
HA/TCP: A Reliable and Scalable Framework for TCP Network Functions

Haoyu Gu
University of Waterloo

Ali José Mashtizadeh
University of Waterloo

Bernard Wong
University of Waterloo

Abstract
Layer 7 network functions (NFs) are a critical piece of modern
network infrastructure. As a result, the scalability and reliabil-
ity of these NFs are important but challenging because of the
complexity of layer 7 NFs. This paper presents HA/TCP, a
framework that enables migration and failover of layer 7 NFs.
HA/TCP uses a novel replication mechanism to synchronize
the state between replicas with low overhead, enabling seam-
less migration and failover of TCP connections. HA/TCP
encapsulates the implementation details into our replicated
socket interface to allow developers to easily add high avail-
ability to their layer 7 NFs such as WAN accelerators, load
balancers, and proxies. Our benchmarks show that HA/TCP
provides reliability for a 100 Gbps NF with as little as 0.2%
decrease in client throughput. HA/TCP transparently migrates
a connection between replicas in 38 µs, including the network
latency. We provide reliability to a SOCKS proxy and a WAN
accelerator with less than 2% decrease in throughput and a
modest increase in CPU usage.

1 Introduction

Middleboxes are ubiquitous in modern networks. Providers of-
ten deploy middleboxes or network functions through network
function virtualization (NFV) to simplify their management
and deployment by freeing them from physical appliances.
Layer 7 NFs are a growing area in industry and academia that
includes caching proxies [3, 30], TLS termination [40], TCP
splicers [14,36,37], and WAN accelerators/optimizers [44,48].
These NFs provide complex network services that process
and transform traffic in non-trivial ways at critical points in
the network. For example, Cloudflare uses layer 7 proxies
to improve performance and security for web services. As a
central point for incoming traffic, every outage translates to a
financial loss and a reputational loss for both customers and
service providers [19, 52].

Layer 7 NFs compound the well known reliability and scal-
ability concerns of users of layer 2–3 NFs [45]. Many layer 7

NFs perform transformations, e.g., traffic encapsulation and
TLS termination, that prevent using fail-to-wire to temporarily
bypass the NF to avoid service outages. Disruptions of these
NFs are problematic as connections are terminated inside the
NF [36], making failures visible to end nodes.

To support migration and failover, these NFs must migrate
all states including, the TCP stack and any data currently be-
ing processed by the NF. Layer 7 NFs are unique because
they read-modify-write many state variables throughout their
software stack (e.g., TCP, TLS, and NF state) multiple times
during traffic processing. State changes must be replicated
immediately to allow a replica to take over connections seam-
lessly when failures occur.

Prior approaches to NF reliability, including those of
S6 [47], Stateless-NF [31], and FTC [21], cannot be applied
to layer 7 NFs. These prior systems commonly assume that
layer 2–3 NFs modify at most a few state variables. Most
of these systems store the state remotely for migration and
failover, and it is practical because most NFs only access or
modify 1–2 state variables per flow or per packet. Layer 7 NFs
have complex state that is accessed multiple times throughout
the packet processing pipeline, necessitating multiple remote
accesses to the state that is more costly than existing systems
are designed to handle.

This paper introduces HA/TCP, the first framework to sup-
port the migration and failover of TCP-based layer 7 NFs
for reliability and multi-node scalability. HA/TCP actively
replicates traffic from primary to replica to support seamless
failover and migration. We build a high performance IP-based
protocol for low overhead traffic replication between primary
and replica. HA/TCP introduces replicated sockets, a compat-
ible socket API that hides the complexity of replication and
eliminates the non-determinism between primary and replica.
Replicated sockets simplify reliable NF development because
we observed that most NF state derives from the TCP flow.

HA/TCP is highly optimized for modern high speed net-
works. Our benchmarks show that HA/TCP can saturate a
100 Gbps link while providing reliability. We made many crit-
ical optimizations, including eliminating all deep and shallow

copies of packets inside the critical path, relying on TCP itself
to correct network errors between the primary and replica, sup-
porting receive side scaling (RSS) and process concurrency,
and supporting TCP options important to NF performance.
Together these optimizations improve the performance of
HA/TCP by more than 10×.

HA/TCP is built on a production grade TCP stack based
on FreeBSD 13.1 and runs under DPDK using F-Stack. Our
system consists of a TCP/IP stack extension to replicate the
connection state, the replicated sockets API that eliminates
non-determinism in sockets, and the IP Clustering system ne-
gotiates with network switches for load balancing. HA/TCP
uses the common address redundancy protocol (CARP [9])
for failure detection and leader election. We implement many
optimizations for high throughput and low latency. To eval-
uate HA/TCP, we built three layer 7 NFs including a WAN
accelerator, a SOCKS proxy and a distributed load balancer.
Each NF supports HA/TCP in less than 100 lines of code.

Our system makes the following contributions:

• HA/TCP is the first system to provide reliability and
scalability for TCP-based layer 7 NFs. We introduce the
replicated sockets interface that simplifies the develop-
ment of reliable NFs.

• HA/TCP migrates TCP connections 2.4× faster than
Prism [24] and 1.7× faster than Capybara [12] when
including network latency.

• The implementation of several systems in addition to
HA/TCP including: the first open-source WAN accel-
erator, our distributed load balancer, and our novel IP
clustering system that works with commodity switches.

• Our experience building and optimizing HA/TCP for
100 Gbps networks.

Our evaluation results show that HA/TCP saturates
100 Gbps with just four connections. HA/TCP adds on aver-
age 11 µs to the round-trip time and reduces client through-
put by as little as 0.2%. Our NF benchmark shows HA/TCP
migrates transparently in 38 µs, which is faster than the state-
of-the-art TCP migration systems. HA/TCP scales linearly
across multiple nodes. The load-balancing benchmark shows
HA/TCP evenly distributes load among nodes.

