The Aurora Single Level Store

Operating System

Emil Tsalapatis
emil.tsalapatis@uwaterloo.ca
RCS Lab, University of Waterloo
Waterloo, Canada

Tavian Barnes
tbarnes@uwaterloo.ca
RCS Lab, University of Waterloo
Waterloo, Canada

Abstract

Applications on modern operating systems manage their
ephemeral state in memory and persistent state on disk. En-
suring consistency between them is a source of significant
developer effort and application bugs. We present the Au-
rora single level store, an OS that eliminates the distinction
between ephemeral and persistent application state.

Aurora continuously persists entire applications with mil-
lisecond granularity to provide persistence as an OS ser-
vice. Aurora revists the problem of application checkpointing
through the lens of a single level store. Aurora supports trans-
parent and customized applications. The RocksDB database
using Aurora’s APIs achieved a 75% throughput improve-
ment while removing 40% of its code.

CCS Concepts: - Computer systems organization — Re-
liability; Secondary storage organization; Dependable and
fault-tolerant systems and networks; « Software and
its engineering — Operating systems.

Keywords: single level store, transparent persistence, check-
point/restore

ACM Reference Format:

Emil Tsalapatis, Ryan Hancock, Tavian Barnes, and Ali José Mash-
tizadeh. 2021. The Aurora Single Level Store Operating System.
In ACM SIGOPS 28th Symposium on Operating Systems Principles
(SOSP °21), October 26-29, 2021, Virtual Event, Germany. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3477132.3483563

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP °21, October 26-29, 2021, Virtual Event, Germany

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-8709-5/21/10...$15.00
https://doi.org/10.1145/3477132.3483563

Ryan Hancock
krhancoc@uwaterloo.ca
RCS Lab, University of Waterloo
Waterloo, Canada

Ali José Mashtizadeh
ali@rcs.uwaterloo.ca
RCS Lab, University of Waterloo
Waterloo, Canada

1 Introduction

Single level storage (SLS) systems provide application persis-
tence as an operating system service. Their advantage comes
from eliminating the semantic gap between the in-memory
and the serialized on-disk representations to decrease appli-
cation code complexity and reduce software bugs [17, 53].
Applications written for an SLS hold data solely in memory,
and the operating system persists the entire application. De-
velopers write programs as if they never crash and do not
write code for persistence and recovery. After a crash, the
SLS restores the application from disk, including all execu-
tion state (i.e., CPU registers, OS state, and memory), and
resumes execution oblivious to the interruption.

At a high level, a single level store accurately captures all
application state and stores it on disk with low overhead. The
capturing frequency determines the maximum amount of
application work lost on a failure. Furthermore, the system’s
storage bandwidth limits the frequency.

SLSes were impractical for decades because of perfor-
mance reasons, but this has changed with the advent of
new hardware. Past systems suffered because memory band-
width and latency were orders of magnitude faster than disks.
Write amplification from the page granularity memory track-
ing of SLS systems amplifies the storage bandwidth required.
Modern flash coupled with fast PCIe Gen 4-5 are closing the
performance gap with memory.

Another problem with existing and prior single level stores
is their incompatibility with the ubiquitous POSIX API. IBM’s
i Series mainframes, the successor to the AS/400, provide a
custom operating system, runtime and compiler that work
in concert to provide persistence [59]. The IBM compilers
semi-automatically insert API calls into the application for
persistence. Research systems like EROS also worked by
providing a custom API [58].

We introduce the Aurora Operating System, a novel single
level store that enables the persistence and manipulation of
execution state. Aurora is based on the FreeBSD kernel and is
the first SLS to run POSIX applications. Aurora supports all

https://sysartifacts.github.io/sosp2021/results.html
https://sysartifacts.github.io/sosp2021/results.html
https://orcid.org/0000-0003-2185-2029
https://orcid.org/0000-0001-6596-3623
https://orcid.org/0000-0002-0343-1530
https://orcid.org/0000-0002-8672-5138
https://doi.org/10.1145/3477132.3483563
https://doi.org/10.1145/3477132.3483563

POSIX abstractions and complex multi-process applications
like the Firefox web browser.

Aurora has three main challenges: First, POSIX state is
inherently difficult to capture as state spans both userspace
and the kernel, and is not always associated with a process.
Second, saving application state frequently requires incre-
mental tracking to reduce system overhead. Third, the bulk
of the state is memory that is tracked using the memory
management unit (MMU), adding runtime overhead.

Aurora solves these problems using two techniques. First,
it treats POSIX objects (e.g. UNIX domain sockets, System
V shared memory, and open files) as first class objects. This
allows Aurora to handle applications that share memory or
files between processes, without duplicating work or leaving
edge cases unhandled. Second, we introduce system shad-
owing to efficiently track system-wide updates to memory.

Users can persist, copy, revert, or transfer running ap-
plications the same way they would a file. Aurora creates
application checkpoints by default every 10 ms that encapsu-
late all information required to recreate the application, even
across reboots and machines. The 10 ms target is selected to
provide modest overhead for transparently persisted appli-
cations. Applications using the Aurora API achieve faster
checkpoint frequencies with low overhead.

The persistence and manipulation of execution state en-
ables a broad range of applications. For example, Aurora
replaces database storage engines, which reduces applica-
tion complexity and overhead. The persistence API enables
databases to use the hardware MMU to track changes over
typical software tracking techniques. Capturing applications
post initialization accelerates warm starts for serverless com-
puting, just-in-time compilation, and other applications with
costly initializations. Keeping execution history enables time
travel debugging and record/replay. Transferring applica-
tions between machines enables transparent migration and
fault tolerance.

Aurora makes the following contributions:

e We develop an architecture that supports both unmod-
ified and customized POSIX applications. Unmodified
applications gain transparent persistence at regular
intervals (by default 10 ms). Customized applications
can achieve microsecond-level persistence.

e We expand the concept of a single level store with new
primitives for the manipulation of execution state to
enable new mechanisms. The ability to provide fast
incremental checkpoints and restores has applications
to systems from debugging to serverless computing.

e We introduce two key ideas: The POSIX object model
that captures OS state with minimal effort and perfor-
mance overhead, and the system shadowing technique
that enables low overhead tracking of memory.

e Finally, we observe that new flash devices, an abun-
dance of fast PCle lanes, and large virtual address

spaces make single level stores practical. We offer the
Aurora implementation and evaluation as proof of this.

Our evaluation shows that transparent persistence is prac-
tical. Aurora transparently adds persistence to Memcached, a
popular key-value store, with overheads of 9%-82% depend-
ing on the persistence granularity compared to a baseline
with no persistence. We achieve much lower overeads using
the Aurora APL. Modifying RocksDB to use the Aurora API
replaced 81k lines of code with 109 lines, while improving
throughput by 75%.

2 Background

Single level stores abstract away the distinction between
persistent and volatile storage to provide transparent per-
sistence, simplifying application programming by removing
the need for explicitly serializing and moving data between
devices. There have been several approaches to single level
stores with different designs and trade-offs.

IBM’s i Series mainframes, the successor to the AS/400,
provide a custom operating system, runtime and compiler
that work in concert to provide persistence [59]. The IBM
compilers semi-automatically insert API calls into the ap-
plication for persistence. This approach does not provide
persistence to arbitrary POSIX applications and only sup-
ports some programming languages.

EROS [58] and KeyKOS [41] provide persistence through
system-wide checkpointing. These systems periodically check-
point all system state and store it in persistent storage. After
a crash the operating system restores the applications to
resume as if no failure had occurred. EROS provides system
checkpoints as frequent as a buffer cache flush in traditional
OSes, which typically occur every 30 seconds.

The Millisecond Barrier. Persistence at second timescales
may be practical for end users of desktop systems, but not
for latency sensitive server applications. Server applications
require persisting state to disk before responding to outside
clients, which requires latency of milliseconds or lower.

Single level stores can use external synchrony to transpar-
ently withhold external communications until data is safely
persisted on disk [51]. Previous systems that employ external
synchrony demonstrate modest overheads when persisting
or replicating data at millisecond granularity [8, 29, 47].

EROS and other single level stores do not enforce external
synchrony because they flush data infrequently. Withhold-
ing communications for seconds would cause prohibitive
overheads and even break high availability services [11].

Hardware Trends Necessitate Revisiting the SLS. Hard-
ware has evolved tremendously since the EROS single level
store was created. EROS’s storage layer focuses on using spin-
ning disks effectively to achieve persistence in timescales
of tens of seconds. Spinning disks are orders of magnitude
slower than memory. The storage bandwidth constrains the

amount of data the single level store can produce, limiting
the frequency of persistence.

Three major hardware trends are making single level
stores a practical approach to application persistence. First,
NVMe flash devices over PCle increase bandwidth and de-
crease latency. Second, modern processors have an aggregate
PCle bandwidth that rivals memory. Third, 5-level page ta-
bles allow applications to hold up to 128 PiB of data in an
address space.

Fast checkpoint frequencies are possible because of the
low performance gap between disk and memory devices, the
lowest in 50 years. The aggregate IO bandwidth available
can be larger than the memory bandwidth. For example, the
3rd Generation AMD EPYC CPUs have a PCle bandwidth of
256 GB/s and a memory bandwidth of 205 GB/s [21].

Application Checkpointing. Application checkpointing
is an extensively studied problem [10, 20, 30, 35, 38, 40, 54,
61, 65]. Checkpointing serializes the running application
state including the CPU state, OS state and memory into an
image. The image enables recreating the running application
at a later point in time or on another machine. Recreating
an application is useful for debugging, surviving hardware
crashes, fault tolerance and other uses.

