
Storage

• Storage hardware affects the design of so many applications
• File systems don’t hide the disk behavior

• Storage devices:
- Disks - high density
- Flash - expensive but very fast
- Tape - very high density, slower archival storage

• Only talk about the first two that matter for application design

1 / 28



Outline

1 Disks

2 Disk Scheduling

3 Flash and SSDs

2 / 28



Anatomy of a disk [Ruemmler]

• Stack of magnetic platters
- Rotate together on a central spindle @3,600-15,000 RPM
- Drive speed drifts slowly over time
- Can’t predict rotational position after 100-200 revolutions

• Disk arm assembly
- Arms rotate around pivot, all move together
- Pivot offers some resistance to linear shocks
- One disk head per recording surface (2×platters)
- Sensitive to motion and vibration [Gregg] (demo on youtube)

3 / 28

https://rcs.uwaterloo.ca/~ali/cs350-f19/sched/readings/diskmodel.pdf
http://dtrace.org/blogs/brendan/2008/12/31/unusual-disk-latency/
https://www.youtube.com/watch?v=tDacjrSCeq4


Disk

4 / 28



Disk

4 / 28



Disk

4 / 28



Storage on a magnetic platter

• Platters divided into concentric tracks
• A stack of tracks of fixed radius is a cylinder
• Heads record and sense data along cylinders

- Significant fractions of encoded stream for error correction

• Generally only one head active at a time
- Disks usually have one set of read-write circuitry
- Must worry about cross-talk between channels
- Hard to keep multiple heads exactly aligned

5 / 28



Cylinders, tracks, & sectors

6 / 28



Disk positioning system

• Move head to specific track and keep it there
- Resist physical shocks, imperfect tracks, etc.

• A seek consists of up to four phases:
- speedup–accelerate arm to max speed or half way point
- coast–at max speed (for long seeks)
- slowdown–stops arm near destination
- settle–adjusts head to actual desired track

• Very short seeks dominated by settle time (∼1 ms)
• Short (200-400 cyl.) seeks dominated by speedup

- Accelerations of 40g

7 / 28



Seek details

• Head switches comparable to short seeks
- May also require head adjustment
- Settles take longer for writes than for reads – Why?

If read strays from track, catch error with checksum, retry
If write strays, you’ve just clobbered some other track

• Disk keeps table of pivot motor power
- Maps seek distance to power and time
- Disk interpolates over entries in table
- Table set by periodic “thermal recalibration”
- But, e.g., ∼500 ms recalibration every ∼25 min bad for AV

• “Average seek time” quoted can be many things
- Time to seek 1/3 disk, 1/3 time to seek whole disk

8 / 28



Seek details

• Head switches comparable to short seeks
- May also require head adjustment
- Settles take longer for writes than for reads
If read strays from track, catch error with checksum, retry
If write strays, you’ve just clobbered some other track

• Disk keeps table of pivot motor power
- Maps seek distance to power and time
- Disk interpolates over entries in table
- Table set by periodic “thermal recalibration”
- But, e.g., ∼500 ms recalibration every ∼25 min bad for AV

• “Average seek time” quoted can be many things
- Time to seek 1/3 disk, 1/3 time to seek whole disk

8 / 28



Sectors

• Disk interface presents linear array of sectors
- Historically 512B, but 4KiB in “advanced format” disks
- Written atomically (even if there is a power failure)

• Disk maps logical sector #s to physical sectors
- Zoning–puts more sectors on longer tracks
- Track skewing–sector 0 pos. varies by track (why?)
- Sparing–flawed sectors remapped elsewhere

• OS doesn’t know logical to physical sector mapping
- Larger logical sector # difference means larger seek
- Highly non-linear relationship (and depends on zone)
- OS has no info on rotational positions
- Can empirically build table to estimate times

9 / 28

http://www.idema.org/?page_id=98


Sectors

• Disk interface presents linear array of sectors
- Historically 512B, but 4KiB in “advanced format” disks
- Written atomically (even if there is a power failure)

• Disk maps logical sector #s to physical sectors
- Zoning–puts more sectors on longer tracks
- Track skewing–sector 0 pos. varies by track (sequential access speed)
- Sparing–flawed sectors remapped elsewhere

• OS doesn’t know logical to physical sector mapping
- Larger logical sector # difference means larger seek
- Highly non-linear relationship (and depends on zone)
- OS has no info on rotational positions
- Can empirically build table to estimate times

9 / 28

http://www.idema.org/?page_id=98


Disk interface

• Controls hardware, mediates access
• Computer, disk often connected by bus (e.g., SCSI)

- Multiple devices may contentd for bus

• Possible disk/interface features:
• Disconnect from bus during requests
• Command queuing: Give disk multiple requests

