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My research focuses on making computer systems reli-
able and easy to manage.

The past decade has seen a rapid acceleration in the
development of new and transformative applications in
many areas including transportation, medicine, finance,
and communication. Most of these applications are made
possible by the increasing diversity and scale of hardware
and software systems. At one end of the spectrum, services
spanning thousands of machines routinely compute over
data sets of unimaginable size. At the other, consumer
products including desktops, phones, cars and IoT devices
have created a broad ecosystem of devices and sensors for
developers to build on.

While this brings unprecedented opportunity, it also
increases the probability of failures and the difficulty of
diagnosing them. For example, a recent bug in the 787
avionics system [14] where all three flight control systems
can reset simultaneously, led the FAA to issue guidance to
periodically reboot these systems until a permanent fix can
be found.

Increased scale and transience has also made manage-
ment increasingly challenging. Devices can come and go
for a variety of reasons including mobility, failure and
recovery, and scaling capacity to meet demand.

Systems need to be able adapt to these conditions with-
out human intervention. Operator error is a significant
cause of outages and data loss, fundamentally limiting
reliability. Further, many tasks—from automatically recov-
ering from large scale failures, to seamlessly incorporating
large numbers of mobile devices—are not possible with a
human in the loop.

I have approached these challenges by building systems
that decouple software state from physical hardware, and
thus can adapt as hardware comes and goes.

While at VMware, I built several systems for live mi-
gration. Live migration decouples virtual machines (VMs)
and disks from the underlying hosts and storage systems,
allowing them to be moved to other devices at runtime
without service interruption. This makes dynamic resource
scheduling, zero downtime hardware maintenance and scal-
ing, disaster recovery, and a variety of other automated
management tasks possible.

The systems I built included live storage migration [7]
that enables migrating storage without downtime, XvMo-
tion [10] that enables migration of virtual machines and

storage over longer distances, from crossing racks, to cross-
ing the globe, and Centaur [12], a system that reworks the
virtual disk abstraction to allow near instantaneous storage
migration enabling real time IO scheduling.

At Stanford, I built Ori [8], a reliable distributed file
system for devices at the network edge. Ori decouples files
from any particular device, and automates many of the
tasks of storage reliability and recovery through replication,
taking advantage of fast LANs and low cost local storage
in edge networks.

Most recently, I built Castor [17], a low-overhead multi-
core record/replay system. Castor decouples applications
from hardware, allowing execution to be replicated across
hosts. This enables transparent fault tolerance in network
services. Castor also allows failures to be recorded when
they occur in production, then later replayed for analysis,
greatly simplifying the task of diagnosis.

Another approach I take to building systems is rethink-
ing solutions at different layers of the stack, Castor is a
good example of this.

Existing approaches to transparent fault tolerance work
only at the hardware (Stratus) or virtualization (VMware
FT) layer. Both have many limitations. Stratus requires
specialized hardware, while VMware FT needs a fast ded-
icated local interconnect and adds non-trivial overhead.
Both systems are very complex and required many years
of effort to develop.

Castor provides a simpler and more capable approach
by attacking this problem at multiple layers. It leverages
compiler instrumentation, shared library and language run-
time support, in conjunction with low level architecture
features to implement record and replay as a basis for fault
tolerance. It is very low overhead and requires no special-
ized hardware. Consequently, it can support fault tolerance
in a much wider range of settings.

Much of my inspiration comes from solving my own
problems. I have been collecting, fixing, and running
computer systems for most of my life, as well as writing
software for these systems. Ori was inspired by a desire for
reliable and easily managed storage on my own devices.
Castor was developed in response to my needs developing
Ori. While building Ori, I was also frustrated with existing
solutions for hardening my code against attacks. This led
to a better system for mitigating C/C++ memory attacks
called CCFI [13].
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While the inspiration for these systems is personal, the
solutions they offer have broad importance. Hardware
architectures, compilers, operating systems, and the dis-
tributed systems we build on them are the foundation that
future solutions in many other fields will rely on. The scale,
diversity, and complexity of hardware is rapidly growing.
Consequently, it is important that we continually re-assess
how best to architect these foundational elements to ensure
that future systems will be safe, dependable, understand-
able, and will allow us to make full use of their capacity.

Migration Systems
For several years I was the technical lead for migration
at VMware. There are two types of migration. Storage
Migration moves virtual disks between volumes on differ-
ent storage devices including storage arrays, NAS, and
local disks. Virtual Machine Migration, moves VM’s
(CPU/memory/device) between hosts. All of this takes
place at runtime, ideally with no service interruption.

Migration enables live upgrades, scaling, and hardware
maintenance. It also enables cluster and data center level
resource scheduling for optimal CPU, memory, IO and
power utilization. By the time I left VMware, migration
was in use by ∼80% of enterprise customers.