Checkpointing is difficult because the state we need to
capture is inherently complex in existing operating systems.
The application memory is the majority of state we need to
save in terms of size and is relatively simple to collect. The
remaining state is scattered across objects throughout the
userspace and the kernel.

The operating system state is small but complex and con-
tains both userspace and kernel components to each object.
For example, a FILE object in C contains userspace state of
the file object and a POSIX file descriptor, which is an integer
that is passed to system calls. The user visible kernel state
includes the file offset, the mode that file was opened in, and
the file type. Some additional state is available through the
process file system.

An even larger amount of kernel state is inaccessible from
userspace such as the filename, what processes are sharing
the file descriptor, and what processes are sharing the under-
lying file system vnode. Applications share file descriptors,
including the offset, using fork and UNIX domain sockets.
Applications share the vnode, but not the file descriptor, by
each calling open on the file.

Internal kernel state does not have a builtin API to query
internal fields, because it contains implementation and ver-
sion specific data. It also contains transient state that is in-
valid across machine reboots.

VM checkpointing is relatively straightforward and fre-
quently used in commercial systems [28, 50]. Virtual ma-
chines avoid many of the OS checkpointing problems by
carefully designing the virtual hardware interface between

Type CRIU
OS State Copy 49 ms
Memory Copy 413 ms
Total Stop Time 462 ms
10 Write 350 ms

Table 1. A breakdown of CRIU’s checkpointing overheads
for a 500 MB Redis process.

the guest operating system and the hypervisor. VM check-
pointing incurs additional overhead because of saving the
guest operating system in addition to the application.

Application checkpointing images are smaller than VM
images but are significantly more difficult to create. The state
of the art application checkpointing system is CRIU [9] that
is used for container migration [52]. CRIU extends the system
call interface and process file system to capture and recreate
application state from userspace. CRIU’s design leads to
unnecessary complexity because it has to query individual
state objects starting from a process or container, find sharing
relationships between them, and then deduplicate state.

Similar to prior systems, CRIU and its APIs are process-
centric. The checkpointing system collects and traverses
the state, and then infers any sharing relationships between
processes like shared memory. This extra work increases
CRIU’s code complexity and adds performance overhead.
CRIU’s compatibility with applications comes with substan-
tial complexity; it contains over 100k SLOC, kernel patches
notwithstanding. CRIU’s complex design makes it difficult
to expand, e.g., the developers only added support for UNIX
domain sockets seven years after its initial release [12].

Table 1 shows a breakdown of the cost of checkpointing a
Redis instance with a 500 MB working set. CRIU gathers OS
state in 50 ms and copies checkpoint state in another 413 ms.
The system suspends the application for the duration of the
operation, leading to large stop times that prevent deploying
external synchrony techniques. Writing the data to disk takes
another 350 ms without ensuring persistence.

Incremental Checkpointing. Table 1 illustrates typical
overheads of checkpointing systems. The time spent copy-
ing application memory is the largest contributing factor to
system performance. One optimization is to use incremental
checkpointing, and another is to save the application data
concurrently with application execution.

Incremental checkpointing creates checkpoints that con-
tain only the state modified since the previous checkpoint.
Most of the memory is not modified between successive
checkpoints reducing the amount of state that needs saving,.
Memory changes are tracked using the per-page dirty bit in
the MMU.

Continuous checkpointing optimizes incremental check-
pointing further by concurrently dumping state with appli-
cation execution to minimize stop time. Continuous check-
pointing creates an atomic snapshot of memory and tracks
changes using a copy-on-write (COW) mechanism. COW
allows for applications to concurrently run with the flushing
of state as COW memory cannot be modified.

There are a number of prior incremental checkpointing
systems [48, 64, 65]. Many incremental checkpointing sys-
tems are used to provide transparent fault tolerance [8, 29]
and improve record/replay for virtual machines [3, 39]. VAS-
CRIU [64] is a research system that extends CRIU to use
detachable address spaces in the kernel to implement copy-
on-write tracking of memory. It does not handle complex
applications that use shared memory between processes.

The Way of the Single Level Store. We achieve better
results by approaching checkpointing from the perspective of
a single level store. Aurora provides persistence throughout
the operating system allowing us to expose the system state
the way that the OS perceives it. Aurora persists each POSIX
object without duplicate work or additional processing to
reconcile sharing.

Instead we make every POSIX object (e.g., a file descrip-
tor, VM object or process) persistent in a separate on-disk
object. Objects can be copied or shared between processes
to represent any relationship possible in POSIX. We call this
implied relationship the POSIX object model, which leads to
a modular and faster checkpointing system.

Existing checkpointing systems are process-centric, which
has discouraged them from viewing the persistence of OS
state this way. Replicating the POSIX object model in storage
allows Aurora to avoid the cost of inferring sharing, as in
existing checkpointing systems.

Furthermore, Aurora develops a new technique called
system shadowing that allows concurrent memory flushing
across processes while the application continues to run. We
reduce the state copied while applications are quiesced to
achieve millisecond timescales for persistence. Applications
that use our API can further reduce the overhead to achieve
microsecond timescales for persistence.

3 Using Aurora

Aurora checkpoints at the granularity of a consistency group
- a group of processes that Aurora persists atomically. Typi-
cally a consistency group will encompass a single application
or container. Consistency groups use external synchrony
when communicating outside the group by buffering outgo-
ing communications until the checkpoint is persisted. No
external synchrony is necessary for processes within the
same consistency group.

Aurora runs unmodified applications transparently, and
provides an API to enable new functionality and persist cus-
tom applications more efficiently. Aurora persists unmodified

Command Description
sls attach Attach to a running application
sls detach Makes a process ephemeral

sls checkpoint Checkpoint an application
sls restore Restore an application

sls ps List applications in Aurora

sls suspend Suspend application into persistent store
sls resume Resume a suspended application

sls dump Generate an ELF coredump

sls send Send an application to a remote

sls recv Receive an application from a remote

Table 2. A subset of the command line interface.

applications by periodically checkpointing their consistency
group. Users set the checkpointing frequency of each consis-
tency group. Aurora’s default frequency is 100X per second,
but users can persist applications at much lower rates.

Aurora supports ephemeral processes that are part of a
consistency group but are not persistent. For example, this
is used for worker processes that the application can easily
recreate after a crash. Aurora notifies the parent process by
sending a SIGCHLD after a restore. To the parent, it looks as
if the child exited unexpectedly.

Command Line Interface. To better illustrate Aurora,
we show a subset of the command line interface in Table 2.
Users persist an application using the sls attach com-
mand to attach it to a consistency group. By default Aurora
persists the application 100X per second, with external syn-
chrony [51]. The execution history of an application is stored
on-disk given adequate space. Users manually create named
checkpoints with the s1s checkpoint command, and view
all application checkpoints in Aurora using sls ps. Users
restore a previous checkpoint or resume execution after a
system crash using sls restore.

Users pause and resume applications using sls suspend
and sls resume. For debuggability, any checkpoint or run-
ning state can be extracted as an ELF coredump with the sls
dump command.

Users share or migrate applications using the sls send
and sls recv commands to serialize a checkpoint state or
continually feed incremental checkpoints to a remote host.
Flags to these commands allow the user to pipe a single
checkpoint to a file, live migrate the application, or provide
high availability.

Aurora API Table 3 shows the Aurora API that custom
applications use to control and optimize persistence. Appli-
cations can manually initiate checkpoints, restore, or roll
back checkpoint state.

Developers optimize application checkpoints by selec-
tively excluding memory regions through sls_mctl and

Function Description

sls_checkpoint() Create a checkpoint

sls_restore() Restore a checkpoint

sls_memckpt () Asynchronous checkpoint of mapped region
sls_journal() Non-temporal flush (outside checkpoint)
sls_barrier() Wait for a checkpoint to be flushed
sls_mctl() Include/exclude memory regions
sls_fdctl() Control external synchrony

Table 3. A subset of the Aurora application API.

file descriptors through sls_fdctl. Developers make fine-
grained checkpoints using s1s_memckpt to atomically check-

point a single memory region or s1s_journal to synchronously

update an on-disk journal.

A common pattern is to take a full checkpoint and contin-
uously persist the memory regions that contain data. Aurora
integrates partial checkpoints and journaled regions into the
full checkpoint. After a restore, applications fix up runtime
state inside of an Aurora specific signal handler.

Another way to improve performance is to selectively dis-
able external synchrony with sls_fdctl. Disabling external
synchrony reduces latency for outgoing communications.
For example, application connections that perform read only
operations (e.g., an authentication request) do not require
external synchrony.

Developers wishing to suspend external synchrony for
application connections that mutate state need to use the
persistence APIs. For example, a database can disable exter-
nal synchrony to its clients and use sls_journal to persist
operations before sending acknowledgements.

4 The Aurora Operating System

The main goals of Aurora are correctness and performance.
Aurora must correctly checkpoint the state of the application
such that we can resume an execution indistinguishable from
the original. Aurora must minimize the performance impact
and resource overhead.

Aurora’s checkpoints must be runnable after a reboot or on
another machine. The system’s state, e.g., the running kernel,
may be different at restore time than at checkpoint time. The
checkpoint contains enough of the application’s userspace
and kernel state to reproduce the executable state. While
userspace state is self contained, Aurora extracts kernel state
like file descriptors from the running kernel.