2 Background

The reliability and scalability challenges of layer 7 NFs are
unique because their complexity far exceeds other types of
NFs. Layer 7 NFs contain a complete TCP stack that termi-
nates connections. A few recent works, Microboxes [36] and
mOS [29], introduce frameworks that provide a custom TCP
stack with better APIs for developing layer 7 NFs. Neither sys-
tem provides reliability or multi-node scalability. Our work is
complementary and can be used with either system.

Types of Layer 7 NFs. For our purposes, we classify layer
7 NFs into two categories: pass-through and endpointing NFs.
Pass-through NFs, such as an Intrusion Detection System
(IDS), are transparent to network connections as they only
monitor traffic. They only read the packets that flow through
connections and reconstruct the TCP state of each connection
locally, but do not alter the packet contents.

Endpointing NFs, such as a TCP splicer, SOCKS proxy
and WAN accelerator, terminate the TCP connection. The
NF splices the traffic from one connection to another while
optionally transforming the payload.

Endpointing NFs contain a complete TCP stack and the
NF application. The TCP stack provides full TCP packet
processing for the NF application. The TCP connections on
either end of the NF terminate at the NF. The NF application
works directly on the data that it reads from the TCP stack
and sends over another connection.

The failure of pass-through NFs does not affect the connec-
tions that they are monitoring. This is because they tap each
connection and reconstruct a copy of the minimal TCP state
for monitoring purposes. Pass-through NFs use fail-to-wire
to allow traffic to continue to flow after a failure.

However, if an endpointing NF fails, all connections
through the NF break, because endpointing NFs terminate all
TCP connections. A TCP connection is stateful, and the NF
relies on having the correct state of both the TCP stack and
the NF application. The connections to nodes on either end of
the NF cannot be re-established without the NF state, which
is lost during a failure.

The Need of Seamless Failover. Prior works have cited
that vendors are reluctant to reset network connections be-
cause of user visible disruptions [45]. FTMB [45] shows that a
number of popular applications come with defaults that cause
user visible disruptions and suffer poor recovery times in the
range of minutes. A recent Microsoft study stated that NF
failures accounted for 42% of severe incidents, and that some
failures lasted over a day [41].

NFs such as WAN accelerators are often deployed to ef-
ficiently make use of a company’s network infrastructure to
connect all of their remote sites together. Often they are de-
ployed using a hub and spoke model [13, 43] which means a
few NFs in the primary data centers can disrupt traffic nation-
ally or globally for these companies.

There is no equivalent to fail-to-wire for endpointing NFs,
because these NFs transform traffic. For example, a WAN
accelerator may compress, encrypt and encapsulate a TCP
flow over UDP to traverse the internet. Sending the traffic
without traversing the NF may leave the destination unable to
process the incoming connection that is incompatible, or the
intermediate network is unable to forward the traffic.

Existing Replication Frameworks. Existing NF state
management systems [20, 21, 31, 32, 42, 47] address the ma-
jor problems of scalability and reliability for layer 2–3 NFs.
These systems either replicate the state among NF instances
or store the state on another node. These NFs can scale elasti-
cally by migrating flows and seamlessly handling failures.

Existing layer 2–3 NF frameworks show that their state is
relatively simple, consisting of a few state variables [21, 31,
47]. These frameworks use this fact to efficiently replicate
state updates by coalescing or piggybacking state updates into
a smaller set of packets.

The state in layer 2–3 NFs does not update frequently. State-
lessNF [31] summarized the states and the access patterns for
common layer 2–3 NFs. For most NFs, such as load balancers,
firewalls and NATs, the states are updated at the beginning or
the ending of the connection, and the state is only read during
steady state processing. Other NFs may read and write the
state simultaneously, but at most once per packet.

The Problem with State Replication. Existing state repli-
cation systems are ill suited for layer 7 NFs for two reasons.
First, the TCP NFs have a large complex state. TCP NFs
terminate the TCP connection which necessitates replicating
a non-trivial state. These NFs terminate both endpoints of
the TCP connection to rewrite the TCP traffic. Both the NF
application state and TCP stack state are part of the NF state
that must be made reliable. Furthermore, all packets inside
the NF application are thus part of the state. The resulting
state update of a single packet is larger than the packet itself.

Second, the states are updated multiple times throughout
the NF pipeline, and attempting to batch state updates leads to
correctness or performance issues. All packet data, including
the payloads, is part of the NF state. When sending the data
in TCP, the TCP stack holds the data in the socket buffer
until it receives the acknowledgment from the peer. However,
the acknowledgment packet only indicates that the peer TCP
stack has processed the packet, but the application may not
have started processing. If the peer, say an endpoint NF, fails
before the NF application finishes the processing, even if
the NF gets failed over, the sender will never retransmit the
previously sent packet.

Delaying the TCP acknowledgment until the NF applica-
tion completes processing and updates its state is problem-
atic. While simplifying replication, it introduces a perfor-
mance problem for TCP, because the acknowledgment will
be delayed. The delay increases the perceived round-trip time
(RTT), which increases the TCP window size and the memory
requirements of all nodes. More importantly, any variability
in the RTT reduces the TCP window depending on the con-
gestion control algorithm. The result is that the end nodes
perceive worse network conditions, which hurts performance.

Prior TCP Failover Systems. Unfortunately, prior ap-
proaches to TCP failover [2,49,50] are not transparent, do not
support common TCP extensions, and suffer from high over-
heads. These systems change the TCP protocol and require

nodes to participate in migration or failover events. Several
systems use another machine (i.e., a NF) to store traffic to
ensure the replica node can resume communications after a
failure [4, 16]. Their NF is a single point of failure that must
be made reliable, yet they still incur overheads of 30% or
more. These systems are unmaintained for over 20 years.

Our Approach. Our approach is to use active replication
inside the network stack. We intercept incoming packets just
before the TCP stack, transmit them to the replica, and re-
sume TCP processing once the replica has acknowledged
reception. Naïvely implementing this approach results in low
performance. One of the main challenges of HA/TCP is how
to achieve good performance.