I led the development of two new storage migration
architectures that reduced downtimes for storage migration
from minutes to well under a second, thus enabling live
storage migration, i.e., migration with no visible service
interruptions [7].

I also led the development of long distance live mi-
gration (XvMotion) that eliminated the dependence on
local shared storage and networking, and enabled VMs to
migrate between independent physical hosts whether in
the same rack or in data centers on separate sides of the
globe [10].

Finally, I led efforts to span the virtual disk abstraction
across physical hosts and introduce storage load balanc-
ing in a system called Centaur [12]. This reduced total
migration times from tens of minutes or hours to minutes
or less, enabling responsive and efficient distributed IO
scheduling.

Live Storage Migration The goal of live storage migra-
tion is to migrate a virtual disk between volumes without
disrupting the services inside the virtual machine. Achiev-
ing this requires minimizing total migration time, minimiz-
ing downtime—the duration between pausing the VM on
the source and resuming it on the destination, and mini-
mizing the performance penalty induced on the workload
during migration.

The original storage migration system could barely be
considered “live,” with downtimes in the range of minutes.
Over the course of several years I iterated through two
architectures for storage migration: an iterative copy ap-

proach tracking modified blocks (in ESX 4.0), and an IO
mirroring approach (in ESX 5.0).

In both systems, I introduced several new optimizations
to minimize downtime and total migration time. The final
system brought the downtime down to predictably under
a tenth of second, and minimized migration times to only
slightly longer than the time it takes to copy virtual disks.
I published a comparison of all three systems in USENIX
ATC [7].

Long Distance Migration VMware’s migration sys-
tems was originally built with the assumption of shared
local storage, e.g., a SAN, and shared local subnet.

I led the design and implementation of a long-distance
migration system that overcame these limitations called
XvMotion [10], which first shipped with VMware ESX
6.0.

XvMotion enables migration between independent phys-
ical hosts, across racks, and even across data centers on
different sides of the world. Decoupling VMs from the
local network and storage array also enables new use cases,
including test-to-production migration, whole data center
maintenance, and whole site disaster recovery, e.g., tol-
erating the failure of a cooling system or other physical
infrastructure that can cripple a data center.

XvMotion was a large effort that integrated the vir-
tual machine memory and storage migration systems, and
added a new application layer transport, in addition to
changes in the ESX TCP/IP stack and Layer 2 virtualiza-
tion. Our new transport supported both high bandwidth
networking, e.g., multi-path over multiple 10 Gbps NICs,
as well as increased tolerance for higher latencies on the
WAN. To keep downtimes low over low bandwidth and
high latency links, we introduced several new approaches
to dynamically throttle workloads based on available band-
width, ensuring graceful migration convergence.

Centaur: Virtualizing Virtual Disks A major use case
for both live migration and storage migration is automated
cluster level load balancing, in VMware’s hypervisor this
is performed by the VMware Distributed Resource Sched-
uler (DRS). The effectiveness of DRS is limited by how
fast it can react to workload changes. Normal storage
migrations can take anywhere from tens of minutes to
hours, depending on virtual disk size and how many other
heavy workloads a storage array is handling concurrently,
thus preventing DRS from reacting to short term workload
changes. Further, the IO overhead of storage migrations
can severely impact other workloads on the same volume,
impacting cost/benefit of DRS use.

A much more efficient approach is possible if we instead
move from a virtual disk abstraction that is tied to a single
volume to one that can span multiple volumes, potentially
spanning multiple storage arrays or physical hosts. This
allows DRS to migrate only the working set of the VM,
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usually only a few percent of total disk size. We enabled
this by introducing a fine-grained storage load balancer at
the granularity of virtual disk blocks.

While at VMware I mentored and collaborated with an
intern through two summers to build such a system, which
we called Centaur [12]. Centaur calculates miss rate curves
and detailed statistics (e.g., IO size, read/write ratio) of VM
IO workloads, then partitions virtual disks among multiple
volumes, and precisely controls what percentage of the
read or write working set to move between volumes. The
result was a migration system with vastly lower migration
overheads and the ability to dynamically adapt scheduling
of migration IO based on cluster level IO scheduling policy.
Rather than migrations taking an hour, Centaur can react
to workload changes within minutes.

Ori File System
When I came to to Stanford for my PhD, I wanted to
build a storage system that would support reliability for
storage devices beyond the data center. Unlike my work at
VMware, I was not confined to working within the virtual
disk abstraction or proprietary storage arrays, and could
reconsider storage abstractions.