Continuous checkpointing must have low overhead to be
practical. Overheads include the time to create an application
checkpoint and persist it in storage. Creating a checkpoint
requires stopping the application, which adds overhead. How
quickly Aurora flushes checkpoints bounds checkpoint fre-
quency. Creating and writing out the checkpoint consumes
CPU, memory and IO bandwidth.

Aurora applies COW semantics in memory and on-disk to
minimize application stop times and sustain high checkpoint-
ing frequencies. COW tracking of memory enables writing
checkpoints to storage concurrently with application execu-
tion. On-disk COW minimizes checkpoint size while allow-
ing constant time restores at any point in the application’s
execution history.

4.1 Aurora’s Architecture

Application >

Userspace S
Kernel
ioctl
Virtual SLS SLS
Memory Orchestrator File System
— |
i 110
TCP/IP Object
Store
_Kernel
Hardware

NIC NVMe

NVDIMM

Figure 1. Aurora system diagram.

Figure 1 shows the architecture of the Aurora persistent
operating system. Aurora has three major components: the
SLS orchestrator, the object store, and a custom file system.
Each POSIX object in the operating system (e.g., open files
or SysV shared memory) contains code that continuously
serializes and stores the state in the object store.

The SLS orchestrator maps kernel objects to the object
store and manages checkpointing and resuming processes as
described in § 5. The orchestrator provides serialization bar-
riers across the entire OS to provide consistent checkpoints.
It uses these barriers to momentarily pause processes and
copy their state.

The orchestrator copies smaller POSIX objects, e.g., file de-
scriptors, synchronously into memory buffers and larger ob-
jects, e.g., process memory, are tracked using copy-on-write
(COW). The state will be written to storage asynchronously,

while the application continues to execute. This process is
repeated 100X per second with modest overhead. The orches-
trator also manages restores by recreating all POSIX objects
and resuming the application.

Aurora uses a novel technique called system shadowing
(see § 6) to track system-wide memory changes for correct-
ness and performance. Unlike COW techniques used by fork,
system shadowing tracks shared memory regions. System
shadowing works seamlessly with the virtual memory sub-
system to accurately reproduce shared and user COW re-
gions. System shadowing enables asynchronously writing
the pages to storage, while processes continue to run.

Aurora applies external synchrony, which buffers exter-
nal communications until all computation prior to sending
the message is persistent. All applications within a single
consistency group are checkpointed atomically.

The object store (see § 7) provides persistence for the ob-
jects that comprise each checkpoint. Each object is either
a POSIX object, memory object, or file in our system. The
object store uses a copy-on-write design, rather than a log
structure, to provide low latency checkpoints. Aurora sub-
sumes swap and integrates it with the object store to insert
swapped pages into the next checkpoint.

The Aurora file system is a namespace into the single level
store that solves problems that arise when using Aurora with
conventional file systems. For example, POSIX file systems
reclaim anonymous files (i.e., unlinked but open files) after
a system crash. This reclamation prevents restoring appli-
cations that were using this file, so the Aurora file systems
includes open file references in a hidden link count.

5 Making POSIX Persistent

Aurora approaches checkpointing as a single level store,
which differentiates it from existing checkpointing systems.
Aurora individually persists each POSIX object in the system
and groups these objects into an application checkpoint. This
new architecture allows Aurora to achieve millisecond level
checkpointing frequencies with low overhead.

5.1 Basic Persistence

To persist processes we have to deal with five categories
of state: process state, thread state, CPU state, memory re-
gions, and file descriptors. Nearly every POSIX object is a
file descriptor, a memory region, or both in the case of mem-
ory mapped files. Interposing on every memory access of a
memory region is intractable so we use the MMU to track
changes (see § 6).

Quiescing Processes. Aurora must efficiently quiesce the
system before checkpointing an application. Quiescing means
stopping the application to prevent the modification of its
state while checkpointing. Failing to quiesce an application
opens the possibility of creating an inconsistent checkpoint
that is not a valid running state.

At any point the application will be in one of three places:
userspace, the kernel, or the boundary between the two.
When in userspace it is impossible to serialize application
state, as it is constantly changing. When in the kernel, userspace
state is constant but the underlying kernel structures (e.g.,
files) are changing.

Aurora’s first implementation used the SIGSTOP signal
to quiesce the application, but this is an incomplete and
nontransparent solution. It is incomplete because kernel
operations in progress, e.g., read system calls, can modify
application state. It is not transparent because SIGSTOP is
visible to the application, and some system calls return EINTR
after continuing. In addition, POSIX signals are delivered
asynchronously increasing the latency of quiescing.

To avoid these problems we instead quiesce at the kernel
boundary by extending the mechanism used by fork and
exec. Aurora sends interprocessor interrupts (IPIs) to all
cores running the application, forcing them to the boundary.

System calls that do not sleep have very low execution
times, so waiting for these calls to complete does not no-
ticeably increase stop times. Aurora interrupts and restarts
system calls that sleep, forcing all threads in the kernel to
the boundary. Aurora transparently restarts interrupted sys-
tem calls that would return EINTR by rewinding the thread’s
userspace program counter to right before the syscall in-
struction. The thread will reissue the call immediately after
it starts executing.

Process, Thread, and CPU State. Most POSIX objects
are handled by serializing important fields of each kernel
structure and reconstructing them after a crash. Aurora must
also recreate the process tree, processes and threads. Apart
from parent/child relationships, Aurora must also recreate
the process groups and sessions that were present at check-
point time. These groupings are used for job control, signals,
and sandboxing mechanisms.

Threads have signal masks, pending signals, scheduling
priorities and other state that must be recreated. Aurora
copies the CPU state of each thread by copying the registers
off the kernel stack and FPU/vector registers from the process
structure. For processors that lazily save and restore FPU
and vector state, this may require an IPI to flush the state
into the process structure.

File Descriptors. File descriptors are the most complex,
and largest source of state after memory. Most POSIX objects
are accessed using file descriptors including: files, sockets,
interprocess communication (IPC) and devices.

File descriptors are challenging because they form com-
plex relationships between kernel objects that are difficult to
capture from userspace. While not explicit in the POSIX stan-
dard, the API implies a design that is similar across all POSIX
implementations that we’ve examined. Objects are shared
in ways that cannot be captured from userspace without
exposing kernel state to it.

We use an example of a file descriptor to see how common
operations lead to complex object hierarchies in the ker-
nel. These hierarchies dictate how the resources are shared
between processes, and influence the semantics of their op-
erations. The processes themselves cannot inspect these hi-
erarchies, so they do not know what they are sharing.

Suppose a process opens a file, then calls fork. The result-
ing processes each have a reference to the same file descrip-
tor, so any modifications to the file descriptor by one process
is visible to the other. For example, if one process reads from
the file it changes the offset of the descriptor, and any reads
from the other process will use the new offset.

Suppose a third process opens the same file. The new
process has its own file descriptor in the kernel, with both
descriptors being backed by the same vnode. The file itself
is shared between all three processes, but the file offset of
the third process is independent.

Aurora accurately captures sharing semantics by treating
objects in the kernel, e.g., file descriptors and vnodes, as first
class objects. Aurora avoids overhead when gathering the
state by directly inspecting these objects in the kernel.

5.2 Persistence Challenges

Aurora provides several novel solutions to encapsulating
application state. By approaching the problem from the per-
spective of a single level store we revisit the traditional de-
sign of checkpointing systems to achieve correctness and
performance. We argue that the failure of checkpointing sys-
tems to support complex applications is due to prior attempts
focusing on a process centric view of persistence.

POSIX Object Model. Our first contribution is to reframe
persistence around the POSIX object model. Aurora stores all
POSIX objects and internal kernel objects implied by POSIX
as first class objects in our persistent store. This greatly sim-
plifies checkpointing correctness and improves performance
over conventional systems by eliminating a lot of the code
needed to handle the complexities of sharing.

During checkpointing Aurora persists each POSIX object
separately into a corresponding on-disk object in Aurora’s
object store. For each incremental checkpoint Aurora main-
tains a mapping of each object’s address in the kernel to a
64-bit on-disk object identifier. This structure allows Aurora
to scan over all persistent objects and serialize each of them
to storage exactly once. The orchestrator’s job is to provide
atomicity across objects belonging to a consistency group.

Going back to the file descriptor example, Aurora effort-
lessly distinguishes between the two cases using the POSIX
object model. Aurora backs each file descriptor and vnode
with its own object in storage, and gathers all state indepen-
dently. Aurora restores the objects separately and links them
back up to recreate sharing.

Aurora’s approach contrasts with process centric views
that treat file descriptors and vnodes as a single entity and
fail to capture sharing relationships. Alternative approaches
that infer everything from userspace or do not account for
internal kernel objects result in excessive implementation
complexity or unhandled corner cases.

These approaches either scan all processes or introduce
backmaps to find what processes have a file descriptor open.
These approaches require additional processing during check-
pointing or invasive changes to introduce backmaps (n.b.,
System V objects make this difficult). File descriptors are
difficult to track because they may be shared through fork,
duplicated in a single process using dup or sent to another
process through a UNIX domain socket.

File System. The Aurora file system enables Aurora to
persist file system state along with the application itself. The
file system is a namespace into the single level store. Memory
mapped regions and files are treated identically in the object
store unifying memory mapped files. The file system also
introduces two optimizations to accelerate checkpointing.

