
CS350: Operating Systems

Instructor: Ali Mashtizadeh

IAs: Ryan Hancock, Emil Tsalapatis

University of Waterloo

1 / 28



Administrivia

• Class web page: https://cs.uwaterloo.ca/cs350/
- All assignments and handouts

• My web page: https://rcs.uwaterloo.ca/~ali/
- Lecture notes

• Textbooks
- Operating System Concepts, 8th Edition, by Silberschatz, Galvin, and

Gagne

- Operating Systems: Three Easy Pieces, by Remzi and Andrea

• Goal is to make lecture slides the primary reference
- Almost everything I talk about will be on slides

- PDF slides contain links to further reading about topics

- My slides from my class web page

2 / 28

https://cs.uwaterloo.ca/cs350/
https://rcs.uwaterloo.ca/~ali/
https://rcs.uwaterloo.ca/~ali/cs350-f19/notes/


Administrivia 2

• Piazza: https://piazza.com/class/jzipyuic9aw63q

• Key dates:
- Lectures: MW 11:30 AM in Physics 313 or 4:30 PM in MC 2054

- Midterm: Oct. 30, 2019 at 7:00 PM

- Final: TBA

• Extra Credit
- Full instructions will be online

- Read a research paper from a selected batch and make a short
write-up and present it to either IA or myself

3 / 28

https://piazza.com/class/jzipyuic9aw63q


Course topics

• Threads & Processes

• Concurrency & Synchronization

• Scheduling

• Virtual Memory

• I/O

• Disks, File systems, Network file systems

• Protection & Security

• Virtual machines

• Note: Lectures will often take Unix as an example
- Most OSes are heavily influenced by Unix (including OS161)

- Windows is the most notable exception

4 / 28



Course goals

• Introduce you to operating system concepts
- Hard to use a computer without interacting with OS

- Understanding the OS makes you a more effective programmer

• Cover important systems concepts in general
- Caching, concurrency, memory management, I/O, protection

• Teach you to deal with larger software systems
- Programming assignments much larger than many courses

- Many people will consider course very hard

• Prepare you to take graduate OS classes

5 / 28



What is an operating system?
• Layer between applications and hardware

• Makes hardware useful to the programmer

• [Usually] Provides abstractions for applications
- Manages and hides details of hardware

- Accesses hardware through low/level interfaces unavailable to
applications

• [Often] Provides protection
- Prevents one process/user from clobbering another

6 / 28



Why study operating systems?

• Operating systems are a maturing field
- Most people use a handful of mature OSes

- Hard to get people to switch operating systems

- Hard to have impact with a new OS

• High-performance servers are an OS issue
- Face many of the same issues as OSes

• Resource consumption is an OS issue
- Battery life, radio spectrum, etc.

• Security is an OS issue
- Hard to achieve security without a solid foundation

• New “smart” devices need new OSes

• Web browsers increasingly face OS issues
7 / 28



Primitive Operating Systems

• Just a library of standard services [no protection]

- Standard interface above hardware-specific drivers, etc.

• Simplifying assumptions
- System runs one program at a time

- No bad users or programs (often bad assumption)

• Problem: Poor utilization
- . . . of hardware (e.g., CPU idle while waiting for disk)

- . . . of human user (must wait for each program to finish)

8 / 28



Multitasking

• Idea: Run more than one process at once
- When one process blocks (waiting for disk, network, user input,

etc.) run another process

• Problem: What can ill-behaved process do?

- Go into infinite loop and never relinquish CPU

- Scribble over other processes’ memory to make them fail

• OS provides mechanisms to address these problems
- Preemption – take CPU away from looping process

- Memory protection – protect process’s memory from one another

9 / 28



Multitasking

• Idea: Run more than one process at once
- When one process blocks (waiting for disk, network, user input,

etc.) run another process

• Problem: What can ill-behaved process do?
- Go into infinite loop and never relinquish CPU

- Scribble over other processes’ memory to make them fail

• OS provides mechanisms to address these problems
- Preemption – take CPU away from looping process

- Memory protection – protect process’s memory from one another

9 / 28



Multi-user OSes

• Many OSes use protection to serve distrustful users/apps
• Idea: With N users, system not N times slower

- Users’ demands for CPU, memory, etc. are bursty

- Win by giving resources to users who actually need them

• What can go wrong?

