Storage hardware affects the design of so many applications

File systems don’t hide the disk behavior

Storage devices:
- Disks - high density
- Flash - expensive but very fast
- Tape - very high density, slower archival storage

Only talk about the first two that matter for application design

1/28

@ Disks
@ Disk Scheduling

@ Flash and SSDs

2/28

Anatomy of a disk [Ruemmler]

« Stack of magnetic platters

- Rotate together on a central spindle @3,600-15,000 RPM
- Drive speed drifts slowly over time
- Can't predict rotational position after 100-200 revolutions

« Disk arm assembly

Arms rotate around pivot, all move together

Pivot offers some resistance to linear shocks

One disk head per recording surface (2xplatters)

Sensitive to motion and vibration [Gregg] (demo on youtube)

3/28

https://rcs.uwaterloo.ca/~ali/cs350-f19/sched/readings/diskmodel.pdf
http://dtrace.org/blogs/brendan/2008/12/31/unusual-disk-latency/
https://www.youtube.com/watch?v=tDacjrSCeq4

4/28

4/28

4/28

Storage on a magnetic platter

Platters divided into concentric tracks

A stack of tracks of fixed radius is a cylinder

Heads record and sense data along cylinders
- Significant fractions of encoded stream for error correction

Generally only one head active at a time

- Disks usually have one set of read-write circuitry
- Must worry about cross-talk between channels
- Hard to keep multiple heads exactly aligned

5/28

Cylinders, tracks, & sectors

track t «— spindle
F =
| «|— arm assembly
sector s I !
|
—
T :
|
| |
| | .
cylinder ¢ —»! | read-write
| ! head
|
| \

platter

rotation

6/28

Disk positioning system

Move head to specific track and keep it there

- Resist physical shocks, imperfect tracks, etc.

A seek consists of up to four phases:

speedup—accelerate arm to max speed or half way point
coast—at max speed (for long seeks)

slowdown—stops arm near destination

settle—adjusts head to actual desired track

Very short seeks dominated by settle time (~1 ms)

Short (200-400 cyl.) seeks dominated by speedup
- Accelerations of 40g

7128

Seek details

« Head switches comparable to short seeks

- May also require head adjustment
- Settles take longer for writes than for reads — Why?

» Disk keeps table of pivot motor power

- Maps seek distance to power and time

- Disk interpolates over entries in table

- Table set by periodic “thermal recalibration”

- But, e.g., ~500 ms recalibration every ~25 min bad for AV
« “Average seek time” quoted can be many things

- Time to seek 1/3 disk, 1/3 time to seek whole disk

8/28

Seek details

« Head switches comparable to short seeks

- May also require head adjustment

- Settles take longer for writes than for reads
If read strays from track, catch error with checksum, retry
If write strays, you've just clobbered some other track

» Disk keeps table of pivot motor power

- Maps seek distance to power and time

- Disk interpolates over entries in table

- Table set by periodic “thermal recalibration”

- But, e.g., ~500 ms recalibration every ~25 min bad for AV
« “Average seek time” quoted can be many things

- Time to seek 1/3 disk, 1/3 time to seek whole disk

8/28

« Disk interface presents linear array of sectors

- Historically 512 B, but 4 KiB in “advanced format” disks
- Written atomically (even if there is a power failure)

« Disk maps logical sector #s to physical sectors
- Zoning—puts more sectors on longer tracks
- Track skewing—sector 0 pos. varies by track (why?)
- Sparing—flawed sectors remapped elsewhere

» OS doesn’'t know logical to physical sector mapping
Larger logical sector # difference means larger seek

Highly non-linear relationship (and depends on zone)
OS has no info on rotational positions

Can empirically build table to estimate times

9/28

http://www.idema.org/?page_id=98

« Disk interface presents linear array of sectors
- Historically 512 B, but 4 KiB in “advanced format” disks
- Written atomically (even if there is a power failure)

o Disk maps logical sector #s to physical sectors
- Zoning—puts more sectors on longer tracks
- Track skewing—sector 0 pos. varies by track (sequential access speed)
- Sparing—flawed sectors remapped elsewhere

» OS doesn’'t know logical to physical sector mapping
- Larger logical sector # difference means larger seek
- Highly non-linear relationship (and depends on zone)
- OS has no info on rotational positions
- Can empirically build table to estimate times