This architecture solves edge cases that arise in conven-
tional file systems where ephemeral state necessary for restor-
ing is lost. One example is anonymous files (i.e., an open but
unlinked file) that are widely used by software to store tem-
porary state. Anonymous files are unlinked from the file
system but are still held open by processesk. These files have
no name and are reclaimed when the process exits or the
machine reboots, so any information they contain is lost.

Aurora avoids the problem of unlinked files by reference
counting all objects separately from the file system link
counts that are used for reclamation. Individual files are
state objects like any other part of an application and are
referenced by Aurora’s identifiers — even when the file has
no path in the directory structure. Files persist while they
are referenced by another on-disk object.

The Aurora file system optimizes checkpointing vnodes
by referencing the inode number instead of the file path.
Using the inode number avoids costly lookups in the VFS
name cache and namei calls during the checkpoint stop time.

Aurora uses checkpoint consistency to optimize file system
operations. The file system ignores fsync operations and
provides consistency at checkpoint time. Aurora relies on
external synchrony and the use of the APIs for correctness.

5.3 Completing Persistence

Network Sockets. Aurora supports UDP sockets, UNIX
domain sockets, and TCP sockets. For UDP sockets Aurora
checkpoints the socket’s address, port, options and socket
buffer. UNIX domain sockets are treated the same way, but
Aurora also parses the socket buffer to deal with control
messages that contain credentials or file descriptors. Aurora
scans the buffer for in flight control messages and check-
points each type of supported descriptor.

Aurora checkpoints TCP listening sockets, but omits the
accept queue. This omission looks to clients as if the server
did not call accept or dropped the SYN packet. Clients will
retry the SYN packet or reestablish the connection. For estab-
lished connections Aurora saves the 5-tuple (source IP/port,
destination IP/port and protocol), the TCP sequence number,
socket options, and socket buffers.

System Wide Identifiers. Aurora restores process iden-
tifiers (PID) and thread identifiers (TID). PIDs are used to
route signals to processes, e.g., from a parent to a child. Not
restoring the PID would lead to a failure to deliver the signal.
TIDs are used by the PThread library for synchronization
(e.g., mutexes).

Aurora solves ID conflicts by virtualizing ID allocation.
Each process/thread has two IDs: a local and a global. The
local ID is the one seen at checkpoint time, while the global
ID is the one Aurora allocates at restore time and is visible
to the rest of the system. This allows applications to have
access to checkpoint time IDs without conflicts with already
running applications.

Asynchronous IO. Aurora tracks all asynchronous I0s
(AIOs) in flight and quiesces them for checkpointing. AIOs
are issued by kernel threads or by the storage device itself,
depending on driver support. Aurora does not record the
AIOs for file system writes but rather delays marking the
checkpoint as complete until they are incorporated into it.
Failed AIOs require updating the checkpoint with the fail-
ure status. Aurora tracks reads and includes them in the
checkpoint so that they are reissued during restore.

Device Files. Aurora supports several devices that are
mapped into process memory. The most common ones are
hardware timers and clocks used to providing low latency
time keeping. On x86-64 the High Precision Event Timer
(HPET) is mapped read-only into the application address
space. We have a whitelist of special devices that are sup-
ported by persistent processes.

Another special case is the virtual Dynamic Shared Object
(vDSO) that provides optimized platform specific implemen-
tations of some system calls. On restore we inject the current
platform’s vDSO into the application address space. Allowing
the application to resume even when hardware or software
changes have altered operating system optimizations.

6 Making Persistence Fast

Aurora introduces system shadowing, a novel mechanism that
improves continuous checkpoint performance in two ways.
First, system shadowing enables incremental checkpointing
by tracking the set of pages dirtied between two successive
checkpoints. Second, it uses COW to write memory to stor-
age concurrently with application execution, while retaining
shared memory semantics between processes.

The Mach VM System. To better understand system shad-
owing we briefly recap the FreeBSD virtual memory (VM)
subsystem, which is derived from the Mach VM [55]. There
is nothing preventing the adoption of system shadowing
to other platforms but we will use the Mach terminology
throughout the paper. Most OSes including Windows and
UNIX derivatives use a Mach-like design.

Figure 2 shows the structure of address spaces in FreeBSD.
The address spaces have two components: the VM map and
the physical map. The physical map holds the hardware page
tables and is a cache for the VM map. The page tables are
ephemeral and recreated from the VM map as necessary.

The VM map is a list of entries mapped in a process address
space. Each VM entryis a memory region that holds a virtual
address range, permissions, and madvise hints. Each entry
is backed by a single VM object.

VM objects are collections of pages that back a VM entry.
VM objects represent different kinds of memory, i.e., anony-
mous, vnode, or device memory. Objects have no knowledge
of permissions or virtual addresses, allowing them to be
mapped in different VM maps to implement shared memory.
The object is backed by physical memory lazily, i.e., only
pages in use by process are populated.

FreeBSD implements copy-on-write (COW) using object
shadowing. The VM system uses object shadowing to track
which pages in a COW region have a process private copy,
and which are shared between processes. With shadowing
a parent object backs one object shadow for each process
sharing the region. The pages of each shadow are private to
a process, while those of the parent are shared. On a page
fault the handler first looks into the shadow. It only searches
the parent if the shadow has no page at the virtual offset.
Pages from parent objects are always mapped read only. On
a write fault, the system will create a private copy of the
page in the shadow object.

The VM subsystem reverses object shadowing with object
collapsing. Shadow objects become unnecessary when the
original objects they shadow are no longer shared across pro-
cesses (i.e., reference count of one). For example, if a process
with a single child exits, all of the pages in the initial object
are only accessible from the child. The collapse operation
merges the pages of the shadow and the parent, keeping the
shadow’s version of the page if present.

Checkpointing the VM. Aurora persists the entire VM
object hierarchy instead of a flat view of memory. Maintain-
ing VM objects allows Aurora to minimize the number of
pages to be flushed to disk. For example, a copy-on-write
mapping shared by a process and its parent results in individ-
ually storing the two COW objects and the read-only backing
object. For memory mapped vnodes using the MAP_PRIVATE
flag the object only stores the private changes.

VM Space VM Map Map Entries VM Objects
vm_space | vin_map vm_map_entry Backing Objects
- ! vm_pmap vm_map_entry
l vm_map_entry
vm_map_entry

x86-64 Page Tables

Pages

Figure 2. VM Memory Diagram of FreeBSD. Address spaces include page tables and a list of mapped regions. Each region is
backed by mappable groups of physical pages called VM objects. VM objects represent anonymous or file memory and back

each other to enforce COW semantics.

System Shadowing. System shadowing is a novel mecha-
nism that shadows memory across all applications within a
consistency group. Checkpointing creates a system shadow
to track incremental changes with minimal overhead.

The COW mechanism used by fork is insufficient for
several reasons. First, fork applies COW semantics at the
process level, while Aurora requires atomicity across a con-
sistency group. Second, fork cannot shadow shared memory
regions without breaking sharing. Third, fork does not apply
to IPC VM objects.

The fork COW mechanism is limited as it operates on
a single process and ignores shared memory. Fork assumes
mappings are shared across the system or are private to a
single process — there is no in between.

System shadowing works by creating one shadow for each
writeable object across all address spaces in a consistency
group. For shared memory regions the shadow replaces all
objects. For memory mapped files the Aurora file system
handles COW semantics, so there is no need to shadow the
VM objects that back the files. For POSIX or SysV shared
memory descriptors we introduce a backmap to update the
reference in the descriptor, ensuring further mappings will
use the latest shadow. System shadowing is transparent to
processes and works with fork without any conflict.

The frequency of system shadowing would result in long
chains of shadow objects if we did not collapse system shad-
ows. Chains of shadows cause memory overhead because
each object can have a private version of a page. Chains also
add performance overhead because in the worst case a page
fault may traverse the entire chain.

Aurora eagerly collapses system shadows to limit the chain
length to two. The first shadow is the incremental check-
point Aurora is currently flushing to storage. The second
shadow tracks changes for the next checkpoint. Once the
flushing of the first checkpoint is complete, Aurora imme-
diately collapses the shadow into the parent on the next
triggered checkpoint.

The original collapse operation inserts the parent’s pages
into the shadow object. The original operation scales linearly
with the number of unmodified or read only pages. System
shadows exist for such short periods that there are few pages
in each shadow object, resulting in a slower collapse opera-
tion than if the direction were reversed.

Slow collapse operations also hurt runtime performance
as applications frequently fault in pages because system
shadowing flushes the translation lookaside buffer (TLB).
Lock contention between page faults and the collapse oper-
ation, which require locking VM objects, further increases
the overhead of repopulating the MMU.

Aurora optimizes the collapse operation by reversing its
direction from the shadow to the parent. Aurora moves the
shadow’s pages into the parent to reduce the number of
pages moved between VM objects. This reduces the average
cost of the collapse operation for Aurora.

Memory Overcommitment. Applications that use the
Aurora API place all data in memory. Developers do not have
to deal with migrating data between memory and storage,
either for persistence or memory overcommitment. Memory
overcommitment evicts pages to storage when the system is
under memory pressure. Aurora cannot use a conventional
swap partition because the metadata is kept in memory, and
lost after a crash or reboot.

Aurora has a unified zero copy data path both for check-
pointing and swapping. Pages already in a checkpoint are
clean and are evicted by the swapping daemon without IO.
Aurora flushes dirty pages into the subsequent checkpoint
to persist pages. On a page fault Aurora retrieves the most
recent version of the page.