One benefit of our approach is that we simplify the develop-
ment requirement for providing high-availability for NFs by
introducing replicated sockets. Rather than replicate the NF
application state, we maintain output determinism through
our replicated socket interface, which means the output from
the network stack is identical on all nodes. NF applications
need to ensure that they do not generate any externally vis-
ible non-determinism. This is similar to the programming
discipline that game engines [11] use.

Providing output determinism does not preclude applica-
tions internally diverging, for example, the WAN accelerator
may take a cache hit on the primary and a miss on the replica
because of timing differences. NFs with unavoidable internal
non-determinism must ensure that the output remains identi-
cal. In this example, the replica that misses, would fetch the
value from its peer, resulting in identical output. Alternatively,
one could use record/replay [38, 45] to synchronize state.

3 Design

TCP NFs using HA/TCP are deployed similarly to other
NFs. In an NFV environment, we use an SDN controller
(e.g., ONOS [7]) to manage the deployment of NF instances
and coordinate traffic steering. The SDN controller coordi-
nates with the network function’s controller, which uses our
novel IP Clustering system to manage the network function
and traffic routing. Our main contribution is a TCP stack ex-
tension that supports the migration and failover of individual
flows between NFs.

HA/TCP has three main goals:

1. Transparent to Remote Nodes: We cannot make proto-
col changes that require modifying existing TCP stacks
in client nodes.

2. Low Overhead: While network reliability is important,
users are not willing to sacrifice performance. The end-
to-end impact on throughput and latency must be low to
make HA/TCP practical.

3. Fast Failover and Migration: Failover and migrations
must complete quickly to avoid user visible disruptions.

H
A

/T
C

P

H
A

/T
C

P

NIC NICNIC NIC

Replication

Channel

Primary Replica

IP IP
CARP CARP

Failure Detection

LRO LRO

TCP TCP

Socket Socket

NF
(Primary)

NF
(Replica)

State Replication

Packets

Acks.

IP
Frag.

IP
Reass.

Q Q

Figure 1: HA/TCP system architecture.

NFs using the HA/TCP framework, support migration and
failover using our replicated socket interface. Our replicated
socket provides a socket object that behaves identically on
both primary and replica. In the rest of the design, we explain
the operation of our replicated sockets, which we use to create
reliable NFs. The most difficult challenge is to replicate the
TCP stack to ensure that it behaves identically on both the
primary and replica. In § 3.8 we discuss our extensions to
CARP and our IP clustering protocol that provides additional
functionality to the NFs.

3.1 Overview

Figure 1 shows the HA/TCP system architecture. HA/TCP
intercepts and queues incoming packets from the TCP stack
after large receive offload (LRO) and checksum validation.
HA/TCP sends the TCP traffic and non-deterministic state
(e.g., congestion control variables) over the replication chan-
nel. Both primary and replica have copies of the same incom-
ing packet in their respective HA/TCP queue. After the replica
acknowledges receiving the packet, both sides dequeue the
packet and begin TCP processing. If the primary fails, CARP
notifies HA/TCP to fail over the connection.

To achieve the full duplex throughput of our primary net-
work interface, we dedicate a network interface for the repli-
cation channel between nodes. We use dual ported network
interface cards (NICs), which are marginally more expensive
than a single ported NICs. Our design uses active replica-

tion to a single replica. When a node fails, a new replica
is deployed through NFV. Alternatively, HA/TCP supports
multiple active replicas, see § 3.8.

Our performance goal is to support 100 Gbps network cards
which requires examining many performance issues through-
out the network stack. We can classify our optimizations into
four categories: First, reducing overhead by processing larger
packets. Second, eliminating memory allocations and copies
throughout our code. Third, hiding replication latency. Fourth,
supporting RSS for multithreaded application scalability.

HA/TCP creates listening and connected sockets that be-
have identically on the primary and replica, including all TCP
states. The NF only needs to ensure that it identically trans-
forms the data on the primary and replica.

Applications use setsockopt and getsockopt to enable
and configure HA/TCP. A typical workflow is to enable
HA/TCP on a listening socket, and any accepted connections
will inherit the configuration. The listening socket may accept
spoofed connections where the NF uses getsockname and
getpeername to retrieve the endpoint addresses.

When the primary fails, the connection seamlessly fails
over to the replica. The replica takes over the client connection
and becomes the new primary. The new primary exchanges
the traffic directly over the local NIC rather than the repli-
cation channel. In addition, HA/TCP provides the ability to
migrate sockets to other nodes as needed.

3.2 Replicated Sockets
HA/TCP’s replicated socket interface extends network sockets
to provide a socket object that behaves identically on the
primary and replica. Both listening and connected sockets
are replicated between nodes. A common workflow for our
NFs is to enable HA/TCP on a listening socket, which each
accepted socket inherits.

Connected Sockets: After enabling HA/TCP, the primary
continues to process traffic until a replica joins. Once a replica
joins, the primary temporarily pauses the traffic and synchro-
nizes all TCP state with the replica. Once complete, the pri-
mary resumes the client traffic.

HA/TCP Replication Channel: HA/TCP exchanges state
and packet data over the replication channel, which is an IP
protocol that encapsulates these packets with a small header.
Our system implements and registers an IP protocol with the
network stack that allows us to process packets in-line. For
example, on the replica we decapsulate packets and forward
them to the usual TCP input processing path as if they were
received from the client directly.

The IP protocol is simpler and more efficient than using
layer 4 protocols such as UDP or TCP for replication. The IP
layer does not look up control blocks, update the internal state,
acquire any locks nor apply congestion control, which lowers
overhead and simplifies our design. Furthermore, modern
NICs support IP checksum offloading.

The IP layer offers several other benefits over layer 2 pro-
tocols such as Ethernet. The IP layer provides IP fragmen-
tation and reassembly to exchange large packets in MTU
sized chunks. IP protocols are routable and can traverse many
network devices including over metropolitan area networks.

