
Memory and I/O buses

I/O bus
1880Mbps 1056Mbps

Crossbar

Memory

CPU

• CPU accesses physical memory over a bus
• Devices access memory over I/O bus with DMA
• Devices can appear to be a region of memory

1 / 17

Realistic PC architecture

*Newest CPUs don’t have North Bridge;

Programable
Interrupt

Controller
bus

I/O
APIC

CPU

Main
memory

North
bus
side
front-

South
Bridge

bus
ISA

CPU

USB

bus
AGP

PCI
IRQsbus

PCI

Bridge*

memory controller integrated into CPU

Advanced

2 / 17

What is memory?

• SRAM – Static RAM
- Like two NOT gates circularly wired input-to-output
- 4–6 transistors per bit, actively holds its value
- Very fast, used to cache slower memory

• DRAM – Dynamic RAM
- A capacitor + gate, holds charge to indicate bit value
- 1 transistor per bit – extremely dense storage
- Charge leaks—need slow comparator to decide if bit 1 or 0
- Must re-write charge after reading, and periodically refresh

• VRAM – “Video RAM”
- Dual ported, can write while someone else reads

3 / 17

What is I/O bus? E.g., PCI

4 / 17

Communicating with a device

• Device memory – device may have memory OS can write to
directly on other side of I/O bus

• Three communication mechanisms:
• Memory-mapped IO (MMIO) – Device registers mapped in
memory
- Certain physical addresses correspond to device registers
- Load/store gets status/sends instructions – not real memory

• Seperate I/O Memory – Special I/O Instructions
- Some CPUs (e.g., x86) have special I/O instructions
- Like load & store, but asserts special I/O pin on CPU
- OS can allow user-mode access to I/O ports at byte granularity

• Direct Memory Access (DMA) – Device reads from main memory
- Typically then need to “poke” device by writing to register
- Overlaps unrelated computation with moving data over (typically
slower than memory) I/O bus

5 / 17

Communicating with a device

• Device memory – device may have memory OS can write to
directly on other side of I/O bus

• Three communication mechanisms:
• Memory-mapped IO (MMIO) – Device registers mapped in
memory
- Certain physical addresses correspond to device registers
- Load/store gets status/sends instructions – not real memory

• Seperate I/O Memory – Special I/O Instructions
- Some CPUs (e.g., x86) have special I/O instructions
- Like load & store, but asserts special I/O pin on CPU
- OS can allow user-mode access to I/O ports at byte granularity

• Direct Memory Access (DMA) – Device reads from main memory
- Typically then need to “poke” device by writing to register
- Overlaps unrelated computation with moving data over (typically
slower than memory) I/O bus

5 / 17

Communicating with a device

• Device memory – device may have memory OS can write to
directly on other side of I/O bus

• Three communication mechanisms:
• Memory-mapped IO (MMIO) – Device registers mapped in
memory
- Certain physical addresses correspond to device registers
- Load/store gets status/sends instructions – not real memory

• Seperate I/O Memory – Special I/O Instructions
- Some CPUs (e.g., x86) have special I/O instructions
- Like load & store, but asserts special I/O pin on CPU
- OS can allow user-mode access to I/O ports at byte granularity

• Direct Memory Access (DMA) – Device reads from main memory
- Typically then need to “poke” device by writing to register
- Overlaps unrelated computation with moving data over (typically
slower than memory) I/O bus

5 / 17

x86 I/O instructions

static inline uint8_t
inb (uint16_t port)
{

uint8_t data;
asm volatile ("inb %w1, %b0" : "=a" (data) : "Nd" (port));
return data;

}

static inline void
outb (uint16_t port, uint8_t data)
{

asm volatile ("outb %b0, %w1" : : "a" (data), "Nd" (port));
}

static inline void
insw (uint16_t port, void *addr, size_t cnt)
{

asm volatile ("rep insw" : "+D" (addr), "+c" (cnt)
: "d" (port) : "memory");

}
...

6 / 17

Example: parallel port (LPT1)

• Simple hardware has three control registers:
D7 D6 D5 D4 D3 D2 D1 D0

read/write data register (port 0x378)

BSY ACK PAP OFON ERR – – –
read-only status register (port 0x379)

– – – IRQ DSL INI ALF STR [Messmer]
read/write control register (port 0x37a)

• Every bit except IRQ corresponds to a pin on 25-pin connector:

1
2
3
4
5
6
7
8
9
10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25

OFON
PAP
BSY
ACK

Data Out

STR

7
6
5
4
3
2
1
0

Ground

DSL
INI

ERR
ALF

[image credits: Wikipedia] 7 / 17

https://searchworks.stanford.edu/view/3475233

Writing bit to parallel port [osdev]

void
sendbyte(uint8_t byte)
{

/* Wait until BSY bit is 1. */
while ((inb (0x379) & 0x80) == 0)

delay ();

/* Put the byte we wish to send on pins D7-0. */
outb (0x378, byte);

/* Pulse STR (strobe) line to inform the printer
* that a byte is available */

uint8_t ctrlval = inb (0x37a);
outb (0x37a, ctrlval | 0x01);
delay ();
outb (0x37a, ctrlval);