The paging policy prefers evicting clean pages unless mem-
ory pressure becomes too high. Fast checkpointing keeps
most pages clean for transparent applications, but custom
applications may have non-persistent regions of memory.
Custom applications can use madvise to improve the page
selection policy.

The swap integration enables lazy restores where pages
are brought in lazily or in the background when resuming
an application. Lazy restore accelerates restore times by de-
ferring the loading of memory to execution time, allowing it
to page in its working set on demand.

7 Aurora Object Store

The Aurora object store is a copy-on-write store designed to
support the needs of Aurora. These needs dictate a COW de-
sign for the store that allows for high frequency checkpoint-
ing. Existing file systems either do not have checkpoints, or
in the case of COW systems like WAFL [37] and ZFS [24]
use slow mechanisms that take hundreds of milliseconds.

The object store creates checkpoints with low latency to
support the high checkpoint frequency of Aurora. This is
in part done by eliminating garbage collection overheads
through COW. The series of incremental checkpoints holds
the history of an application execution.

The object store’s checkpoints map one-to-one to appli-
cation checkpoints. Aurora prevents resuming incomplete
checkpoints by finding the last complete checkpoint after a
crash. Aurora prevents loading corrupted checkpoints through
COW, ensuring no data is modified in-place.

The object store creates on-disk checkpoints with minimal
latency to prevent throttling checkpointing speed. Aurora
waits for a checkpoint to fully persist before initiating an-
other one, so a slow object store is a bottleneck to the system.

Aurora uses a low overhead garbage collection scheme
similar to WAFL and ZFS. Garbage collection in other COW
file systems, such as the log structured file system [57], re-
quire periodic garbage collection that would impact the la-
tency of checkpointing.

Aurora efficiently retains execution history of an applica-
tion when desired by avoiding reclamation of prior check-
points. Users can use the history to inspect or rewind the
application image for debugging purposes. The history of an
application execution is only limited by the available storage.

Objects in the Aurora store represent POSIX objects, file
system objects, or memory objects. One important design
choice is to make sure that both files and memory objects
are represented identically. Through this representation we
preserve the complex relationship between POSIX objects.

Non-COW Objects for the Aurora APL For custom ap-
plications we provide two low-latency APIs. One uses shad-
owing to provide atomic checkpoints of a memory region,
and the second provides a write-ahead journal. These two
APIs provide different performance characteristics.

The atomic region API (sls_memckpt) allows Aurora to
avoid whole application checkpointing and provides atomic
snapshots of a memory region. Atomic region checkpointing
shadows the region’s VM object. The VM object is asyn-
chronously flushed to storage. During restore the object is
composed on top of a full application checkpoint.

The journal API (sls_journal) provides low latency up-
dates to a write ahead log. This API uses preallocated non-
COW objects that are updated in place. We provide an ap-
pend and truncate API for these journals that synchronously
writes a 4KiB page in 28 ps.

8 Implementation

We implemented Aurora on top of the FreeBSD 12.1 kernel.
Our implementation consists of three kernel modules: 9398
source lines of code (SLOC) for the single level store, 4726
SLOC for the object store, and 2890 SLOC for the file system.
Our user level libraries, tools and headers consist of 3250
SLOC. We also have a few thousand lines of scripts for our
pre-check-in test cases and benchmarks.

The kernel has 2078 lines of changes and additions to sup-
port Aurora. This includes support for PID/TID reservations,
PID/TID virtualization for jails, and our optimized VM object
collapsing (see § 6).

Limitations. Aurora is under development and some fea-
tures are still incomplete. We are adding support for active
TCP sessions and rewriting support for sending and receiv-
ing checkpoints over file descriptors to optimize for sending
data over TCP and to file systems. Aurora currently does
not support external synchrony as many other systems have
shown the value and overheads of external synchrony [51].

9 Evaluation

We evaluate the performance of Aurora with microbench-
marks and several applications. First, we evaluate the perfor-
mance of the object store using FileBench [1]. We then eval-
uate the overhead of checkpointing POSIX objects within
Aurora. We also measure the overhead for transparently
checkpointing Memcached, a popular key-value store, and
several other popular applications. We show the performance
possible when using the Aurora API with the RocksDB key-
value store. Finally, we use Redis, another key-value store,
to compare Aurora to CRIU, a state of the art checkpoint
system in Linux, and Redis’ own builtin checkpointing.

All benchmarks are run on a server with dual Intel Xeon
Silver 4116 CPUs running at 2.1 GHz with Hyperthreading
enabled and Turbo Boost disabled. The machine has 96 GiB of
RAM, and four Intel Optane 900P PCle NVMe devices striped
at 64 KiB. For client-server benchmarks we use machines
with identical CPU and memory connected using Intel x722
10 GbE NICs. We disabled page table isolation (PTI), which
are the SPECTRE mitigations. Benchmarks are run at least
three times except for the client-server benchmarks that
were run five times. The error bars shown in all graphs are
the standard deviation over the runs.

9.1 Aurora Object Store

We use FileBench to benchmark the file system and the object
store. The benchmarks show that the Aurora file system,
running at a 10 ms period, performs well compared to other
file systems such as ZFS and FFS.

We compare the object store to ZFS (with and without
checksumming) and FFS (with SU+J [2, 46] and without
checksumming). ZFS provides a comparison to a similar
snapshotting file system while FFS provides a baseline for
traditional file systems. Each file system is configured with
64 KiB block sizes.

Figures 3(a) and (b) show the object store’s throughput for
4 KiB and 64 KiB random and sequential writes. We measure
the write performance because it helps us understanding the
rest of our benchmarks. ZFS is slower than Aurora in both
configurations because Aurora’s simpler metadata updates
are designed to reduce the latency of periodic checkpoints.
FFS has an optimized small write path because of the use
of fragments that reduce internal fragmentation [45]. As an
optimization for fragments FFS delays allocations to allow
blocks to be promoted to full blocks for IO.

Figures 3(c) show the operations per second for file cre-
ation and write+fsync. File creation in Aurora is unopti-
mized and currently requires grabbing a global lock. Aurora’s
use of checkpoint consistency results in faster fsync calls
because the operation is a no-op. ZFS syncs are slower than
FFS and Aurora because its COW mechanism generates com-
plex changes to file system state, but it writes these changes
to the ZFS intent log rather than generating a checkpoint.

Figure 3(d) shows the performance of the file systems
for three benchmarks simulating a file server, a mail server,
and a web server. Aurora performs similarly to the other
file systems but it outperforms in varmail because of the
workload uses fsync, which is a no-op under Aurora.

9.2 Persisting POSIX Objects

Table 4 presents the time it takes to checkpoint and restore
common POSIX objects, and serialize each object into a buffer.
Most POSIX objects are small and typically involve one lock
and pointer chasing, which incurs cache misses. Checkpoint-
ing vnodes is fast when they reside in our object store be-
cause we only store a reference to the inode. Shared memory
checkpoint times include the time spent shadowing, but not
invaliding the MMU. System V is more costly than POSIX
shared memory because Aurora scans the global SysV names-
pace. Checkpointing the Kqueue is slow because it contains
1024 event structures and requires locking each structure.
Pseudoterminals are slow to restore because they require
taking locks in the device file system when recreating the
virtual device.

POSIX Objects Checkpoint Restore
Kqueue w/1024 events 35.2ps 2.7ps
Pipes 1.7 ps 2.6us
Pseudoterminals 3.1us 30.2ps
Shared Memory (POSIX) 4.5us 3.8 us
Shared Memory (SysV) 14.9 us 2.8us
Sockets 1.8 us 3.6 us
Vnodes 1.7 s 2.0us

Table 4. Checkpoint and restore times for POSIX objects.

Object Size Checkpoint Aurora API
Incremental Atomic Journaled
4KiB 185 ps 80 pus 28 us
16 KiB 185 ps 83 us 32 s
64 KiB 183 ps 74 ps 55us
256 KiB 186 ps 81 ps 121ps
1 MiB 186 ps 72 ps 443 ps
4 MiB 226 s 114ps 1.8 ms
16 MiB 304pus 184 ps 6.6 ms
64 MiB 600ps 492pus 25.9ms
256 MiB 19ms 1.6ms 104.7ms
1GiB 6.1lms 6.3ms 417.2ms

Table 5. Checkpoint times for userspace data objects using
differing modes of Aurora’s APL

9.3 Checkpointing Memory Objects

Table 5 shows the stop time required to persist a modi-
fied memory region for transparent checkpoints (incremen-
tal), checkpoints of a single memory region (atomic), and
synchronous updates to a region (journaled). Incremental
checkpoints include all memory and OS state. Atomic check-
points use our API to shadow a single memory object and
asynchronously write the changes to storage. The journaled
method uses sls_journal to synchronously write the data
to storage.

The table shows that checkpoint stop time scales linearly
with the dirty set, because of the linear time needed to mark
pages copy-on-write in the x86 page tables. Atomic check-
pointing is faster than full checkpointing by roughly 100 ps,
which is significant for dirty sizes of up to 64 MiB. The jour-
naling API issues synchronous writes and is the fastest strat-
egy up to 64 KiB. For larger sizes asynchronous approaches
are better for minimizing the stop time at the cost of increas-
ing the latency for the write operation.

