Today’s Lecture

Dynamic memory allocation

E.g., malloc()/free() in C, new/delete in C++

Garbage collectors in Java, Go, JavaScript, Python

Allocators provide an abstraction on asking for pages
from the OS

- Uses brk() or mmap () to get memory from OS

- Manages free space effectively

- Returns unused memory to OS using munmap ()

1/34

Outline

@ Malloc and fragmentation

@ Exploiting program behavior

@ Allocator designs

O Garbage collection

2/34

Dynamic memory allocation

o Almost every useful program uses it
- Gives wonderful functionality benefits
> Don’t have to statically specify complex data structures
> Can have data grow as a function of input size
> Allows recursive procedures (stack growth)

- But, can have a huge impact on performance
e Today: how to implement it

- Lecture based on [Wilson] (good survey from 1995)
» Some interesting facts:

- Two or three line code change can have huge, non-obvious impact
on how well allocator works (examples to come)
- Proven: impossible to construct an “always good” allocator

- Surprising result: after 35 years, memory management still poorly
understood

3/34

https://rcs.uwaterloo.ca/~ali/cs350-f19/sched/readings/wilson.pdf

Why is it hard?

o Satisfy arbitrary set of allocation and free’s.

o Easy without free: set a pointer to the beginning of some
big chunk of memory (“heap”) and increment on each
allocation:

heap (free memory)

allocation
———————— I
current free position

o Problem: free creates holes (“fragmentation”) Result?
Lots of free space but cannot satisfy request!

(0 00T 0 §IT I TH

4/34

More abstractly

freelist

o What an allocator must do: i s s g i s

- Track which parts of memory in use, which parts are free

- Ideal: no wasted space, no time overhead

o What the allocator cannot do:
- Control order of the number and size of requested blocks

- Move allocated regions (bad placement decisions permanent)

G

]

b —

e The core fight: minimize fragmentation
- App frees blocks in any order, creating holes in “heap”

- Holes too small? cannot satisfy future requests S)a

What is fragmentation really?

e Inability to use memory that is free

o Two factors required for fragmentation

- Different lifetimes—if adjacent objects die at different times, then
fragmentation:

0 0T 0 FIT 0 I8

> If they die at the same time, then no fragmentation:

- Different sizes: If all requests the same size, then no fragmentation
(that’s why no external fragmentation with paging):

6/34

Important decisions

o Placement choice: where in free memory to put a
requested block?

- Freedom: can select any memory in the heap

- Ideal: put block where it won’t cause fragmentation later
(impossible in general: requires future knowledge)

o Split free blocks to satisfy smaller requests?

- Fights internal fragmentation

- Freedom: can choose any larger block to split

- One way: choose block with smallest remainder (best fit)

o Coalescing free blocks to yield larger blocks

20

10

—-

30

- Freedom: when to coalesce (deferring can save work)

- Fights external fragmentation

7/34

Impossible to “solve” fragmentation

o If you read allocation papers to find the best allocator

- All discussions revolve around tradeoffs

- The reason? There cannot be a best allocator

e Theoretical result:

- For any possible allocation algorithm, there exist streams of
allocation and deallocation requests that defeat the allocator and
force it into severe fragmentation.

o How much fragmentation should we tolerate?

- Let M = bytes of live data, n1in = smallest allocation,
fimax = largest — How much gross memory required?

- Bad allocator: M - (fmax/ Mmin)
(only ever uses a memory location for a single size)

- Good allocator: ~ M - 10g(#max/ fimin)

8/34

Pathological examples

¢ Given allocation of 7 20-byte chunks

- What'’s a bad stream of frees and then allocates?

e Given a 128-byte limit on malloced space

- What's a really bad combination of mallocs & frees?

o Next: two allocators (best fit, first fit) that, in practice,
work pretty well

- “pretty well” = ~20% fragmentation under many workloads

9/34

Pathological examples

¢ Given allocation of 7 20-byte chunks

- What's a bad stream of frees and then allocates?
- Free every other chunk, then alloc 21 bytes
e Given a 128-byte limit on malloced space

- What's a really bad combination of mallocs & frees?

o Next: two allocators (best fit, first fit) that, in practice,
work pretty well

- “pretty well” = ~20% fragmentation under many workloads

9/34

Pathological examples

¢ Given allocation of 7 20-byte chunks

- What'’s a bad stream of frees and then allocates?