As a performance optimization (see § 3.5), we do not han-
dle packet loss in our replication channel. Instead, we rely
on the clients to time out and retransmit to the primary and
replica. Without an acknowledgment from the replica, the
primary will not acknowledge the TCP packet and thus the
client will retransmit the packets.

In an earlier design, we used a TCP connection for the
replication channel, which led to performance issues from
high CPU usage and the TCP meltdown problem [27]. This
doubles most of the network stack overhead as every incoming
packet traverses the primary’s NIC driver through the TCP
stack and out the replication interface’s NIC driver to the
replica. Similarly, the replica processes TCP twice before
forwarding data to the application.

TCP meltdown is a problem that occurs when running TCP
over TCP. It arises because HA/TCP holds packets on the
primary until the replica acknowledges reception. If a packet
is held longer than the client’s retransmission timeout, the
client treats this as packet loss and retransmits the packet. For
example, the replication channel may delay delivery because
of congestion control, which triggers a cascade of retransmis-
sions by the client that exacerbates the issue.

Avoiding IP Reassembly Collisions: The challenge of
using IP for the replication channel is that IP fragmentation
suffers from reassembly collisions [26]. The IP layer breaks
up larger packets into MTU sized chunks. At high throughput,
packets may be incorrectly reassembled because of collisions
with the fragment identifier. HA/TCP discards incorrectly as-
sembled packets, which results in the client observing packet
loss. The packet loss causes client retransmissions, which
reduces application performance.

IP reassembly uses the 16-bit IP identification field and
the 13-bit IP offset field to identify fragments belonging to
the same packet and reassemble them into the original packet.
Packets that are retransmitted because of loss or timeouts
pollute the IP reassembly queue with old fragments. Usually,
this is handled by clearing the IP reassembly buffer every 30
seconds. At high throughput, this is insufficient and we see
periodic collisions.

To solve this we added an IP option containing a 32-bit
unique ID and 32-bit timestamp to eliminate collisions. Each
replicated TCP connection is assigned its own unique ID to
avoid collisions between different connections.

Listening Sockets: HA/TCP replicates listening sockets
to the replica. Upon establishing the replication channel on
the replica, all states in the socket object and TCP stack are
synchronized. The replica then copies and applies all states
to the corresponding object.

HA/TCP ensures that new connections are created identi-

cally on both primary and replica. When a new connection
arrives, the primary forwards the 3-way handshake packets to
the replica.

First, the SYN packet, the primary’s initial sequence num-
ber, and a time offset for TCP timestamps are forwarded to
the replica. This packet is processed normally by the TCP
input path except that it uses the initial sequence number from
the primary.

Second, after receiving an acknowledgment from the
replica, the primary generates and sends a SYN-ACK packet
back to the client.

Third, the primary replicates the ACK message from the
client and the initial window size. We replicate the initial
congestion window size in case TCP fast open or the host
cache provides initial values. The replica processes the TCP
ACK normally.

HA/TCP inherits the replication configuration for newly
accepted sockets. Before returning from accept, HA/TCP ini-
tializes and activates replication on the newly created socket,
before the application uses the socket.

3.3 Steady State Processing on Primary
In normal operation, packet processing on the primary under-
goes five steps.

First, HA/TCP intercepts incoming packets inside of the
TCP input path. After the TCP input performs the checksum
validation and looks up the TCP control block, which filters
out any corrupt packets or packets not belonging to established
connections, HA/TCP intercepts the packet.

Second, HA/TCP places the original packets in a queue.
The packet mbufs and the TCP control block are stored to
allow the resumption of the TCP processing without repeating
the work completed in the first step.

Some time-based state is modified by buffering. The round
trip time increases by the additional latency of waiting for
the replica’s acknowledgment. For some congestion control
algorithms, we need the replica to respond with near constant
latency otherwise the algorithm may believe there is con-
gestion in the network. To avoid accidental duplicate packet
detections, we deliver packets in order so the packet times-
tamps [8] are monotonic (see § 3.7).

Third, HA/TCP duplicates and transmits the packet to each
replica. The duplication is necessary because when the packet
is sent through the replication channel, the network stack frees
the packet mbufs. As an optimization, we merge packet dupli-
cation with IP fragmentation to reduce overhead (see § 3.5).
HA/TCP prepends a small header containing the packet size
and, critically, any congestion control updates including win-
dow size changes (see § 3.4). The packets are then transmitted
over the replication channel to the replica nodes.

Fourth, HA/TCP waits for an acknowledgment from the
replica. While waiting for the replica to reply, HA/TCP con-
tinues to process incoming packets from the client.

Fifth, HA/TCP releases the queued packet to the TCP stack
once the replica acknowledges the packet. The packet resumes
processing in the TCP stack, where it left off in the first step.

3.4 Steady State Processing on Replica
The replica socket replicates the state and traffic from the
primary. HA/TCP simulates the interface and TCP behaviors
until a failover or migration event occurs. Critically, for good
performance, the replica acknowledges packets back to the
primary in constant time to avoid triggering client retrans-
missions and congestion control. In normal operation, packet
processing on the replica also undergoes five steps.

First, HA/TCP receives a packet from the replication chan-
nel and parses the HA/TCP header. If the packet contains a
replicated packet, HA/TCP removes the header and acknowl-
edges back to the primary. All processing in this step occurs
on the NIC thread associated with the replication channel. By
acknowledging immediately, we eliminate any timing jitter
from queuing or TCP processing. Otherwise, TCP congestion
control may reduce the window because of timing variance.

After the replica acknowledges the packet, the primary
may send a TCP acknowledgment to the client. The replica is
required to keep all packets it has acknowledged regardless of
whether the TCP stack is ready to process them. HA/TCP uses
a queue to store any packets that are not ready to be processed
by the TCP stack. For example, the client may acknowledge
a packet from the primary that the replica has yet to transmit.
In this case, the acknowledgment number is in the future and
the TCP stack would discard it.