9.4 Application Checkpointing

Table 6 shows the checkpoint stop times and restore times for
a variety of popular applications, including Pillow, a popular
python image manipulation framework, and Tomcat, a Java

Throughput (ops/s)

150k 200k -
- 7
B [%2) -
100k 1 2 150k
] i é 100k 7
50k q g= &b 1
] 2 50k -
0 - - 1
SR 0-
[SI 2,
. TR 2 5 S
%, e, 5 @, ﬂ?%] &%
& 4 @, % o6,
(9 @ (SN v L

>

(c) File system operations (d) Simulated applications

Figure 3. FileBench microbenchmarks comparing the Aurora file system to both ZFS and FFS

8 49
2 61 2 5
SNl il |2
é 4 . BN 7FS é 2
< <
@ ZFS+CSUM &b
22 mem FFS 21 .
& | EEE Aurora = .

0 __-_F_-_F_ 0 -

v & % K
2 0, 2 0,
%Q 0’)/. %Q 0’){.
% %
(a) 64 KiB writes (b) 4 KiB writes

Type firefox mosh pillow tomcat vim
£ Size 198 MiB 24MiB 75MiB 197 MiB 48 MiB
éMem 1.4ms 0.4ms 0.7ms 2.7ms 0.7ms
< Full 1.8ms 0.4ms 0.9ms 3.2ms 0.8ms
6 Incr. 1.9ms 0.4ms 0.6ms 2.1ms 0.7ms
o Mem 09ms 0.2ms 0.2ms 0.5ms 0.3ms
2 Full 124ms 19ms 8.2ms 33.6ms 4.1ms
& Lazy 6.3ms 09ms 0.2ms 3.1ms 2.4ms

Table 6. Checkpoint stop times and restore times for several
popular applications.

application server. The applications are mostly idle for the
incremental checkpoints to show the lower bound. We show
the stop time for memory checkpoints (i.e., not flushed to
disk), full and incremental checkpoints. We show restores
from memory and disk. Disk restores can either be full or
lazy. Lazy restores only restore the minimal OS state needed
to resume the application.

The complexity of OS state, including page tables, is the
primary factor affecting stop times. OS state and virtual
memory data are not correlated. For example, vim and pillow
(Python) have small memory footprints, but complex OS
state including hundreds of address space objects. The time
to flush the checkpoint (not shown) is proportional to the
resident set size of the application.

9.5 Transparent Persistent for Memcached

Figure 4 shows Memcached’s throughput and latency in re-
sponse to the checkpoint period. The horizontal lines show
the baseline for non-persistent Memcached without Aurora.
We use Aurora to transparently add persistence to Mem-
cached with no code changes or developer effort. We use the
Mutilate benchmark running the Facebook workload [23]
with four machines generating load and another machine

=
2 1M 7
2 tnesnaarn s snasaaa a s
“5‘]
& 500k 1 7 e Baseline
'J: -
%D 1 + With Aurora
= 0 T T T T
= 0 20 40 60 80 100

100k 3
2 10k 4 \
> E
Q 4
=]
g 1k 5
3 3 95th Baseline ~ =—f— 95th

] Average Baseline Average
100 T T T T
0 20 40 60 80 100
Checkpoint Period (ms)

Figure 4. Memcached at max throughput over varying
checkpoint periods.

100k 3
E ERETTTY 95th Baseline —4— 95th
“a 1 Average Baseline Average
\m?,- 10k 7 } 8 &
g E ¥’_\I—1\
Q .
o]
%)
k= 1k 3
= 3
100 T T T T
0 20 40 60 80 100
Checkpoint Period (ms)

Figure 5. Memcached with throughput pegged at 120 k ops/s
over varying checkpoint periods.

to measure latency. Each machine has 12 threads and 12
connections per thread.

Increasing the checkpoint period (i.e., fewer checkpoints
per second) increases the throughput and decreases the la-
tency of the application. Between the 10 ms and 20 ms data
points checkpoint the frequency halves from 100X to 50x
per second. Throughput increases proportionally and latency
decreases by more than 2x.

Figure 5 shows Memcached’s latency response for a fixed
120 k ops/s, or 15% of peak, in response to changes in check-
point period. This graph examines the worst case for Au-
rora’s transparent persistence. Aurora at low throughputs
has a much larger effect on the overall latency of the system
because of low network queuing. The baseline without per-
sistence has an average latency of 157 pus. With transparent
persistence at a 100 ms period Memcached has an average la-
tency of 607 ps. Looking back at Figure 4, the latency impact
of transparent persistence has a small effect once network
queues begin to saturate and the base latency increases.

9.6 Customized RocksDB

We use RocksDB [19], a popular key-value store, to explore
the performance trade-offs of using the Aurora API over an
optimized persistence backend. We show that efficient cus-
tomized applications can be created with minimal developer
effort. In our customized RocksDB, we replaced 81k SLOC of
persistence code (i.e., ~40% of the codebase) with 109 SLOC
while providing the same persistence guarantees.

RocksDB has three main data structures: The Memtable
which buffers data in memory before writing data to disk, a
log-structured merge tree to store data on disk, and a write-
ahead log (WAL) for crash consistency [31].

We remove RocksDB’s log structured merge tree and use
Aurora to persist the Memtable. We replace RocksDB’s WAL
with Aurora’s journaling APIs to store data in a non-COW
region on disk. When the WAL is full, RocksDB triggers an
Aurora checkpoint and clears the WAL.

We compare the performance of RocksDB across four con-
figurations. The first configuration is an unmodified RocksDB
instance with no persistence at all. The second is a RocksDB
instance with Aurora transparently persisting the applica-
tion every 10 ms. The third configuration is an unmodified
RocksDB using it’s built-in WAL, and the fourth is our mod-
ified RocksDB with our custom WAL.

To make the comparison fair, we size the Memtable to fit
the whole database in memory, allowing reads to be serviced
from memory. We use the Facebook Prefix_dist workload
that uses RocksDB as a library [25].

Figure 6 shows the results for each configuration of RocksDB.
Figure 6(a) shows an 83% decrease in throughput when us-
ing Aurora’s transparent mode relative to the ephemeral
database. Transparent checkpoints have about half the per-
formance of RocksDB’s WAL, but with weaker consistency

Type Aurora CRIU | RDB
OS State 0.3ms 49ms N/A
Memory 3.7ms 413 ms N/A
Total Stop Time 4.0ms 462ms 8 ms
10 Write 97.6ms 350ms | 300 ms

Table 7. Comparing Aurora’s full checkpoint performance
to CRIU with a 500 MiB Redis instance. Aurora is two orders
of magnitude faster in terms of stop time both for metadata
and data copies. Aurora writes out the checkpoint 3X faster,
even though CRIU does not flush to disk.

guarantees as writes are not persisted until the next check-
point. Using the custom API we provide the same write
consistency as RocksDB with the WAL, but with 75% higher
throughput than the other persistent configurations.

Figures 6(b) and 6(c) show the latency overhead of the
various configurations of RocksDB. High tail latencies occur
in unmodified RocksDB with Aurora because of application
stop times caused by transparent checkpoints. Our custom
WAL achieves better 99" percentile latency than the un-
modified RocksDB WAL, but the 99.9th percentile suffers as
writes that trigger checkpoints must wait for the checkpoint
to complete.

9.7 Comparison with Linux CRIU

Table 7 compares the full checkpoint performance of Aurora
versus CRIU, the state of the art checkpointing system for
Linux. We break down the checkpoint times of Aurora and
CRIU for a 500 MB Redis instance. CRIU was run on Ubuntu
20.04 with the same hardware.

The results show that Aurora is over 100X faster than CRIU
with regards to application stop time while outperforming
it by more than 3x when writing to storage. Unlike Aurora
that uses system shadowing, CRIU must prolong application
stop time to collect data pages.

We also compare Aurora with Redis’ fork based RDB
mechanism. RDB saves the Redis database by forking the
original process and writing out the key value pairs from
the child. We measure the time from the RDB save until
all the keys are written out by using the BGSAVE and SAVE
commands from a local client.

The RDB mechanism is slower than Aurora despite only
saving the data rather than the whole process. The time to
write out the data is also 3x slower than Aurora because of
serialization overheads.

3M 100k 100k
Il Aurora-100Hz
é 10k | I:)cksDBVVAL 10k
A 3 Rurﬁr{a;g WAL 2
o= ocksDB+
2. & 1k & 1k | -
= - =] (=]
2 £ &
g IM 1 3 3
< " 100 100
E_.;
0 - 10 10
No Sync Sync No Sync Sync No Sync Sync
(a) Throughput (b) 99" Percentile Write Latency (c) 99.9" Percentile Write Latency

Figure 6. A comparison between multiple RocksDB configurations running the Prefix_dist Facebook workload. Configurations
that do not provide write persistence are labeled “No Sync” while those that do are labeled “Sync”.

10 Related Work

Migration and Fault Tolerance. Live migration moves
applications between machines for maintenance, distributed
resource management, and other applications. Migration is
a well studied problem [28, 36, 43, 50, 66]. Many techniques
for live migration such as pre-copy, post-copy and hybrid
approaches have been studied. Aurora’s iterative checkpoints
can be used to build a precopy migration mechanism.

Research distributed operating systems support transpar-
ent process migration and failover as a major benefit [22,
27, 60]. Aurora can be used as a building block to enable
migration and failover functionality in operating systems.

Checkpointing techniques used in databases [47] for fault
tolerance require developer effort. Other systems rely on
specialized hardware like NVRAM [49].

Serverless Computing: Checkpoint and restore has been
used by serverless computing for snapshotting serverless
functions [32, 62]. These systems snapshot initialized func-
tions and restore them at invocation time. The checkpointing
mechanisms used in serverless computing are oriented to-
wards fast restores and do not optimize checkpointing.