- Free every other chunk, then alloc 21 bytes

e Given a 128-byte limit on malloced space

- What's a really bad combination of mallocs & frees?

- Malloc 128 1-byte chunks, free every other

- Malloc 32 2-byte chunks, free every other (1- & 2-byte) chunk
- Malloc 16 4-byte chunks, free every other chunk...

o Next: two allocators (best fit, first fit) that, in practice,
work pretty well
- “pretty well” = ~20% fragmentation under many workloads

9/34

Best fit

o Strategy: minimize fragmentation by allocating space
from block that leaves smallest fragment

- Data structure: heap is a list of free blocks, each has a header

holding block size and pointers to next
]

[od F—30] F—1z0] F—I37] +—

- Code: Search freelist for block closest in size to the request. (Exact
match is ideal)

- During free (usually) coalesce adjacent blocks

e Problem: Sawdust
- Remainder so small that over time left with “sawdust” everywhere

- Fortunately not a problem in practice

10 /34

Best fit gone wrong

o Simple bad case: allocate 1, m (n < m) in alternating
orders, free all the ns, then try to allocate an n + 1

o Example: start with 100 bytes of memory
- alloc 19,21, 19, 21, 19

- free 19,19, 19:

15 E

- alloc 20? Fails! (wasted space = 57 bytes)

o However, doesn’t seem to happen in practice (though the
way real programs behave suggest it easily could)

11/34

First fit

Strategy: pick the first block that fits
- Data structure: free list, sorted lifo, fifo, or by address
- Code: scan list, take the first one
LIFO: put free object on front of list.
- Simple, but causes higher fragmentation
- Potentially good for cache locality
Address sort: order free blocks by address
- Makes coalescing easy (just check if next block is free)
- Also preserves empty/idle space (locality good when paging)
FIFO: put free object at end of list

- Gives similar fragmentation as address sort, but unclear why

12 /34

Subtle pathology: LIFO FF

o Storage management example of subtle impact of simple
decisions
o LIFO first fit seems good:

- Put object on front of list (cheap), hope same size used again
(cheap + good locality)
 But, has big problems for simple allocation patterns:

- E.g., repeatedly intermix short-lived 2n-byte allocations, with
long-lived (n + 1)-byte allocations

- Each time large object freed, a small chunk will be quickly taken,
leaving useless fragment. Pathological fragmentation

13 /34

First fit: Nuances

« First fit sorted by address order, in practice:

- Blocks at front preferentially split, ones at back only split when no

larger one found before them

- Result? Seems to roughly sort free list by size

- So? Makes first fit operationally similar to best fit: a first fit of a

sorted list = best fit!

o Problem: sawdust at beginning of the list

- Sorting of list forces a large requests to skip over many small

blocks. Need to use a scalable heap organization

e Suppose memory has free blocks: | 20

15

- If allocation ops are 10 then 20, best fit wins
- When is FF better than best fit?

14 /34

First fit: Nuances

« First fit sorted by address order, in practice:

- Blocks at front preferentially split, ones at back only split when no

larger one found before them

- Result? Seems to roughly sort free list by size

- So? Makes first fit operationally similar to best fit: a first fit of a

sorted list = best fit!

o Problem: sawdust at beginning of the list

- Sorting of list forces a large requests to skip over many small

blocks. Need to use a scalable heap organization

e Suppose memory has free blocks: | 20

15

- If allocation ops are 10 then 20, best fit wins
- When is FF better than best fit?

