view of processes

3 Threads

4 How to implement threads

5 OS/161

7 / 45

Creating processes

• int fork (void);

- Create new process that is exact copy of current one

- Returns process ID of new process in “parent”

- Returns 0 in “child”

• int waitpid (int pid, int *stat, int opt);

- pid – process to wait for, or -1 for any

- stat – will contain exit value, or signal

- opt – usually 0 or WNOHANG

- Returns process ID or -1 on error

8 / 45

Deleting processes

• void exit (int status);

- Current process ceases to exist

- status shows up in waitpid (shifted)

- By convention, status of 0 is success, non-zero error

• int kill (int pid, int sig);

- Sends signal sig to process pid

- SIGTERM most common value, kills process by default
(but application can catch it for “cleanup”)

- SIGKILL stronger, kills process always

9 / 45

Running programs

• int execve (char *prog, char **argv, char **envp);

- prog – full pathname of program to run

- argv – argument vector that gets passed to main

- envp – environment variables, e.g., PATH, HOME

• Generally called through a wrapper functions
- int execvp (char *prog, char **argv);

Search PATH for prog, use current environment

- int execlp (char *prog, char *arg, ...);

List arguments one at a time, finish with NULL

• Example: minish.c
- Loop that reads a command, then executes it

10 / 45

minish.c (simplified)
pid_t pid; char **av;
void doexec () {
execvp (av[0], av);
perror (av[0]);
exit (1);

}

/* ... main loop: */
for (;;) {
parse_next_line_of_input (&av, stdin);
switch (pid = fork ()) {
case -1:
perror ("fork"); break;

case 0:
doexec ();

default:
waitpid (pid, NULL, 0); break;

}
} 11 / 45

Manipulating file descriptors

• int dup2 (int oldfd, int newfd);

- Closes newfd, if it was a valid descriptor

- Makes newfd an exact copy of oldfd

- Two file descriptors will share same offset
(lseek on one will affect both)

• int fcntl (int fd, F SETFD, int val)

- Sets close on exec flag if val = 1, clears if val = 0

- Makes file descriptor non-inheritable by spawned programs

• Example: redirsh.c
- Loop that reads a command and executes it

- Recognizes command < input > output 2> errlog

12 / 45

redirsh.c

void doexec (void) {
int fd;
if (infile) { /* non-NULL for "command < infile" */
if ((fd = open (infile, O_RDONLY)) < 0) {
perror (infile);
exit (1);

}
if (fd != 0) {
dup2 (fd, 0);
close (fd);

}
}

/* ... do same for outfile→fd 1, errfile→fd 2 ... */

execvp (av[0], av);
perror (av[0]);
exit (1);

} 13 / 45

Pipes
• int pipe (int fds[2]);

- Returns two file descriptors in fds[0] and fds[1]

- Writes to fds[1] will be read on fds[0]

- When last copy of fds[1] closed, fds[0] will return EOF

- Returns 0 on success, -1 on error

• Operations on pipes
- read/write/close – as with files

- When fds[1] closed, read(fds[0]) returns 0 bytes

- When fds[0] closed, write(fds[1]):
. Kills process with SIGPIPE

. Or if signal ignored, fails with EPIPE

• Example: pipesh.c
- Sets up pipeline command1 | command2 | command3 ...

14 / 45

pipesh.c (simplified)
void doexec (void) {

while (outcmd) {

int pipefds[2]; pipe (pipefds);

switch (fork ()) {

case -1:

perror ("fork"); exit (1);

case 0:

dup2 (pipefds[1], 1);

close (pipefds[0]); close (pipefds[1]);

outcmd = NULL;

break;

default:

dup2 (pipefds[0], 0);

close (pipefds[0]); close (pipefds[1]);

parse_command_line (&av, &outcmd, outcmd);

break;

}

}
...

15 / 45

Why fork?

• Most calls to fork followed by execve

• Could also combine into one spawn system call

• Occasionally useful to fork one process
- Unix dump utility backs up file system to tape

- If tape fills up, must restart at some logical point

- Implemented by forking to revert to old state if tape ends

• Real win is simplicity of interface
- Tons of things you might want to do to child:

Manipulate file descriptors, environment, resource limits, etc.

- Yet fork requires no arguments at all

16 / 45

Spawning process w/o fork
• Without fork, require tons of different options
• Example: Windows CreateProcess system call

- Also CreateProcessAsUser, CreateProcessWithLogonW,
CreateProcessWithTokenW, . . .