Record/Replay Systems: Record/replay systems [26, 33,
34, 42, 44, 56, 63] record non-deterministic inputs to an ap-
plication to replay the complete execution. These systems
generate large amounts of data and cannot sustain recording
indefinitely. Checkpointing bounds the size of the replay
log by only retaining the non-deterministic inputs of the
execution since the last checkpoint.

Databases: Databases [14-16] and key-value stores [13,
18, 19] often spend a significant amount of their code manag-
ing persistence and the paging of database state. The fsync
and msync calls have subtle semantic issues depending on
hardware and software configuration leading to data loss
bugs in even mature projects like LevelDB [4-7, 53] and Post-
greSQL [17]. Aurora provides an alternative way to achieve
persistence in databases, allowing for the reduction of code
and developer effort.

11 Conclusion

We present Aurora, the first modern single level store for
UNIX. Aurora is built on the observation that hardware
trends have lead to persistent storage bandwidth rivaling
that of memory. Aurora offers a simple and elegant solution
for application and data persistence as an OS level service.

Our evaluation shows that Aurora works efficiently with
a wide variety of workloads, including key-value stores but
also applications like web servers and even web browsers.
Aurora handles unmodified workloads with reasonable over-
head and provides an API that applications can use to lower
the cost of checkpointing.

Aurora shows that persistence is a useful and flexible OS
level mechanism that enables a wide range of services, from
debugging to serverless computing. Aurora’s API enables ap-
plication persistence with a fraction of the effort it would oth-
erwise need, and enables new research into application/OS
co-design for specialized applications. We expect hardware
advances like NVDIMM and FPGAs to enable even more
efficient single level stores.

Aurora’s source code is available at https://github.com/
rcslab/aurora/ and the patched FreeBSD 12.1 kernel is avail-
able at https://github.com/rcslab/aurora-12.1.

Acknowledgments

We thank Donald Porter, our shepherd, and the anonymous
reviewers for their valuable feedback. We also thank Samer
Al-kiswany, Haoyu Gu, Thab Ilyas, Tamer Ozsu, Bernard
Wong and Oscar Zhao for their insight during discussions
on the project. We thank Hongbo Zhang for his work on the
initial Aurora prototypes.

https://github.com/rcslab/aurora/
https://github.com/rcslab/aurora/
https://github.com/rcslab/aurora-12.1

References

(1]

[20]

[21]

[22]

[23

—

[24]

[25]

FileBench. https://web.archive.org/web/20080723182431/www.
solarisinternals.com/wiki/index.php/FileBench, July 2008.

Journaled Soft-updates. https://www.mckusick.com/softdep/suj.pdf,
May 2010.

Replay Debugging - Try it Today! https://blogs.vmware.com/
workstation/2010/01/replay-debugging-try-it-today.html, Jan 2010.
Issue 261623: Unrecoverable chrome.storage.sync database corruption.
https://bugs.chromium.org/p/chromium/issues/detail?id=261623, July
2013.

Panic: leveldb/table: corruption on data-block. https://forum.syncthing.
net/t/panic-leveldb-table-corruption-on-data-block/2526, April 2015.
Corruption on data-block while synchronising. https:
//ethereum.stackexchange.com/questions/1159/corruption-on-
data-block-while-synchronising, February 2016.

Db corruption observed with powerloss #333. https://github.com/
google/leveldb/issues/333, January 2016.

VMware vSphere: What's New - Availability Enhance-
ments. http://www.slideshare.net/muk_ua/vswn6-m08-
avalabilityenhancements, Jan 2017.

CRIU website. https://www.criu.org/Main_Page, April 2019.
Dragonfly on-line manual pages : sys_checkpoint(2). https://man.
dragonflybsd.org/?command=sys_checkpoint§ion=2, April 2019.
Tuning Failover Cluster Network Thresholds. https:
//techcommunity.microsoft.com/t5/failover-clustering/tuning-
failover-cluster-network-thresholds/ba-p/371834, March 2019.

CRIU Release 3.6. https://criu.org/Download/criu/3.6, January 2021.
LevelDB Source Repository. https://github.com/google/leveldb, Janu-
ary 2021.

MongoDB: The most popular Database for Modern Apps . https:
//www.mongodb.com/, January 2021.

MySQL Website. https://www.mysql.com/, January 2021.
PostgreSQL: The world’s most advanced open source database. https:
//www.postgresql.org/, January 2021.

PostgreSQL’s fsync() surprise. https://lwn.net/Articles/752063/, Janu-
ary 2021.

Redis Website. https://www.redis.io, January 2021.

RocksDB | A persistent key-value store. https://www.rocksdb.org,
January 2021.

Hazim Abdel-Shafi, Evan Speight, and John K Bennett. Efficient User-
Level Thread Migration and Checkpointing on Windows NT Clusters.
In Windows NT 3rd Symposium (Windows NT 3rd Symposium), Seattle,
WA, July 1999. USENIX Association.

Advanced Micro Devices, Inc. AMD EPYC 7003 Processors (Data
Sheet). https://www.amd.com/system/files/documents/amd-epyc-
7003-series-datasheet.pdf, 2021.

T.E. Anderson, D.E. Culler, and D. Patterson. A case for NOW (Net-
works of Workstations). IEEE Micro, 15(1):54-64, 1995.

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. Workload Analysis of a Large-Scale Key-Value Store. In
Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint Inter-
national Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS 12, pages 53-64, New York, NY, USA, 2012. Association
for Computing Machinery.

Jeff Bonwick, Matt Ahrens, Val Henson, Mark Maybee, and Mark
Shellenbaum. The Zettabyte File System. In Proc. of the 2nd Usenix
Conference on File and Storage Technologies, volume 215, 2003.
Zhichao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. Charac-
terizing, Modeling, and Benchmarking RocksDB Key-Value Workloads
at Facebook. In 18th USENIX Conference on File and Storage Technolo-
gies (FAST 20), pages 209-223, Santa Clara, CA, February 2020. USENIX
Association.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Yunji Chen, Shijin Zhang, Qi Guo, Ling Li, Ruiyang Wu, and Tianshi
Chen. Deterministic Replay: A Survey. ACM Comput. Surv., 48(2):17:1-
17:47, September 2015.

David Cheriton. The V Distributed System.
31(3):314-333, March 1988.

Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen,
Eric Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live
Migration of Virtual Machines. In Proceedings of the 2nd Conference on
Symposium on Networked Systems Design & Implementation - Volume
2, NSDI'05, pages 273-286, USA, 2005. USENIX Association.
Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm
Hutchinson, and Andrew Warfield. Remus: High availability via asyn-
chronous virtual machine replication. In Proceedings of the 5th USENIX
symposium on networked systems design and implementation, pages
161-174. San Francisco, 2008.

William R. Dieter and James E. Lumpp. User-Level Checkpointing for
LinuxThreads Programs. In Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference, page 81-92, USA, 2001. USENIX
Association.

Siying Dong, Andrew Kryczka, Yangin Jin, and Michael Stumm. Evolu-
tion of Development Priorities in Key-value Stores Serving Large-scale
Applications: The RocksDB Experience. In 19th USENIX Conference on
File and Storage Technologies (FAST 21), pages 33-49, 2021.

Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Cheng-
gang Qin, Qixuan Wu, and Haibo Chen. Catalyzer: Sub-Millisecond
Startup for Serverless Computing with Initialization-Less Booting.
In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS 20, page 467-481, New York, NY, USA, 2020. Association for
Computing Machinery.

George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and
Peter M. Chen. ReVirt: Enabling Intrusion Analysis through Virtual-
Machine Logging and Replay. SIGOPS Oper. Syst. Rev., 36(SI):211-224,
December 2003.

George W. Dunlap, Dominic G. Lucchetti, Michael A. Fetterman, and
Peter M. Chen. Execution Replay of Multiprocessor Virtual Machines.
In Proceedings of the Fourth ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments, VEE *08, page 121-130, New
York, NY, USA, 2008. Association for Computing Machinery.

Paul H Hargrove and Jason C Duell. Berkeley lab checkpoint/restart
(BLCR) for Linux clusters. In Journal of Physics Conference Series,
volume 46, pages 494-499, 2006.

Michael R. Hines, Umesh Deshpande, and Kartik Gopalan. Post-
Copy Live Migration of Virtual Machines. SIGOPS Oper. Syst. Rev.,
43(3):14-26, July 2009.

Dave Hitz, James Lau, and Michael Malcolm. File System Design for
an NFS File Server Appliance. In Proceedings of the USENIX Winter
1994 Technical Conference on USENIX Winter 1994 Technical Conference,
WTEC’94, pages 19-19, Berkeley, CA, USA, 1994. USENIX Association.
G.J. Janakiraman, J.R. Santos, D. Subhraveti, and Y. Turner. Cruz:
Application-Transparent Distributed Checkpoint-Restart on Standard
Operating Systems. In 2005 International Conference on Dependable
Systems and Networks (DSN’05), pages 260-269, 2005.

Samuel T. King, George W. Dunlap, and Peter M. Chen. Debugging
Operating Systems with Time-Traveling Virtual Machines. In 2005
USENIX Annual Technical Conference (USENIX ATC 05), Anaheim, CA,
April 2005. USENIX Association.

Oren Laadan and Jason Nieh. Transparent Checkpoint-Restart of
Multiple Processes on Commodity Operating Systems. In USENIX
Annual Technical Conference, pages 323-336, 2007.