To address this, I built Ori [8]. Ori replicates user data
intelligently across the pool of available devices, including
laptops, servers, phones, etc. to ensure reliability. Ori
applies the idea of decoupling software state from the
underlying hardware through storage replication. This
ensures that data is not tied to any particular device, thus
is not lost if a device is lost, damaged, or stolen.

Cloud storage systems, e.g., Dropbox, provide central-
ized user storage in the cloud, a simple approach to reliable
and easily managed storage. However, this approach also
has limitations.

The size of physical disks in personal computers is grow-
ing much faster than the Internet bandwidth available to
users. The time to transfer a typical disk over a typical
WAN connection grew from 14 hours in 1990 to 278 days
in 2013. Local area networks are typically two orders of
magnitude faster than the WAN. In terms of cost, Dropbox
commanded a 25x premium over local storage in 2013.
Finally, placing one’s data into the hands of a third party
introduces security and privacy concerns.

Ori provides an alternative approach to enabling relia-
bility and ease of management by automating replication,
versioning and sharing on a local file system that can oper-
ate across devices at the network edge. In Ori, replication
replaces backup as the primary form of reliability. User’s
can take snapshots and access older versions of files. Shar-
ing occurs through a novel mechanism called grafting that
allows users to export and import any subdirectory with
history across file systems. Discovery of nearby nodes,
replication, and pruning old history are taken care of auto-
matically by Ori.

Ori has thousands of downloads, and dozens of users ac-
tively contributing feedback, bug fixes, and improvements.

Practical Default On Record/Replay

While building Ori, I found myself wanting a simpler way
to build services that would continue to work even as de-
vices disappeared, either because of hardware failure, loss
of power, or just loss of a network connection. This in-
spired my work on Castor.

Castor [17] is low overhead multi-core record/replay
system that can be used as a foundation for building fault
tolerance, or capturing and reproducing production bugs
when they occur. For fault tolerance, Castor can run a
replica of a server in parallel. Thus, even if the server’s
hardware fails, or otherwise disappears, the service will not
be interrupted. In this way, Castor decouples computing
from particular hardware for availability.

Castor’s low overhead makes it practical to leave on by
default in production, either for fault tolerance or bug catch-
ing purposes. Careful use of hardware in Castor results in
a 10x or more increase in log throughput compared to sim-
ilar record/replay systems, e.g., a server could potentially
handle 10x more requests per second for the same total
record overhead. Use of compiler and architecture level
techniques allows Castor to record and replay unmodified
applications, requiring only recompilation.

Castor provides a very low-overhead, simple, and flexi-
ble way for developers to transparently add fault tolerance
to multi-core applications. In comparison, VMM based ap-
proaches to fault tolerance relying on replay have not been
able to support multi-core [16], while other approaches
based on fast checkpointing incur substantial complexity,
and are limited to protecting machines in close proximity
with a dedicated NIC to handle synchronization traffic.

Castor also provides a practical solution for recording
and reproducing production bugs when they occur. Exist-
ing approaches have often incurred significant overheads
when dealing with multi-core applications that make them
impractical for coping with production workloads. Castor
can also be used to enable reverse debuggers, dynamic pro-
gram analysis tools (e.g., race detectors) and other systems
where decoupling heavy weight offline analysis from fast
online recording is useful.

Our current prototype supports applications written in
C/C++ and Go. We are communicating with developers of
several platforms for an initial release of Castor. Our even-
tual goal is to provide a common platform for record/replay
that others can use in research and production, similar to
the way that LLVM/Clang enables work on optimizations,
static and dynamic analysis.
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Cryptographic Control Flow Integrity
Buffer overflows and other types of memory errors are
a critical source of vulnerabilities in systems written in
C/C++. As a developer of these systems, I wanted a better
approach to hardening my code against these attacks than
what was offered by the state of the art. The outcome was
CCFI [13], an improved form of CFI.

Control flow integrity (CFI) is a technique to prevent
an attacker from taking control of an application’s execu-
tion, even if they are able to corrupt its memory. It works
by limiting control flow pointers, e.g., function pointers,
return pointers, and method pointers, to pointing only to
the programmer’s intended sites. Past CFI systems classify
pointers through static analysis into groups of valid targets
for any given indirect jump. As a result of relying purely
on static analysis, previous systems have been overly per-
missive, and attacks have been shown against all static CFI
implementations.

Cryptographic CFI is a dynamic approach to CFI. Un-
like previous systems, it can classify pointers based on
dynamic and runtime characteristics in addition to static
analysis. CCFI dramatically reduces the impact an attack
can have on application execution, limiting the attacker to
only actively used code paths. CCFI is implemented as a
compiler pass in LLVM that inserts cryptographic code to
generate and verify MACs of pointers.