Second, HA/TCP enqueues the packet until it is ready to
be processed by the replica TCP stack. The queue masks per-
formance differences between primary and replica. When a
replicated packet arrives, HA/TCP checks if the acknowledg-
ment number is within the maximum sequence number sent,
and only delivers the packet when this condition is met.

The queue length trades off tolerance for the performance
differences between nodes and the failover time. Large queues
better mask performance variability and tail latency in the
replica application. However, the large queue increases the
switchover time during the failover process because the queue
must be drained before the replica assumes the role of primary.
The queue size can be tuned for a specific workload and we
limit the queue size to the receive socket buffer size.

HA/TCP monitors the queuing level on the replica and
throttles the incoming traffic if the replica queue is saturated.
The replica acknowledgment contains the queue size that
the primary uses to check whether the replica is keeping up.
When the replica falls behind and the queue fills up, which
should not happen in a properly configured environment, the
primary throttles to avoid overflowing the replica queue.

Third, HA/TCP checks the packet header to determine if
any time-based state must be synchronized. The RTT esti-
mates and window sizes are synchronized between nodes as

needed to prevent inadvertently rejecting packets.
Fourth, HA/TCP iterates through all packets queued for

delivery. If the condition mentioned in the second step is met,
HA/TCP delivers the packet to the TCP stack; otherwise it
moves to the next packet in the queue. For example, if packet
loss occurs between the primary and client, the packets at
the front of the queue will not match the TCP state. Without
iterating through the queue, the retransmitted packets at the
tail will block further processing.

Fifth, for outgoing traffic, HA/TCP inspects and discards
the packets after all TCP processing is complete. Although
HA/TCP frees the packet, the content of this packet resides in
the socket buffer until the replica receives the TCP acknowl-
edgment from the client. The packet can be retransmitted
from the socket buffer. HA/TCP also attempts to deliver pack-
ets from the queue, after the TCP output code path transmits a
packet. This delivers any packets that did not previously meet
the condition (from the second step).

3.5 Performance Optimizations

HA/TCP is optimized for high performance network inter-
faces. In this section, we discuss each optimization and show
the performance breakdowns. Table 1 shows the performance
as we enable optimizations one at a time.

HA/TCP has three major data processing paths.

1. INPUT: The input path includes enqueuing the packets
and transmitting them through the replication channel.

2. DELIVERY: Receives the replica acknowledgments and
releases packets to the TCP stack.

3. REPLICA: The input path on the replica.

In HA/TCP, the INPUT path contains most of the high
overhead operations. The DELIVERY path and REPLICA paths
are similar to the baseline TCP network path. The total system
overhead from HA/TCP consists of all three paths from all
nodes. The overhead of each path is shown to make the effect
of the optimization clear.

Recall from § 3.2, our early design uses TCP as the trans-
port for our replication channel. Columns 2–4 in Table 1
use the TCP-based replication channel, while the remaining
columns use the IP-based replication channel.

Use TCP LRO to Reduce Overhead. HA/TCP is opti-
mized for the standard MTU of 1500 bytes to support user
facing services in the cloud or data centers. In our experience,
the FreeBSD TCP stack consumes CPU proportional to the
packets per second (PPS). Thus, reducing the number of pack-
ets reduces the processing cost. LRO merges multiple TCP
packets into a single packet earlier in the network stack to
eliminate the cost of processing many TCP headers. For large
flows, LRO can combine packets into 64 KiB packets.

Unreplicated No Opt. w/LRO w/LRO+NoCopy IP+LRO w/NoCopy+ReAsm

Throughput 93.60 Gbps 8.60 Gbps 53.39 Gbps 73.13 Gbps 54.23 Gbps 90.50 Gbps
Pkt/s 7.80 Mpps 0.72 Mpps 4.45 Mpps 6.09 Mpps 4.52 Mpps 7.54 Mpps

Pr
im

ar
y CPU INPUT 79 % 94 % 91 % 94 % 90 % 89 %

CPU DELIVERY - 53 % 66 % 63 % 28 % 28 %
CPU APP 61 % 35 % 52 % 59 % 54 % 71 %

R
ep

l. CPU REPLICA - 67 % 39 % 52 % 43 % 71 %
CPU APP - 47 % 42 % 56 % 38 % 60 %

Table 1: Shows HA/TCP with optimizations turned on/off. The first column shows the performance without replication. Columns
two through four uses our TCP-based replication channel, and the last two columns uses our IP-based replication channel.

Without any optimization, the INPUT path is the perfor-
mance bottleneck with two sources of overhead.1 First, the
INPUT path spends 9.7% of CPU time processing the incom-
ing packets. This is roughly 0.72 M PPS with the default
MTU of 1500 bytes. Without optimizations, CPU overhead
scales linearly with the packets per second.

Second, the INPUT path consumes 5.3% of CPU time du-
plicating network packets using m_dup. The CPU time scales
with the number of packets and the size of the payload, be-
cause m_dup deep copies the packet headers and data.

Enabling LRO chains consecutive packets into larger pack-
ets of up to 64 KiB in size through mbuf chaining, i.e., without
deep copies. LRO trades off the processing overhead of iden-
tifying consecutive packets in a stream with the per-packet
processing costs throughout the TCP stack. Furthermore, LRO
piggybacks on interrupt coalescing to chain packets that are
delivered in the same interrupt without increasing latency.
Potentially LRO can use hardware offloads, but in the NICs
we tested this performed worse.

The average packet traversing the network stack with LRO
is 61400 bytes in size, resulting in a 40× reduction in effective
PPS. While HA/TCP saves the per-packet CPU processing
and packet duplication overheads with LRO, LRO itself adds
overhead. However, the performance gain more than offsets
the cost of LRO. LRO improves HA/TCP throughput by 6.2×.
In our measurements, LRO slightly decreased latency because
of the substantial increase in throughput.