}

8 / 17

http://wiki.osdev.org/Parallel_port

Anatomy of a disk [Ruemmler]

• Array of blocks of persistent data
- Blocks are typically 512 Bytes or 4 kiB in size
- OS can read or write a multiple of block size
- Writes to sectors are atomic (or they want you to believe)

• Stack of magnetic platters
- Rotate together on a central spindle @3,600-15,000 RPM
- Drive speed drifts slowly over time
- Can’t predict rotational position after 100-200 revolutions

• Disk arm assembly
- Arms rotate around pivot, all move together
- Pivot offers some resistance to linear shocks
- One disk head per recording surface (2×platters)
- Sensitive to motion and vibration [Gregg] (demo on youtube)

9 / 17

https://rcs.uwaterloo.ca/~ali/cs350-f19/sched/readings/diskmodel.pdf
http://dtrace.org/blogs/brendan/2008/12/31/unusual-disk-latency/
https://www.youtube.com/watch?v=tDacjrSCeq4

Disk

10 / 17

Disk

10 / 17

Disk

10 / 17

IDE disk driver

void
IDE_ReadSector(int disk, int off, void *buf)
{

outb(0x1F6, disk == 0 ? 0xE0 : 0xF0); // Select Drive
IDEWait();
outb(0x1F2, 1); // Read length (1 sector = 512 B)
outb(0x1F3, off); // LBA low
outb(0x1F4, off >> 8); // LBA mid
outb(0x1F5, off >> 16); // LBA high
outb(0x1F7, 0x20); // Read command
insw(0x1F0, buf, 256); // Read 256 words

}

void
IDEWait()
{

// Discard status 4 times
inb(0x1F7); inb(0x1F7);
inb(0x1F7); inb(0x1F7);
// Wait for status BUSY flag to clear
while ((inb(0x1F7) & 0x80) != 0)

;
}

11 / 17

Memory-mapped IO

• in/out instructions slow and clunky
- Instruction format restricts what registers you can use
- Only allows 216 different port numbers
- Per-port access control turns out not to be useful
(any port access allows you to disable all interrupts)

• Devices can achieve same effect with physical addresses, e.g.:
volatile int32_t *device_control

= (int32_t *) (0xc0100 + PHYS_BASE);
*device_control = 0x80;
int32_t status = *device_control;

- OS must map physical to virtual addresses, ensure non-cachable
• Assign physical addresses at boot to avoid conflicts. PCI:

- Slow/clunky way to access configuration registers on device
- Use that to assign ranges of physical addresses to device

12 / 17

DMA buffers

Buffer
descriptor
list

Memory buffers

100

1400

1500

1500

1500
…

• Idea: only use CPU to transfer control requests, not data
• Include list of buffer locations in main memory

- Device reads list and accesses buffers through DMA
- Descriptions sometimes allow for scatter/gather I/O

13 / 17

Example: Network Interface Card

H
o

st
 I

/O
 b

u
s

Adaptor

Network link
Bus

interface
Link

interface

• Link interface talks to wire/fiber/antenna
- Typically does framing, link-layer CRC

• FIFOs on card provide small amount of buffering
• Bus interface logic uses DMA to move packets to and from buffers
in main memory

14 / 17

Example: IDE disk read w. DMA

15 / 17

Driver architecture

• Device driver provides several entry points to kernel
- Reset, ioctl, output, interrupt, read, write, strategy . . .

• How should driver synchronize with card?
- E.g., Need to know when transmit buffers free or packets arrive
- Need to know when disk request complete

• One approach: Polling
- Sent a packet? Loop asking card when buffer is free
- Waiting to receive? Keep asking card if it has packet
- Disk I/O? Keep looping until disk ready bit set

• Disadvantages of polling?

- Can’t use CPU for anything else while polling
- Schedule poll in future? High latency to receive packet or process
disk block bad for response time

16 / 17

Driver architecture

• Device driver provides several entry points to kernel
- Reset, ioctl, output, interrupt, read, write, strategy . . .

• How should driver synchronize with card?
- E.g., Need to know when transmit buffers free or packets arrive
- Need to know when disk request complete

• One approach: Polling
- Sent a packet? Loop asking card when buffer is free
- Waiting to receive? Keep asking card if it has packet
- Disk I/O? Keep looping until disk ready bit set

• Disadvantages of polling?
- Can’t use CPU for anything else while polling
- Schedule poll in future? High latency to receive packet or process
disk block bad for response time

16 / 17

Interrupt driven devices

• Instead, ask card to interrupt CPU on events
- Interrupt handler runs at high priority
- Asks card what happened (xmit buffer free, new packet)
- This is what most general-purpose OSes do

• Bad under high network packet arrival rate
- Packets can arrive faster than OS can process them
- Interrupts are very expensive (context switch)
- Interrupt handlers have high priority
- In worst case, can spend 100% of time in interrupt handler and never
make any progress – receive livelock

- Best: Adaptive switching between interrupts and polling

• Very good for disk requests

17 / 17