BOOL WINAPI CreateProcess(
_In_opt_ LPCTSTR lpApplicationName,
_Inout_opt_ LPTSTR lpCommandLine,
_In_opt_ LPSECURITY_ATTRIBUTES lpProcessAttributes,
_In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,
In BOOL bInheritHandles,
In DWORD dwCreationFlags,
_In_opt_ LPVOID lpEnvironment,
_In_opt_ LPCTSTR lpCurrentDirectory,
In LPSTARTUPINFO lpStartupInfo,
Out LPPROCESS_INFORMATION lpProcessInformation

);
17 / 45

http://msdn.microsoft.com/en-us/library/ms682425(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682429(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682431(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682434(v=VS.85).aspx

Outline

1 User view of processes

2 Kernel view of processes

3 Threads

4 How to implement threads

5 OS/161

18 / 45

Implementing processes
• OS keeps data structure for each proc

- Process Control Block (PCB)

- Called proc in Unix, task struct in Linux,
and just struct thread in OS/161

• Tracks state of the process
- Running, ready (runnable), blocked, etc.

• Includes information necessary to run
- Registers, virtual memory mappings, etc.

- Open files (including memory mapped files)

• Various other data about the process
- Credentials (user/group ID), signal mask,

controlling terminal, priority, accounting
statistics, whether being debugged, which
system call binary emulation in use, . . .

Open files

Registers

Program counter

Address space
(VM data structs)

Process state
Process ID

User id, etc.

PCB

19 / 45

Process states
new

ready

waiting

running

terminated

I/O or event completion I/O or event wait
scheduler dispatch

interrupt exitadmitted

• Process can be in one of several states
- new & terminated at beginning & end of life

- running – currently executing (or will execute on kernel return)

- ready – can run, but kernel has chosen different process to run

- waiting – needs async event (e.g., disk operation) to proceed

• Which process should kernel run?
- if 0 runnable, run idle loop (or halt CPU), if 1 runnable, run it

- if >1 runnable, must make scheduling decision 20 / 45

Scheduling

• How to pick which process to run

• Scan process table for first runnable?
- Expensive. Weird priorities (small pids do better)

- Divide into runnable and blocked processes

• FIFO/Round-Robin?
- Put threads on back of list, pull them from front

(OS/161 kern/thread/thread.c)

• Priority?
- Give some threads a better shot at the CPU

21 / 45

Scheduling policy

• Want to balance multiple goals
- Fairness – don’t starve processes

- Priority – reflect relative importance of procs

- Deadlines – must do x (play audio) by certain time

- Throughput – want good overall performance

- Efficiency – minimize overhead of scheduler itself

• No universal policy
- Many variables, can’t optimize for all

- Conflicting goals (e.g., throughput or priority vs. fairness)

• We will spend a whole lecture on this topic

22 / 45

Preemption

• Can preempt a process when kernel gets control

• Running process can vector control to kernel
- System call, page fault, illegal instruction, etc.

- May put current process to sleep—e.g., read from disk

- May make other process runnable—e.g., fork, write to pipe

• Periodic timer interrupt
- If running process used up quantum, schedule another

• Device interrupt
- Disk request completed, or packet arrived on network

- Previously waiting process becomes runnable

- Schedule if higher priority than current running proc.

• Changing running process is called a context switch
23 / 45

Context switch

24 / 45

Context switch details

• Very machine dependent. Typical things include:
- Save program counter and integer registers (always)

- Save floating point or other special registers

- Save condition codes

- Change virtual address translations

• Non-negligible cost
- Save/restore floating point registers expensive

. Optimization: only save if process used floating point

- May require flushing TLB (memory translation hardware)
. HW Optimization 1: don’t flush kernel’s own data from TLB
. HW Optimization 2: use tag to avoid flushing any data

- Usually causes more cache misses (switch working sets)

25 / 45

Outline

1 User view of processes

2 Kernel view of processes

3 Threads

4 How to implement threads

5 OS/161

26 / 45

Threads

• A thread is a schedulable execution context
- Program counter, stack, registers, . . .

• Simple programs use one thread per process
• But can also have multi-threaded programs

- Multiple threads running in same process’s address space 27 / 45

Why threads?

• Most popular abstraction for concurrency
- Lighter-weight abstraction than processes

- All threads in one process share memory, file descriptors, etc.