- Suppose allocation ops are 8, 12, then 12 = first fit wins

14 /34

Some worse ideas

o Worst-fit:

- Strategy: fight against sawdust by splitting blocks to maximize
leftover size

- In real life seems to ensure that no large blocks around

o Next fit:

- Strategy: use first fit, but remember where we found the last thing
and start searching from there

- Seems like a good idea, but tends to break down entire list

e Buddy systems:

- Round up allocations to power of 2 to make management faster

- Result? Heavy internal fragmentation

15/34

Outline

@ Malloc and fragmentation

@ Exploiting program behavior

@ Allocator designs

O Garbage collection

16 /34

Known patterns of real programs

» So far we’ve treated programs as black boxes.

e Most real programs exhibit 1 or 2 (or all 3) of the
following patterns of alloc/dealloc:

- Ramps: accumulate data monotonically over time

bytes

3

P

»

- Peaks: allocate many objects, use briefly, then free all

bytes

W

»

- Plateaus:

bytes

3

allocate many objects, use for a long time

\

»

17 /34

Pattern 1: ramps

Bytes in use
\
\
\
[S U

time
trace from an LRU simulator

e In a practical sense: ramp = no free!

- Implication for fragmentation?

- What happens if you evaluate allocator with ramp programs only?

18 /34

Pattern 2: peaks

Bytes in use

time
trace of gcc compiling with full optimization

o Peaks: allocate many objects, use briefly, then free all

- Fragmentation a real danger
- What happens if peak allocated from contiguous memory?

- Interleave peak & ramp? Interleave two different peaks?

19/34

Exploiting peaks

o Peak phases: alloc a lot, then free everything

- So have new allocation interface: alloc as before, but only support
free of everything

- Called “arena allocation”, “obstack” (object stack), or
alloca/procedure call (by compiler people)

o Arena = a linked list of large chunks of memory

- Advantages: alloc is a pointer increment, free is “free”
No wasted space for tags or list pointers

64k

] 64k
“— free pointer

20/34

Pattern 3: Plateaus

W/'WW\/W

Bytes in use

/\’_M/n_

time
trace of perl running a string processing script

 Plateaus: allocate many objects, use for a long time

- What happens if overlap with peak or different plateau?

21/34

Fighting fragmentation

o Segregation = reduced fragmentation:

- Allocated at same time ~ freed at same time

- Different type ~ freed at different time

CTTTTT T — TTITIT
I 5 e, I

e Implementation observations:

- Programs allocate small number of different sizes

Fragmentation at peak use more important than at low

Most allocations small (< 10 words)

- Work done with allocated memory increases with size

Implications?

22/34

Outline

@ Malloc and fragmentation

@ Exploiting program behavior

© Allocator designs

O Garbage collection

23/34

Slab allocation [Bonwick]

Kernel allocates many instances of same structures
- E.g.,a 1.7 KB task_struct for every process on system
Often want contiguous physical memory (for DMA)
Slab allocation optimizes for this case:
- A slab is multiple pages of contiguous physical memory
- A cache contains one or more slabs
- Each cache stores only one kind of object (fixed size)
Each slab is full, empty, or partial
E.g., need new task_struct?
- Look in the task_struct cache
- If there is a partial slab, pick free task_struct in that

- Else, use empty, or may need to allocate new slab for cache

Advantages: speed, and no internal fragmentation

24 /34

https://rcs.uwaterloo.ca/~ali/cs350-f19/sched/readings/bonwick:slab.pdf

Simple, fast segregated free lists

AN

5

Array of free lists for small sizes, tree for larger

- Place blocks of same size on same page

- Have count of allocated blocks: if goes to zero, can return page
Pro: segregate sizes, no size tag, fast small alloc
Con: worst case waste: 1 page per size even w/o free,

after pessimal free waste 1 page per object

TCMalloc [Ghemawat] is a well-documented malloc like

this

25/34

http://goog-perftools.sourceforge.net/doc/tcmalloc.html

Typical space overheads

o Free list bookkeeping + alignment determine minimum
allocatable size:
- Store size of block

- Pointers to next and previous freelist element

12 16 _
I I 8 byte alignment? addr % 8 =0
0xf0 Oxfc

Machine enforced overhead: alignment. Allocator doesn’t know
type. Must align memory to conservative boundary

- Minimum allocation unit? Space overhead when allocated?