9/28

http://www.idema.org/?page_id=98

Disk interface

o Controls hardware, mediates access

Computer, disk often connected by bus (e.g., SCSI)
- Multiple devices may contentd for bus

Possible disk/interface features:

Disconnect from bus during requests

Command queuing: Give disk multiple requests
- Disk can schedule them using rotational information

Disk cache used for read-ahead

- Otherwise, sequential reads would incur whole revolution
- Cross track boundaries? Can’t stop a head-switch

Some disks support write caching
- But data not stable—not suitable for all requests

10/28

SCSI overview [Schmidt]

» SCSI domain consists of devices and an SDS

- Devices: host adapters & SCSI controllers

- Service Delivery Subsystem connects devices—e.g., SCSI bus
» SCSI-2 bus (SDS) connects up to 8 devices

- Controllers can have > 1 “logical units” (LUNs)
- Typically, controller built into disk and 1 LUN/target, but “bridge
controllers” can manage multiple physical devices
« Each device can assume role of initiator or target
- Traditionally, host adapter was initiator, controller target
- Now controllers act as initiators (e.g., cory command)
- Typical domain has 1 initiator, > 1 targets

11/28

https://rcs.uwaterloo.ca/~ali/cs350-f19/sched/readings/scsi.pdf

SCSI requests

» A request is a command from initiator to target

- Once transmitted, target has control of bus

- Target may disconnect from bus and later reconnect
(very important for multiple targets or even multitasking)

« Commands contain the following:

Task identifier—initiator ID, target ID, LUN, tag

Command descriptor block—e.g., read 10 blocks at pos. N
Optional task attribute—sIMPLE, ORDERD, HEAD OF QUEUE
Optional: output/input buffer, sense data

Status byte—GOOD, CHECK CONDITION, INTERMEDIATE, . ..

12/28

Executing SCSI commands

o Each LUN maintains a queue of tasks

Each task is DORMANT, BLOCKED, ENABLED, Of ENDED
SIMPLE tasks are dormant until no ordered/head of queue
- ORDERED tasks dormant until no HoQ/more recent ordered
- HoQ tasks begin in enabled state

o Task management commands available to initiator
- Abort/terminate task, Reset target, etc.

e Linked commands

- Initiator can link commands, so no intervening tasks
- E.g., could use to implement atomic read-modify-write
- Intermediate commands return status byte INTERMEDIATE

13/28

SCSI exceptions and errors

After error stop executing most SCSI commands

- Target returns with CHECK CONDITION status
- Initiator will eventually notice error
- Must read specifics W. REQUEST SENSE

Prevents unwanted commands from executing
- E.g., initiator may not want to execute 2nd write if 1st fails

Simplifies device implementation

- Don’t need to remember more than one error condition

Same mechanism used to notify of media changes
- l.e., ejected tape, changed CD-ROM

14/28

Disk performance

Placement & ordering of requests a huge issue
- Sequential I/O much, much faster than random
- Long seeks much slower than short ones
- Power might fail any time, leaving inconsistent state

Must be careful about order for crashes
- More on this in next two lectures

Try to achieve contiguous accesses where possible
- E.g., make big chunks of individual files contiguous

Try to order requests to minimize seek times
- OS can only do this if it has a multiple requests to order
- Requires disk I/O concurrency
- High-performance apps try to maximize 1/O concurrency

Next: How to schedule concurrent requests

15/28

€ Disks
@ Disk Scheduling

@ Flash and SSDs

16/28

Scheduling: FCFS

» “First Come First Served”
- Process disk requests in the order they are received

« Advantages

« Disadvantages

17/28

Scheduling: FCFS

» “First Come First Served”

- Process disk requests in the order they are received
+ Advantages

- Easy to implement

- Good fairness
« Disadvantages

- Cannot exploit request locality
- Increases average latency, decreasing throughput

17/28

FCFS example

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183199
|
|

18/28

Shortest positioning time first (SPTF)

Shortest positioning time first (SPTF)
- Always pick request with shortest seek time

Also called Shortest Seek Time First (SSTF)
Advantages

Disadvantages

19/28

Shortest positioning time first (SPTF)

Shortest positioning time first (SPTF)
- Always pick request with shortest seek time

Also called Shortest Seek Time First (SSTF)
Advantages

- Exploits locality of disk requests
- Higher throughput

Disadvantages
- Starvation
- Don't always know what request will be fastest

Improvement?