• Allows one process to use multiple CPUs or cores

• Allows program to overlap I/O and computation
- Same benefit as OS running emacs & gcc simultaneously

- E.g., threaded web server services clients simultaneously:

for (;;) {
fd = accept_client ();
thread_create (service_client, &fd);

}

• Most kernels have threads, too
- Typically at least one kernel thread for every process

28 / 45

Thread package API

• tid thread create (void (*fn) (void *), void *);

- Create a new thread, run fn with arg

• void thread exit ();

- Destroy current thread

• void thread join (tid thread);

- Wait for thread thread to exit

• Plus lots of support for synchronization [in 3 weeks]

• See [Birell] for good introduction

• Can have preemptive or non-preemptive threads
- Preemptive causes more race conditions

- Non-preemptive can’t take advantage of multiple CPUs

- Before prevalent SMPs, most kernels non-preemptive

29 / 45

https://rcs.uwaterloo.ca/~ali/cs350-f19/sched/readings/birrell.pdf

Kernel threads

• Can implement thread create as a system call

• To add thread create to an OS that doesn’t have it:
- Start with process abstraction in kernel

- thread create like process creation with features stripped out
. Keep same address space, file table, etc., in new process
. rfork/clone syscalls actually allow individual control

• Faster than a process, but still very heavy weight
30 / 45

Limitations of kernel-level threads

• Every thread operation must go through kernel
- create, exit, join, synchronize, or switch for any reason

- On my laptop: syscall takes 100 cycles, fn call 5 cycles

- Result: threads 10x-30x slower when implemented in kernel

• One-size fits all thread implementation
- Kernel threads must please all people

- Maybe pay for fancy features (priority, etc.) you don’t need

• General heavy-weight memory requirements
- E.g., requires a fixed-size stack within kernel

- Other data structures designed for heavier-weight processes

31 / 45

User threads

• An alternative: implement in user-level library
- One kernel thread per process

- thread create, thread exit, etc., just library functions
32 / 45

Implementing user-level threads

• Allocate a new stack for each thread create

• Keep a queue of runnable threads

• Replace networking system calls (read/write/etc.)
- If operation would block, switch and run different thread

• Schedule periodic timer signal (setitimer)
- Switch to another thread on timer signals (preemption)

• Multi-threaded web server example
- Thread calls read to get data from remote web browser

- “Fake” read function makes read syscall in non-blocking mode

- No data? schedule another thread

- On timer or when idle check which connections have new data

33 / 45

Outline

1 User view of processes

2 Kernel view of processes

3 Threads

4 How to implement threads

5 OS/161

34 / 45

Background: calling conventions

• Registers divided into 2 groups
- Functions free to clobber caller-saved regs

(%eax [return val], %edx, & %ecx on x86)

- But must restore callee-saved ones to
original value upon return (on x86, %ebx,
%esi, %edi, plus %ebp and %esp)

• sp register always base of stack
- Frame pointer (fp) is old sp

• Local variables stored in registers
and on stack

• Function arguments go in
caller-saved regs and on stack

- With x86, all arguments on stack

fp

and temps
Local vars

registers
callee-saved

old frame ptr

arguments
Call

sp

return addr

35 / 45

Background: procedure calls

• Some state saved on stack
- Return address, caller-saved registers

• Some state not saved
- Callee-saved regs, global variables, stack pointer

36 / 45

Threads vs. procedures

• Threads may resume out of order:
- Cannot use LIFO stack to save state

- General solution: one stack per thread

• Threads switch less often:
- Don’t partition registers (why?)

• Threads can be involuntarily interrupted:
- Synchronous: procedure call can use compiler to save state

- Asynchronous: thread switch code saves all registers

• More than one than one thread can run at a time:
- Procedure call scheduling obvious: Run called procedure

- Thread scheduling: What to run next and on which CPU?

37 / 45

Example user threads implementation

• Per-thread state in thread control block structure

typedef struct tcb {
uintptr_t long md_esp; /* Stack pointer of thread */
char *t_stack; /* Bottom of thread’s stack */
/* ... */

};

• Machine-dependent thread-switch function:

- void thread md switch (tcb *current, tcb *next);

• Machine-dependent thread initialization function:

- void thread md init (tcb *t, void (*fn) (void *),

void *arg);

38 / 45

i386 thread md switch

pushl %ebp; movl %esp,%ebp # Save frame pointer
pushl %ebx; pushl %esi; pushl %edi # Save callee-saved regs

movl 8(%ebp),%edx # %edx = thread_current
movl 12(%ebp),%eax # %eax = thread_next
movl %esp,(%edx) # %edx->md_esp = %esp
movl (%eax),%esp # %esp = %eax->md_esp

popl %edi; popl %esi; popl %ebx # Restore callee saved regs
popl %ebp # Restore frame pointer
ret # Resume execution