- Users are gluttons, use too much CPU, etc. (need policies)

- Total memory usage greater than in machine (must virtualize)

- Super-linear slowdown with increasing demand (thrashing)

10 / 28



Multi-user OSes

• Many OSes use protection to serve distrustful users/apps
• Idea: With N users, system not N times slower

- Users’ demands for CPU, memory, etc. are bursty

- Win by giving resources to users who actually need them

• What can go wrong?
- Users are gluttons, use too much CPU, etc. (need policies)

- Total memory usage greater than in machine (must virtualize)

- Super-linear slowdown with increasing demand (thrashing)
10 / 28



Protection

• Mechanisms that isolate bad programs and people

• Pre-emption:
- Give application a resource, take it away if needed elsewhere

• Interposition/mediation:
- Place OS between application and “stuff”

- Track all pieces that application allowed to use (e.g., in table)

- On every access, look in table to check that access legal

• Privileged & unprivileged modes in CPUs:
- Applications unprivileged (unprivileged user mode)

- OS privileged (privileged supervisor/kernel mode)

- Protection operations can only be done in privileged mode

11 / 28



Typical OS structure

kernel

driver
device

P1 P2 P3 P4

sockets
TCP/IP

system
file

console disk

device
driver driver

device

network

VM
scheduler

IPC

user

• Most software runs as user-level processes (P[1-4])

• OS kernel runs in privileged mode [shaded]
- Creates/deletes processes

- Provides access to hardware

12 / 28



System calls

• Applications can invoke kernel through system calls
- Special instruction transfers control to kernel

- . . . which dispatches to one of few hundred syscall handlers

13 / 28



System calls (continued)

• Goal: Do things app. can’t do in unprivileged mode
- Like a library call, but into more privileged kernel code

• Kernel supplies well-defined system call interface
- Applications set up syscall arguments and trap to kernel

- Kernel performs operation and returns result

• Higher-level functions built on syscall interface
- printf, scanf, gets, etc. all user-level code

• Example: POSIX/UNIX interface
- open, close, read, write, ...

14 / 28



System call example

• Standard library implemented in terms of syscalls
- printf – in libc, has same privileges as application

- calls write – in kernel, which can send bits out serial port
15 / 28



UNIX file system calls

• Applications “open” files (or devices) by name
- I/O happens through open files

• int open(char *path, int flags, /*mode*/...);

- flags: O RDONLY, O WRONLY, O RDWR

- O CREAT: create the file if non-existent

- O EXCL: (w. O CREAT) create if file exists already

- O TRUNC: Truncate the file

- O APPEND: Start writing from end of file

- mode: final argument with O CREAT

• Returns file descriptor—used for all I/O to file

16 / 28



Error returns

• What if open fails? Returns -1 (invalid fd)

• Most system calls return -1 on failure
- Specific kind of error in global int errno

• #include <sys/errno.h> for possible values
- 2 = ENOENT “No such file or directory”

- 13 = EACCES “Permission Denied”

• perror function prints human-readable message
- perror ("initfile");

→ “initfile: No such file or directory”

17 / 28



Operations on file descriptors

• int read (int fd, void *buf, int nbytes);

- Returns number of bytes read

- Returns 0 bytes at end of file, or -1 on error

• int write (int fd, const void *buf, int nbytes);

- Returns number of bytes written, -1 on error

• off t lseek (int fd, off t pos, int whence);

- whence: 0 – start, 1 – current, 2 – end
. Returns previous file offset, or -1 on error

• int close (int fd);

18 / 28



File descriptor numbers

• File descriptors are inherited by processes
- When one process spawns another, same fds by default

• Descriptors 0, 1, and 2 have special meaning
- 0 – “standard input” (stdin in ANSI C)

- 1 – “standard output” (stdout, printf in ANSI C)

- 2 – “standard error” (stderr, perror in ANSI C)

- Normally all three attached to terminal

• Example: type.c
- Prints the contents of a file to stdout

19 / 28



type.c

void
typefile (char *filename)
{
int fd, nread;
char buf[1024];

fd = open (filename, O_RDONLY);
if (fd == -1) {
perror (filename);
return;

}

while ((nread = read (fd, buf, sizeof (buf))) > 0)
write (1, buf, nread);

close (fd);
}

20 / 28



Different system contexts
• A system is generally in one of several contexts
• User-level – CPU in user mode running application
• Kernel process context

- Running kernel code on behalf of a particular process

- E.g., performing system call

- Also exception (mem. fault, numeric exception, etc.)