26/ 34

Getting more space from OS

¢ On Unix, can use sbrk

- E.g., to activate a new zero-filled page:
sbrk(4096)

/* add nbytes of valid virtual address space */
void *get_free_space(unsigned nbytes) {
void *p;
if((p = sbrk(nbytes)))
error("virtual memory exhausted"”);
return p.

I
o For large allocations, sbrk a bad idea

- May want to give memory back to OS
- Can’t with sbrk unless big chunk last thing allocated
- So allocate large chunk using mmap’s MAP_ANON

27 /34

Outline

@ Malloc and fragmentation

@ Exploiting program behavior

@ Allocator designs

O Garbage collection

28 /34

Garbage collection

o In safe languages, run time knows about all pointers

- So can move an object if you change all the pointers

o What memory locations might a program access?
- Any objects whose pointers are currently in registers
- Recursively, any pointers in objects it might access

- Anything else is unreachable, or garbage; memory can be re-used

o Example: stop-and-copy garbage collection
- Memory full? Temporarily pause program, allocate new heap

- Copy all objects pointed to by registers into new heap
> Mark old copied objects as copied, record new location

- Start scanning through new heap. For each pointer:
> Copied already? Adjust pointer to new location

> Not copied? Then copy it and adjust pointer

- Free old heap—program will never access it—and continue

29/34

Concurrent garbage collection

¢ Idea: Stop & copy, but without the stop

- Mutator thread runs program, collector concurrently does GC

e When collector invoked:

Protect from space & unscanned to space from mutator

Copy objects in registers into to space, resume mutator

All pointers in scanned to space point to to space

If mutator accesses unscanned area, fault, scan page, resume

scanned unscanned
area area

mutator faults
on access

from spaée o sp.ace
(See [Appel & Li].)

30/34

https://rcs.uwaterloo.ca/~ali/cs350-f19/sched/readings/vmpup.pdf

Heap overflow detection

¢ Many GCed languages need fast allocation
- E.g., in lisp, constantly allocating cons cells

- Allocation can be as often as every 50 instructions
« Fast allocation is just to bump a pointer

char *next_free;
char *heap_limit;

void *alloc (unsigned size) {
if (next_free + size > heap_limit) /* 1 */
invoke_garbage_collector (); /* 2 x/
char *ret = next_free;
next_free += size;
return ret;

3

o But would be even faster to eliminate lines 1 & 2!
31/34

Heap overflow detection 2

Mark page at end of heap inaccessible
- mprotect (heap limit, PAGE_SIZE, PROT_NONE);

Program will allocate memory beyond end of heap

Program will use memory and fault

- Note: Depends on specifics of language

- But many languages will touch allocated memory immediately
Invoke garbage collector

- Must now put just allocated object into new heap

Note: requires more than just resumption
- Faulting instruction must be resumed
- But must resume with different target virtual address

- Doable on most architectures since GC updates registers

32/34

Reference counting

o Seemingly simpler GC scheme:

- Each object has “ref count” of pointers to it
- Increment when pointer set to it
- Decremented when pointer killed (C++
des.tructors handy for such “smart pointers”) r ef_ 2
void foo(bar c) {
bar a, b;
A = C) qrnnnrrrrrnmnnssseennnnen c->refcnt++;
b = @ querereerrrrrennnnnnnnnns a->refcnt++;
L R ¢ c->refent--;
(0 {11 (PP b->refcnt--;
}

- ref count == 0? Free object
o Works well for hierarchical data structures
- E.g., pages of physical memory

33/34

Reference counting pros/cons

Circular data structures always have ref count > 0

- No external pointers means lost memory

/\

ref=1 ol ref=1

Can do manually w/o PL support, but error-prone
Potentially more efficient than real GC

- No need to halt program to run collector

- Avoids weird unpredictable latencies
Potentially less efficient than real GC

- With real GC, copying a pointer is cheap

- With reference counting, must write ref count each time

34/34

	Malloc and fragmentation
	Exploiting program behavior
	Allocator designs
	Garbage collection