Currently, CCFI incurs between 2%–20% overhead for
various server workloads. However, a majority of this over-
head is in protecting the return stack, rather than function
pointers. Intel’s planned hardware shadow stack mecha-
nism [15] should bring this overhead down to just a few
percent for future versions of CCFI.

Future Directions
Replicated Storage at Enterprise Scale
Many challenges remain in storage systems with signif-
icant heterogeneity in storage devices, networking, and
geographic proximity. For example, companies with multi-
ple primary offices and branch offices often use an ad-hoc
combination of medium scale storage systems, e.g., Ne-
tApp or EMC storage arrays, with branch office caches.
These setups become overly complex because of the va-
riety of mechanisms employed, e.g., replication, caching,
and backups.

A unified approach like Ori can potentially provide a
better way of addressing this with commodity hardware.
However, a variety of challenges need to be addressed to
realize a solution.

Point-to-point networking does not scale well for large
storage applications. I am interested in revisiting some of
the ideas from the JetFile storage system [1] to create a
multicast bulk transport that is practical for today’s users.

Such a solution should provide authenticated key exchange,
encryption, and congestion control. It should also adjust
how nodes join and leave the multicast group depending
on available bandwidth and latency.

Replicating across geographically distributed sites also
raises other questions around latency, scalability, and con-
sistency. How do we efficiently enable users to share data
across sites? How does the our data model impact scal-
ability and latency? How should consistency change for
geographically distributed storage?

Replicated storage systems also run into problems when
individual users can control a host and thus override secu-
rity by impersonating users or modifying the file system
directly. Grafting in Ori shares subdirectories in an all-or-
nothing manner to avoid this entirely. I want to develop
a more granular approach that can address the needs of a
replicated storage system using cryptographic primitives.

Rethinking Reliability: Current storage systems have
fixed configurations for storage reliability, i.e., a RAID
level, based on recommended best practices that are up-
dated every few years by major vendors. This approach
delivers inconsistent reliability, and makes it difficult to
dynamically scale storage.

Instead of the current static approach, storage systems
should dynamically change their storage configuration
(replication, placement, parity, etc.) as a function of pol-
icy and available resources, automatically bounding the
probability of data loss. Better factoring in drive age and
device type can lead to more precise models for failure
prediction. Actively recomputing failure probabilities can
keep reliability models up to date as storage configurations
dynamically change.

Correlated failures are another area I would like to ex-
plore. Many systems ignore correlated failures of disks [2],
[3], correlated failures of sector ranges [5], and drive health
reporting (e.g., SMART) [2]. For example, traditional
RAID5/6 stripes across the same sector on all drives, mak-
ing it susceptible to correlated failure of sector ranges.
Factoring storage diversity (e.g., brand, model, production
run, and firmware version), and exogenous factors like
power and cooling, into replication choices, could also be
interesting.

Record/Replay: Mechanism to Applications
The capabilities that Castor provides opens the door to
exploring several new avenues.

Transparent Failure Tolerance: My hope is to build a
system where robustness to a wide range of serious hard-
ware failures could be enabled simply and correctly by
doing little more than recompiling and relinking applica-
tions. I think this could be very valuable in a wide range
of settings, from traditional IT where downtime is costly,
to industrial and medical settings, where continuous opera-
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tion is critical.
Existing state machine replication approaches require

building or refactoring applications into two parts, the part
that is replicated and the part that is not. This is labor
intensive and error prone, as the interaction of these parts
must still be correct. A much simpler solution is provided
by fault tolerance systems that replicate entire applications,
such as VMWare’s FT, Stratus, Castor. These, however,
can only tolerate the failure of a single host.

An alternative I want to explore is applying consensus
to the replay log itself [9], [11]. This can potentially en-
able applications to tolerate network partitions, multi-node
failures, etc. with the same ease and transparency Castor
provides for fault tolerance today. Beyond this, I would
like to look at applying practical byzantine fault tolerance
techniques in the context of Castor.

Automatic Triage: Everyone has had their browser or
other application crash, resulting in a bug report being sent
to the developer. Unfortunately, diagnosing the cause of
crashes today is often manual and time consuming (if pos-
sible at all). Consequently, at many companies, including
VMware and Microsoft [6], many bugs reported by cus-
tomers are closed without ever being diagnosed or fixed.
Even the problem of establishing if two bugs are the same
can be a daunting task.

Record/replay provides a promising approach to address-
ing this challenge. Replay can provide essential context
to support automatically classifying and diagnosing many
bugs, with little or no manual intervention [4]. Prior work
has just scratched the surface of what is possible. I am
interested in looking at how we can apply replay, dynamic
analysis, and program slicing techniques to making au-
tomatic triage and bug diagnoses a regular part of the
development process.
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