- Or executing a kernel-only process (e.g., network file server)

• Kernel code not associated w. a process
- Timer interrupt (hardclock)

- Device interrupt

- “Softirqs”, “Tasklets” (Linux-specific terms)

• Context switch code – changing address spaces
• Idle – nothing to do (might powerdown CPU)

21 / 28



Transitions between contexts

• User→ kernel process context: syscall, page fault

• User/process context→ interrupt handler: hardware

• Process context→ user/context switch: return

• Process context→ context switch: sleep

• Context switch→ user/process context

22 / 28



CPU preemption

• Protection mechanism to prevent monopolizing CPU

• E.g., kernel programs timer to interrupt every 10 ms
- Must be in supervisor mode to write appropriate I/O registers

- User code cannot re-program interval timer

• Kernel sets interrupt to vector back to kernel
- Regains control whenever interval timer fires

- Gives CPU to another process if someone else needs it

- Note: must be in supervisor mode to set interrupt entry points

- No way for user code to hijack interrupt handler

• Result: Cannot monopolize CPU with infinite loop
- At worst get 1/N of CPU with N CPU-hungry processes

23 / 28



Protection is not security

• How can you monopolize CPU?

• Use multiple processes

• For many years, could wedge most OSes with
int main() { while(1) fork(); }

- Keeps creating more processes until system out of proc. slots

• Other techniques: use all memory (chill program)

• Typically solved with technical/social combination
- Technical solution: Limit processes per user

- Social: Reboot and yell at annoying users

- Social: Pass laws (often debatable whether a good idea)

24 / 28



Protection is not security

• How can you monopolize CPU?

• Use multiple processes

• For many years, could wedge most OSes with
int main() { while(1) fork(); }

- Keeps creating more processes until system out of proc. slots

• Other techniques: use all memory (chill program)

• Typically solved with technical/social combination
- Technical solution: Limit processes per user

- Social: Reboot and yell at annoying users

- Social: Pass laws (often debatable whether a good idea)

24 / 28



Address translation

• Protect memory of one program from actions of another

• Definitions
- Address space: all memory locations a program can name

- Virtual address: addresses in process’ address space

- Physical address: address of real memory

- Translation: map virtual to physical addresses

• Translation done on every load and store
- Modern CPUs do this in hardware for speed

• Idea: If you can’t name it, you can’t touch it
- Ensure one process’s translations don’t include any other process’s

memory

25 / 28



More memory protection
• CPU allows kernel-only virtual addresses

- Kernel typically part of all address spaces,
e.g., to handle system call in same address space

- But must ensure apps can’t touch kernel memory

• CPU lets OS disable (invalidate) particular virtual
addresses

- Catch and halt buggy program that makes wild accesses

- Make virtual memory seem bigger than physical
(e.g., bring a page in from disk only when accessed)

• CPU enforced read-only virtual addresses useful
- E.g., allows sharing of code pages between processes

- Plus many other optimizations

• CPU enforced execute disable of VAs
- Makes certain code injection attacks harder

26 / 28



Resource allocation & performance

• Multitasking permits higher resource utilization

• Simple example:
- Process downloading large file mostly waits for network

- You play a game while downloading the file

- Higher CPU utilization than if just downloading

• Complexity arises with cost of switching

• Example: Say disk 1,000 times slower than memory
- 1 GB memory in machine

- 2 Processes want to run, each use 1 GB

- Can switch processes by swapping them out to disk

- Faster to run one at a time than keep context switching

27 / 28



Useful properties to exploit

• Skew
- 80% of time taken by 20% of code

- 10% of memory absorbs 90% of references

- Basis behind cache: place 10% in fast memory, 90% in slow,
usually looks like one big fast memory

• Past predicts future (a.k.a. temporal locality)
- What’s the best cache entry to replace?

- If past ≈ future, then least-recently-used entry

• Note conflict between fairness & throughput
- Higher throughput (fewer cache misses, etc.) to keep running

same process

- But fairness says should periodically preempt CPU and give it to
next process

28 / 28