Avoid Deep Copies of mbufs on the Primary. Our repli-
cation protocol prepends its headers to the packet for trans-
mission. HA/TCP duplicates every incoming packet to retain
an unmodified copy for the local TCP stack.

Even after enabling LRO, the INPUT path remains the
performance bottleneck. The deep copying of mbufs us-
ing m_dup consumes 12% of CPU. To address this, we use
m_copypacket to perform a shallow copy. The function dupli-
cates mbuf headers and reference counts the payload. Shallow

1Adaptive polling is disabled in our configuration. The CPU spends
5–10% on CPU scheduling and waiting for interrupts. We confirmed by
monitoring the interrupt rate and using CPU profiling.

copying reduces memory copies and cuts the number of al-
location/deallocations in half. Switching to m_copypacket
improves throughput and reduces CPU usage.

Use IP-based Protocol for the Replication Channel. In
§ 3.2, we mentioned HA/TCP uses an IP-based protocol for
the replication channel. Compared to a TCP-based transport,
the IP protocol is simpler and more efficient.

With the optimizations we mentioned above, we use our
original TCP-based replication channel. We found that the
INPUT path consumes 8% of the CPU time on TCP encap-
sulation and processing. Our TCP-based replication channel
reduces the client throughput by 28% to 73 Gbps as compared
to an unreplicated setup. Furthermore, TCP over TCP suffers
from TCP meltdown problem (see § 3.2).

Next, we implement an IP-based replication protocol. We
compare the IP-based and TCP-based protocols with LRO
enabled. This rules out effects from other dependent optimiza-
tions (see next section).

The IP-based protocol simplifies the locking design. Send-
ing and receiving traffic in the TCP-based replication channel
goes through the TCP stack, which locks the TCP control
block. In addition, reading or writing the socket buffer for the
replication channel requires an additional lock. By switching
to an IP-based protocol, we eliminate these locks; moreover,
this simplifies the design and avoids lock ranking problems
that may lead to deadlocks.

Both versions are bottlenecked on the INPUT path because
of the packet duplication function. With the IP-based pro-
tocol, the throughput only increases marginally. Turning on
the shallow copying optimization significantly improves the
performance but it requires the next optimization.

Create Replica Copies with IP Fragmentation. Our IP-
based replication protocol depends on IP fragmentation to
split large packets into smaller MTU sized packets, which
replaces TSO (TCP segmentation offloading) in our TCP-
based protocol. IP fragmentation is required as LRO merges
small packets up to 64 KiB in size and this size far exceeds
the jumbo MTU size of the replication channel.

Our next major source of overhead arises from the deep
packet copies caused by IP fragmentation. When transferring

the replicated packet through the replication channel, IP frag-
mentation breaks the packet to fit the MTU of the replication
channel. The IP fragmentation process calls the packet du-
plication function, which allocates and copies the mbuf. The
MTU between the primary and the client is by default 1500
bytes, while the replication channel uses a 9k MTU. LRO
merges small packets into a 64 KiB packet, and subsequently
these large packets are broken into 9k jumbo packets.

To optimize IP fragmentation, HA/TCP unifies packet du-
plication and IP fragmentation. The unified IP fragmentation
path only copies the packet once to simultaneously fragment
the large packet into the replication channel and retain a refer-
ence to the original mbuf chain for retries and delivery to the
TCP stack. Merging these two functions with shallow copying
reduces the overhead. Combining these functions improves
client throughput by 67% over the LRO optimization alone.

3.6 Additional Optimizations

We also added a few optimizations that we do not include
in our performance breakdown. These optimizations reduce
CPU usage on non-bottlenecked paths, avoid unpredictable
behavior or support performance features of TCP/IP.

Allow Client to Repair Packet Loss. We expect packet
loss to be more common between the client and the primary
than over the replication channel. We rely on the client to
retransmit any lost packets. Recall that the primary only pro-
cesses the packet after receiving the acknowledgment from
the replica. Any packet loss on the client-primary connection
or replication channel causes the primary to not acknowledge
the packet, resulting in a client retransmission. Packet loss
in a data center, or even across a metro area network, is rare
when compared to the wide area network, and thus having the
client retransmit packets negligibly impacts performance.

Eliminate Delayed Processing on the Replica. We disable
Naggle’s algorithm and TCP delayed acknowledgments on
the replica to reduce buffering. Both optimizations delay and
batch network packets to reduce the overhead in the network
stack. However, the delay results in more packet buffering
and slows down the TCP state updates. The falling behind
TCP state on replica leads to more buffering in the queue, and
thus affects the performance of failover and migration.

Support Receive Side Scaling. RSS is a NIC feature that
load balances traffic across CPU cores for performance. Con-
nections are routed to a specific core based on a hash of the
5-tuple. Unfortunately, IP protocols are hashed based on their
3-tuple of IPs and protocol numbers resulting in a miss match
between flows and application threads. We use Intel Flow
Director [15] or Mellanox Flow Steering to maintain a one-
to-one match between cores on the primary and replica. We
use a range of IP protocol numbers so that the flow rules can
forward the replication channel traffic to the correct core.

3.7 Challenges with TCP options

HA/TCP supports modern TCP options. Failing to support
these features leads to performance or correctness issues.

Concurrent Listening Ports (SO_REUSEPORT). Multi-
process or multi-threaded applications often create multiple
listening sockets on the same port with SO_REUSEPORT(_LB).
To ensure deterministic behavior we establish a one-to-one
mapping of listening sockets on the primary and replica.

SYN Cache. HA/TCP handles randomness from the TCP
handshake. When the primary receives the SYN packet, the
SYN cache generates random states for security purposes.
These random states are sent to the replica along with the
SYN packet. After the replica acknowledges the replication
of this SYN packet, the primary delivers the packet again
to the SYN cache for the client to respond. However, the
primary needs to reapply the same random states to make
sure the SYN cache generates the identical states.