- Disk can schedule them using rotational information

• Disk cache used for read-ahead
- Otherwise, sequential reads would incur whole revolution
- Cross track boundaries? Can’t stop a head-switch

• Some disks support write caching
- But data not stable—not suitable for all requests

10 / 28



SCSI overview [Schmidt]

• SCSI domain consists of devices and an SDS
- Devices: host adapters & SCSI controllers
- Service Delivery Subsystem connects devices—e.g., SCSI bus

• SCSI-2 bus (SDS) connects up to 8 devices
- Controllers can have > 1 “logical units” (LUNs)
- Typically, controller built into disk and 1 LUN/target, but “bridge
controllers” can manage multiple physical devices

• Each device can assume role of initiator or target
- Traditionally, host adapter was initiator, controller target
- Now controllers act as initiators (e.g., copy command)
- Typical domain has 1 initiator, ≥ 1 targets

11 / 28

https://rcs.uwaterloo.ca/~ali/cs350-f19/sched/readings/scsi.pdf


SCSI requests

• A request is a command from initiator to target
- Once transmitted, target has control of bus
- Target may disconnect from bus and later reconnect
(very important for multiple targets or even multitasking)

• Commands contain the following:
- Task identifier—initiator ID, target ID, LUN, tag
- Command descriptor block—e.g., read 10 blocks at pos. N
- Optional task attribute—simple, orderd, head of queue
- Optional: output/input buffer, sense data
- Status byte—good, check condition, intermediate, . . .

12 / 28



Executing SCSI commands

• Each LUN maintains a queue of tasks
- Each task is dormant, blocked, enabled, or ended
- simple tasks are dormant until no ordered/head of queue
- ordered tasks dormant until no HoQ/more recent ordered
- HoQ tasks begin in enabled state

• Task management commands available to initiator
- Abort/terminate task, Reset target, etc.

• Linked commands
- Initiator can link commands, so no intervening tasks
- E.g., could use to implement atomic read-modify-write
- Intermediate commands return status byte intermediate

13 / 28



SCSI exceptions and errors

• After error stop executing most SCSI commands
- Target returns with check condition status
- Initiator will eventually notice error
- Must read specifics w. request sense

• Prevents unwanted commands from executing
- E.g., initiator may not want to execute 2nd write if 1st fails

• Simplifies device implementation
- Don’t need to remember more than one error condition

• Same mechanism used to notify of media changes
- I.e., ejected tape, changed CD-ROM

14 / 28



Disk performance

• Placement & ordering of requests a huge issue
- Sequential I/O much, much faster than random
- Long seeks much slower than short ones
- Power might fail any time, leaving inconsistent state

• Must be careful about order for crashes
- More on this in next two lectures

• Try to achieve contiguous accesses where possible
- E.g., make big chunks of individual files contiguous

• Try to order requests to minimize seek times
- OS can only do this if it has a multiple requests to order
- Requires disk I/O concurrency
- High-performance apps try to maximize I/O concurrency

• Next: How to schedule concurrent requests
15 / 28



Outline

1 Disks

2 Disk Scheduling

3 Flash and SSDs

16 / 28



Scheduling: FCFS

• “First Come First Served”
- Process disk requests in the order they are received

• Advantages

- Easy to implement
- Good fairness

• Disadvantages

- Cannot exploit request locality
- Increases average latency, decreasing throughput

17 / 28



Scheduling: FCFS

• “First Come First Served”
- Process disk requests in the order they are received

• Advantages
- Easy to implement
- Good fairness

• Disadvantages
- Cannot exploit request locality
- Increases average latency, decreasing throughput

17 / 28



FCFS example

18 / 28



Shortest positioning time first (SPTF)

• Shortest positioning time first (SPTF)
- Always pick request with shortest seek time

• Also called Shortest Seek Time First (SSTF)
• Advantages

- Exploits locality of disk requests
- Higher throughput

• Disadvantages

- Starvation
- Don’t always know what request will be fastest

• Improvement?

- Give older requests higher priority
- Adjust “effective” seek time with weighting factor:
Teff = Tpos − W · Twait

19 / 28



Shortest positioning time first (SPTF)

• Shortest positioning time first (SPTF)
- Always pick request with shortest seek time

• Also called Shortest Seek Time First (SSTF)
• Advantages

- Exploits locality of disk requests
- Higher throughput

• Disadvantages
- Starvation
- Don’t always know what request will be fastest

• Improvement?