19/28

Shortest positioning time first (SPTF)

Shortest positioning time first (SPTF)
- Always pick request with shortest seek time
Also called Shortest Seek Time First (SSTF)

Advantages

- Exploits locality of disk requests
- Higher throughput

Disadvantages
- Starvation
- Don't always know what request will be fastest

Improvement: Aged SPTF

- Give older requests higher priority
- Adjust “effective” seek time with weighting factor:
TeH = 7-pos -w. Twait

19/28

SPTF example

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 98 122124 183199
| 1l
|

20/28

“Elevator” scheduling (SCAN)

» Sweep across disk, servicing all requests passed
- Like SPTF, but next seek must be in same direction
- Switch directions only if no further requests

« Advantages

» Disadvantages

21/28

“Elevator” scheduling (SCAN)

» Sweep across disk, servicing all requests passed

- Like SPTF, but next seek must be in same direction
- Switch directions only if no further requests

Advantages
- Takes advantage of locality
- Bounded waiting

Disadvantages
- Cylinders in the middle get better service
- Might miss locality SPTF could exploit

CSCAN: Only sweep in one direction
Very commonly used algorithm in Unix

Also called LOOK/CLOOK in textbook
- (Textbook uses [C]SCAN to mean scan entire disk uselessly)

21/28

CSCAN example

queue 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 98 122124 183199
|
|

22/28

VSCAN(r)

o Continuum between SPTF and SCAN

- Like SPTF, but slightly changes “effective” positioning time
If request in same direction as previous seek: Teg = Tpos
Otherwise: Teg = Tpos + 7 - Tiax

- whenr =0, get SPTF, when r = 1, get SCAN

- E.g., r=0.2 works well

« Advantages and disadvantages
- Those of SPTF and SCAN, depending on how r is set

» See [Worthington] for good description and evaluation of various
disk scheduling algorithms

23/28

http://www.ece.cmu.edu/~ganger/papers/sigmetrics94.pdf

€ Disks
@ Disk Scheduling

@ Flash and SSDs

24/28

Flash memory

» Today, people increasingly using flash memory

» Completely solid state (no moving parts)
- Remembers data by storing charge
- Lower power consumption and heat
- No mechanical seek times to worry about
 Limited # overwrites possible
- Blocks wear out after 10,000 (MLC) — 100,000 (SLC) erases

- Requires flash translation layer (FTL) to provide wear leveling, so
repeated writes to logical block don’t wear out physical block

- FTL can seriously impact performance

- In particular, random writes very expensive [Birrell]
 Limited durability

- Charge wears out over time

- Turn off device for a year, you can potentially lose data

25/28

http://research.microsoft.com/pubs/63681/TR-2005-176.pdf

Types of flash memory

« NAND flash (most prevalent for storage)

- Higher density (most used for storage)

- Faster erase and write

- More errors internally, so need error correction
* NOR flash

- Faster reads in smaller data units
- Can execute code straight out of NOR flash
- Significantly slower erases
« Single-level cell (SLC) vs. Multi-level cell (MLC)

- MLC encodes multiple bits in voltage level
- MLC slower to write than SLC
- MLC has lower durability (bits decay faster)

26/28

NAND Flash Overview

Flash device has 2112-byte pages
- 2048 bytes of data + 64 bytes metadata & ECC

Blocks contain 64 (SLC) or 128 (MLC) pages
Blocks divided into 2—4 planes

- All planes contend for same package pins
- But can access their blocks in parallel to overlap latencies

Can read one page at a time
- Takes 25 usec + time to get data off chip

Must erase whole block before programing

- Erase sets all bits to 1—very expensive (2 msec)

- Programming pre-erased block requires moving data to internal
buffer, then 200 (SLC)-800 (MLC) usec

27/28

Flash Characteristics [Caulfield’09]

Parameter SLC MLC
Density Per Die (GB) 4 8
Page Size (Bytes) | 2048+32 | 2048+64

Block Size (Pages) 64 128
Read Latency (us) 25 25

Write Latency (us) 200 800

Erase Latency (us) 2000 2000

40MHz, 16-bit bus Read b/w (MB/s) 75.8 75.8
Program b/w (MB/s) 201 5.0

133MHz Read b/w (MB/s) 126.4 126.4
Program b/w (MB/s) 201 5.0

28/28

http://cseweb.ucsd.edu/~swanson/papers/Asplos2009Gordon.pdf

	Disks
	Disk Scheduling
	Flash and SSDs