Syncookie and TCP Fast Open (TFO). The syncookie
and TFO use a cryptographic secret and a MAC function to
allow the client to store cached values from the server. To
ensure both TCP options function correctly, we synchronize
these two secrets between the primary and replica.

SACK on the Replica. HA/TCP guarantees the state of
SACK is identical on the primary and replica after a failover or
migration. The replica delivers queued packets only when the
acknowledgment number refers to packets that have already
been “sent” by the replica (§ 3.4). During the migration,
HA/TCP drains all remaining packets into the TCP stack,
and missing packets will result in the same SACK state.

Synchronizing Clocks for PAWS. TCP PAWS [8] uses
TCP timestamps to detect retransmitted packets and discards
the packet. To support PAWS, HA/TCP tracks the time differ-
ence between primary and replica (ts_offset) and delivers
the packet with an updated TCP timestamp adjusted by the
time difference. The PAWS check is completed on the pri-
mary and for valid packets, the timestamp offset will ensure
that the PAWS check will pass on the replica. We periodically
synchronize the clocks to avoid drift.

Congestion Control Algorithms. We tested HA/TCP
with both loss-based and RTT-based congestion control algo-
rithms and found no significant performance differences. For
loss-based algorithms, such as NewReno [22], DCTCP [6],
and H-TCP [35], HA/TCP does not alter the retransmission
mechanism in TCP, nor the congestion detection that the algo-
rithms rely on. For RTT-based congestion control algorithms,
such as HD [10] and CHD [25] that monitor network latency
and latency variance to detect congestion, both of which are
relatively stable. HA/TCP, and in particular the IP replica-
tion channel, is optimized to reduce the processing overhead,
which results in a low and constant increase in latency (§ 5.4).

3.8 Load Balancing, Failover and Migration

HA/TCP uses the Common Address Redundancy Protocol
(CARP) [9] protocol (based on VRRP [39]) to detect node
failures and perform leader election, and our novel IP Clus-
tering system to share a single IP address across nodes for
scalability. We also discuss migration and having multiple
replicas at the end of this section.

Failover (CARP). Each CARP node sends a periodic mul-
ticast advertisement. If three consecutive advertisements are
not received from the primary, CARP declares the primary as
failed. CARP then promotes a replica to be the new primary,
and transmits an ARP announcement to notify the switch of
the migration of the IP and MAC address to the new port.

In this paper, we set the advertisement interval to 100 ms,
which results in a 300 ms detection and recovery time that is
less than most application and TCP timeouts. Identifying the
proper trade-off between detection time and false positives is
beyond the scope of this paper.

HA/TCP fails over with minimal disruption. During steady
state, HA/TCP replicates the incoming traffic to all replicas.
Although replicas may lag behind the primary, our measure-
ments show that the delay is only in the tens of milliseconds.
The CARP failure detection time masks this lag and allows
the replica to drain the queue before the failover.

IP Clustering. HA/TCP’s IP clustering allows multiple
nodes to share the same IP address for scalability. Our IP
clustering system uses the link aggregation control protocol
(LACP) to negotiate load balancing with the switch [1]. LACP
allows one node to have multiple network interfaces to a
switch, but we developed a distributed version of LACP that
allows multiple nodes to share the same IP and MAC address.

Our distributed LACP protocol communicates between
nodes in a cluster to load balance traffic between the switch
and the nodes. The challenge is that HA/TCP’s distributed
LACP needs to synchronize the LACP state and ARP state
between nodes continually. All the nodes must present them-
selves to the switch as a single node with several state fields
being synchronized. ARP messages from the switch are only
routed to a single node, leaving other nodes unaware of the
ARP traffic. We use the replication interface to synchronize
the LACP state and the ARP entries among all nodes.

Currently, IP clustering is supported without replication, be-
cause it requires additional application orchestration to man-
age the placement of per-connection primary-replica pairs.
With complete orchestration, our IP clustering system will
subsume CARP’s functionality.

Migration. Migrations are driven by the primary, which
stops processing the client traffic, sends a migrate command
to the new primary, and demotes itself to a replica. The new
primary sends the promotion message to the replica, i.e., the
previous primary, to confirm the migration completion. Once
complete, the replica updates its state and the new primary
begins processing traffic.

Implementation Count

HA/TCP Kernel Code 10K SLOC
HA/TCP IP Clustering 1.4K SLOC

SOCKS Proxy 3.3K SLOC
WAN Accelerator 8.7K SLOC
Distributed Load-balancer 1.2K SLOC

Latency Prober 1.9K SLOC
Multi-protocol Load Generator 1.9K SLOC

Table 2: Approximate source lines of code (SLOC) for
HA/TCP and our NF applications.

Multiple Replicas. HA/TCP supports multiple replicas.
Given the resource requirements of active replication between
the primary and replica, it is recommended to use NFV to
deploy a new replica if a node goes down. This eliminates the
resource consumption of having another full replica, and the
extra demands on the primary to keep them synchronized.

HA/TCP supports multiple active replicas with unicast
connections for the replication channel. The primary requires
additional dedicated network interfaces if it wants to serve the
full available bandwidth of its primary interface. Alternatively,
multicast can be used to eliminate the need for additional
network interfaces with low latency and low packet loss, but
it has not been implemented.

4 Implementation

HA/TCP is implemented in the FreeBSD 13.1 network stack.
This is a popular operating system for network appliances
and the basis of F-Stack, a TCP/IP stack for DPDK. Table 2
shows the breakdown of lines of code for HA/TCP and the
NFs. The HA/TCP implementation consists of 8.8K source
lines of code (SLOC) that extend the TCP stack, 100 SLOC in
CARP, and 1.6K SLOC in the socket API. The IP Clustering
system consists of 1.4K SLOC. The SOCKS proxy, WAN
accelerator and load balancer consist of 13.2K SLOC. In
addition, the SOCKS proxy and multiprotocol client conform
to RFC1928 [34], RFC7230 [17] and RFC7231 [18].