- Give older requests higher priority
- Adjust “effective” seek time with weighting factor:
Teff = Tpos − W · Twait

19 / 28



Shortest positioning time first (SPTF)

• Shortest positioning time first (SPTF)
- Always pick request with shortest seek time

• Also called Shortest Seek Time First (SSTF)
• Advantages

- Exploits locality of disk requests
- Higher throughput

• Disadvantages
- Starvation
- Don’t always know what request will be fastest

• Improvement: Aged SPTF
- Give older requests higher priority
- Adjust “effective” seek time with weighting factor:
Teff = Tpos − W · Twait

19 / 28



SPTF example

20 / 28



“Elevator” scheduling (SCAN)

• Sweep across disk, servicing all requests passed
- Like SPTF, but next seek must be in same direction
- Switch directions only if no further requests

• Advantages

- Takes advantage of locality
- Bounded waiting

• Disadvantages

- Cylinders in the middle get better service
- Might miss locality SPTF could exploit

• CSCAN: Only sweep in one direction
Very commonly used algorithm in Unix

• Also called LOOK/CLOOK in textbook
- (Textbook uses [C]SCAN to mean scan entire disk uselessly)

21 / 28



“Elevator” scheduling (SCAN)

• Sweep across disk, servicing all requests passed
- Like SPTF, but next seek must be in same direction
- Switch directions only if no further requests

• Advantages
- Takes advantage of locality
- Bounded waiting

• Disadvantages
- Cylinders in the middle get better service
- Might miss locality SPTF could exploit

• CSCAN: Only sweep in one direction
Very commonly used algorithm in Unix

• Also called LOOK/CLOOK in textbook
- (Textbook uses [C]SCAN to mean scan entire disk uselessly)

21 / 28



CSCAN example

22 / 28



VSCAN(r)

• Continuum between SPTF and SCAN
- Like SPTF, but slightly changes “effective” positioning time
If request in same direction as previous seek: Teff = Tpos
Otherwise: Teff = Tpos + r · Tmax

- when r = 0, get SPTF, when r = 1, get SCAN
- E.g., r = 0.2 works well

• Advantages and disadvantages
- Those of SPTF and SCAN, depending on how r is set

• See [Worthington] for good description and evaluation of various
disk scheduling algorithms

23 / 28

http://www.ece.cmu.edu/~ganger/papers/sigmetrics94.pdf


Outline

1 Disks

2 Disk Scheduling

3 Flash and SSDs

24 / 28



Flash memory

• Today, people increasingly using flash memory
• Completely solid state (no moving parts)

- Remembers data by storing charge
- Lower power consumption and heat
- No mechanical seek times to worry about

• Limited # overwrites possible
- Blocks wear out after 10,000 (MLC) – 100,000 (SLC) erases
- Requires flash translation layer (FTL) to provide wear leveling, so
repeated writes to logical block don’t wear out physical block

- FTL can seriously impact performance
- In particular, random writes very expensive [Birrell]

• Limited durability
- Charge wears out over time
- Turn off device for a year, you can potentially lose data

25 / 28

http://research.microsoft.com/pubs/63681/TR-2005-176.pdf


Types of flash memory

• NAND flash (most prevalent for storage)
- Higher density (most used for storage)
- Faster erase and write
- More errors internally, so need error correction

• NOR flash
- Faster reads in smaller data units
- Can execute code straight out of NOR flash
- Significantly slower erases

• Single-level cell (SLC) vs. Multi-level cell (MLC)
- MLC encodes multiple bits in voltage level
- MLC slower to write than SLC
- MLC has lower durability (bits decay faster)

26 / 28



NAND Flash Overview

• Flash device has 2112-byte pages
- 2048 bytes of data + 64 bytes metadata & ECC

• Blocks contain 64 (SLC) or 128 (MLC) pages
• Blocks divided into 2–4 planes

- All planes contend for same package pins
- But can access their blocks in parallel to overlap latencies

• Can read one page at a time
- Takes 25 µsec + time to get data off chip

• Must erase whole block before programing
- Erase sets all bits to 1—very expensive (2 msec)
- Programming pre-erased block requires moving data to internal
buffer, then 200 (SLC)–800 (MLC) µsec

27 / 28



Flash Characteristics [Caulfield’09]

Parameter SLC MLC
Density Per Die (GB) 4 8

Page Size (Bytes) 2048+32 2048+64
Block Size (Pages) 64 128
Read Latency (µs) 25 25
Write Latency (µs) 200 800
Erase Latency (µs) 2000 2000

40MHz, 16-bit bus Read b/w (MB/s) 75.8 75.8
Program b/w (MB/s) 20.1 5.0

133MHz Read b/w (MB/s) 126.4 126.4
Program b/w (MB/s) 20.1 5.0

28 / 28

http://cseweb.ucsd.edu/~swanson/papers/Asplos2009Gordon.pdf

	Disks
	Disk Scheduling
	Flash and SSDs