C.R. Landau. The Checkpoint Mechanism in KeyKOS. pages 86 - 91,
10 1992.

T.J. LeBlanc and J. M. Mellor-Crummey. Debugging Parallel Programs
with Instant Replay. IEEE Trans. Comput., 36(4):471-482, April 1987.

Commun. ACM,

https://web.archive.org/web/20080723182431/www.solarisinternals.com/wiki/index.php/FileBench
https://web.archive.org/web/20080723182431/www.solarisinternals.com/wiki/index.php/FileBench
https://www.mckusick.com/softdep/suj.pdf
https://blogs.vmware.com/workstation/2010/01/replay-debugging-try-it-today.html
https://blogs.vmware.com/workstation/2010/01/replay-debugging-try-it-today.html
https://bugs.chromium.org/p/chromium/issues/detail?id=261623
https://forum.syncthing.net/t/panic-leveldb-table-corruption-on-data-block/2526
https://forum.syncthing.net/t/panic-leveldb-table-corruption-on-data-block/2526
https://ethereum.stackexchange.com/questions/1159/corruption-on-data-block-while-synchronising
https://ethereum.stackexchange.com/questions/1159/corruption-on-data-block-while-synchronising
https://ethereum.stackexchange.com/questions/1159/corruption-on-data-block-while-synchronising
https://github.com/google/leveldb/issues/333
https://github.com/google/leveldb/issues/333
http://www.slideshare.net/muk_ua/vswn6-m08-avalabilityenhancements
http://www.slideshare.net/muk_ua/vswn6-m08-avalabilityenhancements
https://www.criu.org/Main_Page
https://man.dragonflybsd.org/?command=sys_checkpoint§ion=2
https://man.dragonflybsd.org/?command=sys_checkpoint§ion=2
https://techcommunity.microsoft.com/t5/failover-clustering/tuning-failover-cluster-network-thresholds/ba-p/371834
https://techcommunity.microsoft.com/t5/failover-clustering/tuning-failover-cluster-network-thresholds/ba-p/371834
https://techcommunity.microsoft.com/t5/failover-clustering/tuning-failover-cluster-network-thresholds/ba-p/371834
https://criu.org/Download/criu/3.6
https://github.com/google/leveldb
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mysql.com/
https://www.postgresql.org/
https://www.postgresql.org/
https://lwn.net/Articles/752063/
https://www.redis.io
https://www.rocksdb.org
https://www.amd.com/system/files/documents/amd-epyc-7003-series-datasheet.pdf
https://www.amd.com/system/files/documents/amd-epyc-7003-series-datasheet.pdf

(43]

[44]

[45

—

[46

—

(47]

(48]

[49

-

(50

—

(51]

(52]

(53]

(54]

(55

[

[56]

Ali José Mashtizadeh, Min Cai, Gabriel Tarasuk-Levin, Ricardo Koller,
Tal Garfinkel, and Sreekanth Setty. XvMotion: Unified Virtual Machine
Migration over Long Distance. In 2014 USENIX Annual Technical
Conference (USENIX ATC 14), pages 97-108, Philadelphia, PA, June
2014. USENIX Association.

Ali José Mashtizadeh, Tal Garfinkel, David Terei, David Mazieres, and
Mendel Rosenblum. Towards practical default-on multi-core record/re-
play. In Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS *17, page 693-708, New York, NY, USA, 2017. Association
for Computing Machinery.

Marshall K. McKusick, William N. Joy, Samuel J. Leffler, and Robert S.
Fabry. A Fast File System for UNIX. ACM Trans. Comput. Syst.,
2(3):181-197, August 1984.

Marshall Kirk McKusick and Gregory R. Ganger. Soft Updates: A Tech-
nique for Eliminating Most Synchronous Writes in the Fast Filesystem.
In 1999 USENIX Annual Technical Conference (USENIX ATC 99), Mon-
terey, CA, June 1999. USENIX Association.

Umar Farooq Minhas, Shriram Rajagopalan, Brendan Cully, Ashraf
Aboulnaga, Kenneth Salem, and Andrew Warfield. RemusDB: Trans-
parent High Availability for Database Systems. The VLDB Journal,
22(1):29-45, February 2013.

Armando Miraglia, Dirk Vogt, Herbert Bos, Andy Tanenbaum, and Cris-
tiano Giuffrida. Peeking into the Past: Efficient Checkpoint-Assisted
Time-Traveling Debugging. In 2016 IEEE 27th International Symposium
on Software Reliability Engineering (ISSRE), pages 455-466, 2016.
Dushyanth Narayanan and Orion Hodson. Whole-System Persistence.
In Proceedings of the Seventeenth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS XVII, page 401-410, New York, NY, USA, 2012. Association
for Computing Machinery.

Michael Nelson, Beng-Hong Lim, and Greg Hutchins. Fast Transparent
Migration for Virtual Machines. In Proceedings of the Annual Confer-
ence on USENIX Annual Technical Conference, ATEC ’05, pages 25-25,
Berkeley, CA, USA, 2005. USENIX Association.

Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and
Jason Flinn. Rethink the sync. ACM Trans. Comput. Syst., 26(3), Sep-
tember 2008.

Simon Pickartz, Niklas Eiling, Stefan Lankes, Lukas Razik, and An-
tonello Monti. Migrating LinuX containers using CRIU. In International
Conference on High Performance Computing, pages 674-684. Springer,
2016.

Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-
natthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. All File Systems Are Not Created Equal:
On the Complexity of Crafting Crash-Consistent Applications. In 11th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 14), pages 433-448, Broomfield, CO, October 2014. USENIX
Association.

James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. Libckpt:
Transparent Checkpointing Under Unix. In Proceedings of the USENLX
1995 Technical Conference Proceedings, TCON’95, pages 18-18, Berkeley,
CA, USA, 1995. USENIX Association.

Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert
Baron, David Black, William Bolosky, and Jonathan Chew. Machine-
Independent Virtual Memory Management for Paged Uniprocessor and
Multiprocessor Architectures. In Proceedings of the Second International
Conference on Architectual Support for Programming Languages and
Operating Systems, ASPLOS 1II, pages 31-39, Washington, DC, USA,
1987. IEEE Computer Society Press.

Michiel Ronsse and Koen De Bosschere. RecPlay: A Fully Integrated
Practical Record/Replay System. ACM Trans. Comput. Syst., 17(2):133-
152, May 1999.

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Mendel Rosenblum and John K. Ousterhout. The Design and Im-
plementation of a Log-Structured File System. In Proceedings of the
Thirteenth ACM Symposium on Operating Systems Principles, SOSP *91,
pages 1-15, New York, NY, USA, 1991. Association for Computing
Machinery.

Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS:
A Fast Capability System. SIGOPS Oper. Syst. Rev., 34(2):21-22, April
2000.

Frank G Soltis. Fortress Rochester: The Inside Story of the IBM iSeries.
29th Street Press, 2001.

Andrew S. Tanenbaum, Robbert van Renesse, Hans van Staveren, Gre-
gory J. Sharp, and Sape J. Mullender. Experiences with the Amoeba
Distributed Operating System. Commun. ACM, 33(12):46-63, Decem-
ber 1990.

Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed
computing in practice: the Condor experience. Concurrency and com-
putation: practice and experience, 17(2-4):323-356, 2005.

Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and
Boris Grot. Benchmarking, Analysis, and Optimization of Serverless
Function Snapshots. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’21). ACM, 2021.

Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica
Ouyang, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. Dou-
blePlay: Parallelizing Sequential Logging and Replay. In Proceedings
of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XVI, pages
15-26, New York, NY, USA, 2011. ACM.

Ranjan Sarpangala Venkatesh, Till Smejkal, Dejan S. Milojicic, and
Ada Gavrilovska. Fast In-Memory CRIU for Docker Containers. In Pro-
ceedings of the International Symposium on Memory Systems, MEMSYS
’19, page 53-65, New York, NY, USA, 2019. Association for Computing
Machinery.

Dirk Vogt, Armando Miraglia, Georgios Portokalidis, Herbert Bos,
Andy Tanenbaum, and Cristiano Giuffrida. Speculative Memory Check-
pointing. In Proceedings of the 16th Annual Middleware Conference,
Middleware ’15, pages 197-209, New York, NY, USA, 2015. Association
for Computing Machinery.

William Voorsluys, James Broberg, Srikumar Venugopal, and Rajku-
mar Buyya. Cost of Virtual Machine Live Migration in Clouds: A
Performance Evaluation. In Proceedings of the 1st International Con-
ference on Cloud Computing, CloudCom ’09, pages 254-265, Berlin,
Heidelberg, 2009. Springer-Verlag.

	Abstract
	1 Introduction
	2 Background
	3 Using Aurora
	4 The Aurora Operating System
	4.1 Aurora's Architecture

	5 Making POSIX Persistent
	5.1 Basic Persistence
	5.2 Persistence Challenges
	5.3 Completing Persistence

	6 Making Persistence Fast
	7 Aurora Object Store
	8 Implementation
	9 Evaluation
	9.1 Aurora Object Store
	9.2 Persisting POSIX Objects
	9.3 Checkpointing Memory Objects
	9.4 Application Checkpointing
	9.5 Transparent Persistent for Memcached
	9.6 Customized RocksDB
	9.7 Comparison with Linux CRIU

	10 Related Work
	11 Conclusion
	Acknowledgments
	References