• This is literally switch code from simple thread library
- Nothing magic happens here

- You will see very similar code in OS/161
kern/arch/mips/switch.S

39 / 45

i386 thread md switch

%esp

%esp

return addr

current

next next

current

return addr

old %ebp

%ebx

%esi

%edi

stack stack
nextcurrent

• This is literally switch code from simple thread library
- Nothing magic happens here

- You will see very similar code in OS/161
kern/arch/mips/switch.S

39 / 45

i386 thread md switch

%ebp, %esp

%esp

old %ebp

return addr

current

next next

current

return addr

old %ebp

%ebx

%esi

%edi

stack stack
nextcurrent

• This is literally switch code from simple thread library
- Nothing magic happens here

- You will see very similar code in OS/161
kern/arch/mips/switch.S

39 / 45

i386 thread md switch
current

%esp

old %ebp

return addr

current

next

%ebx

%esi

%edi

next

current

return addr

old %ebp

%ebx

%esi

%edi

%ebp

%esp

stack stack
next

• This is literally switch code from simple thread library
- Nothing magic happens here

- You will see very similar code in OS/161
kern/arch/mips/switch.S

39 / 45

i386 thread md switch

%esp

old %ebp

return addr

current

next

%ebx

%esi

%edi

next

current

return addr

old %ebp

%ebx

%esi

%edi

%ebp

stack stack
nextcurrent

• This is literally switch code from simple thread library
- Nothing magic happens here

- You will see very similar code in OS/161
kern/arch/mips/switch.S

39 / 45

i386 thread md switch

%esp

%ebp

registers
restored

callee-saved

old %ebp

return addr

current

next

%ebx

%esi

%edi

next

current

return addr

stack stack
nextcurrent

• This is literally switch code from simple thread library
- Nothing magic happens here

- You will see very similar code in OS/161
kern/arch/mips/switch.S

39 / 45

Limitations of user-level threads

• Can’t take advantage of multiple CPUs or cores

• A blocking system call blocks all threads
- Can replace read to handle network connections

- But usually OSes don’t let you do this for disk

- So one uncached disk read blocks all threads

• A page fault blocks all threads

• Possible deadlock if one thread blocks on another
- May block entire process and make no progress

- [More on deadlock in future lectures.]

40 / 45

User threads on kernel threads

• User threads implemented on kernel threads
- Multiple kernel-level threads per process

- thread create, thread exit still library functions as before

• Sometimes called n : m threading
- Have n user threads per m kernel threads

(Simple user-level threads are n : 1, kernel threads 1 : 1)
41 / 45

Limitations of n : m threading

• Many of same problems as n : 1 threads
- Blocked threads, deadlock, . . .

• Hard to keep same # ktrheads as available CPUs
- Kernel knows how many CPUs available

- Kernel knows which kernel-level threads are blocked

- But tries to hide these things from applications for transparency

- So user-level thread scheduler might think a thread is running
while underlying kernel thread is blocked

• Kernel doesn’t know relative importance of threads
- Might preempt kthread in which library holds important lock

42 / 45

Lessons
• Threads best implemented as a library

- But kernel threads not best interface on which to do this

• Better kernel interfaces have been suggested
- See Scheduler Activations [Anderson et al.]

- Maybe too complex to implement on existing OSes (some have
added then removed such features, now Windows is trying it)

• Today shouldn’t dissuade you from using threads
- Standard user or kernel threads are fine for most purposes

- Use kernel threads if I/O concurrency main goal

- Use n : m threads for highly concurrent (e.g,. scientific
applications) with many thread switches

• . . . though concurrency/synchronization lectures may
- Concurrency greatly increases the complexity of a program!

- Leads to all kinds of nasty race conditions
43 / 45

http://www.cs.washington.edu/homes/tom/pubs/sched_act.pdf

Outline

1 User view of processes

2 Kernel view of processes

3 Threads

4 How to implement threads

5 OS/161

44 / 45

OS/161 Differences

int thread_fork(const char *name,
struct proc *proc,
void (*entrypoint)(void *data1, unsigned long data2),
void *data1, unsigned long data2);

• OS/161 supports fork, exec, exit, and wait
- You will implement these functions in Assignments 2a/2b

• OS/161 only contains thread in the kernel

• One thread per process

• To create a thread call: thread fork()

• Don’t be confused it is just another variant of
thread create!

45 / 45

	User view of processes
	Kernel view of processes
	Threads
	How to implement threads
	OS/161