5 Evaluation

We evaluate HA/TCP with micro-benchmarks and three TCP
NF applications. The micro-benchmarks measure the scalabil-
ity, migration/failover time, replication overhead, and latency
of HA/TCP. For the three TCP NF applications we show the
throughput and CPU usage.

In all benchmarks, the throughput is measured from the
client application. HA/TCP replicates and forwards the traffic
to the replica, and thus generates traffic in the replication
channel equal to the client traffic. The replication channel uses

1 2 3 4 5 6
Number of Nodes

1

2

3

4

5

6

T
hr

ou
gh

pu
t(

N
or

m
.)

Figure 2: HA/TCP scales linearly with number of nodes
while sharing a single IP and MAC address. HA/TCP load
balances connections through our IP Clustering system. The
throughput with 6 nodes is 2% lower than ideal.

a dedicated network interface to support the full bandwidth
of the primary interface for client traffic.

We measure the CPU usage in the INPUT, DELIVERY and
REPLICA paths (see § 3.5), along with the application CPU
usage including both user and kernel time. We present a break-
down of the CPU usage for the baseline, primary and replica.
The total CPU overhead is the percentage increase in CPU
from both the primary and replica.

To minimize variance in our measurements, we pinned each
context to a separate CPU and presented the total CPU usage.
We used multiple tools to monitor system performance and
hardware performance counters to breakdown the CPU usage.
This is the same process we used during development.

All measurements were done on a local area network with
low latency between all clients, primary and replica nodes.
This represents the worst-case, as the latency between the
client and primary is the same as the latency between the pri-
mary and replica. Over wide area networks, the extra latency
induced by replication is negligible when compared to WAN
latencies. In all benchmarks we used a single replica.

The primary and replica ran on two dual socket Intel Xeon
Gold 6342 processor machines. All servers and clients use a
dual-ported 100 Gbps Mellanox ConnectX-6 Ethernet NICs
connected to a 100 Gbps Mellanox switch. The MTU between
client and primary is set to the standard 1500 bytes, while the
MTU between nodes is 9000 bytes. The TCP stack uses the
New Reno congestion control algorithm. For failover tests,
we set the advertisement interval (adv_base) to 100 ms to
allow CARP to detect failures on average in 300 ms (§ 3.8).

5.1 Scalability
Figure 2 shows the scalability of HA/TCP’s IP clustering. Our
IP clustering allows NFs to share a single IP address across
any number of nodes. The scalability is only limited by the
switch’s ability to load balance traffic. In this benchmark, we
had the clients send traffic to six Intel Xeon Silver 4116 nodes
each with a 25 Gbps interface. We use these nodes because
we have a limited number of nodes with 100 Gbps NICs.

HA/TCP Prism Capybara
0

20

40

60

80

100

Ti
m

e
(µ

s)

Comms.
TCP
Other

Figure 3: Migration time breakdown including network la-
tency. HA/TCP takes 16 µs to complete the migration process,
while the network latency adds the remaining 22 µs. HA/TCP
is faster than the state-of-the-art systems.

5.2 Migration and Failover

Figure 3 shows the breakdown of the migration time for
HA/TCP, Prism [24] and Capybara [12]. To provide a fair
comparison, we breakdown the migration time for the TCP/IP
state, and omit system specific features such as application
level migration that not all systems support. For each system,
we breakdown the migration into three main costs: Comms.
that includes any synchronization between nodes, TCP that
includes the serialization and reconfiguration costs, and Other
that contains other system specific costs.

Migrations are initiated by the source. The migrate mes-
sage is sent through the replication channel to the destination
in 22 µs. The communication latency dominates the total mi-
gration time. Afterwards, HA/TCP updates the TCP control
block with the new IP address in 5 µs. The control block is
stored in a hash table indexed by the connection’s 5-tuple.
HA/TCP removes and re-inserts the control block into the
hash table using the new 5-tuple value. After updating the
control block, HA/TCP flushes any buffered packets in 3 µs.
Finally, HA/TCP re-enables the TCP processing in 2 µs.

Prism takes 92 µs if we consider only TCP operations.
Prism serializes and reconfigures TCP in 27 µs. Prism takes
21 µs to communicate once to exchange the TCP state. The
Other in Prism includes the traffic blocking and rule rewriting,
which takes 44 µs to complete.

Capybara transfers the TCP state in 3.7 µs, which is much
faster than HA/TCP and Prism because it uses a library OS
with a custom TCP stack. HA/TCP and Prism are based on
commercially used networking stacks (FreeBSD and Linux),
which are substantially more complex to reconfigure. While
Capybara’s state transfer is fast, it communicates over the
network three times. Capybara completes the migration in
64 µs including the three round trips over the network.

The failover process is identical to the migration process
except that it is triggered by CARP. The failover time depends
on the CARP detection time. As mentioned in § 3.8, we
configured CARP to detect failures on average in 300 ms.
HA/TCP finishes the migration 13 µs after failure detection.

0 10 20 30 40 50 60
Time

0

25

50

75

100
T

hr
ou

gh
pu

t(
G

bp
s)

Replicated
Baseline

Baseline
Primary

Replica

0

100

200

300

C
PU

U
sa

ge
(%

) App
Input

Deliv.
Repl.

Figure 4: Replication overheads for iPerf3 with the receive-
bound traffic configuration. The increase in latency results in
a decrease of 3.4% in throughput.

5.3 Replication Overhead

We ran iPerf3 in transmit-bound and receive-bound configu-
rations to measure the overhead of the transmit and receive
paths. The transmit-bound configuration has the client send
data to the server, while the receive-bound configuration has
the server send the data to the client.

Figures 4 and 5 show the results for the receive-bound
and transmit-bound configurations. The replication channel
adds 116 bytes of metadata to every packet. For iPerf3, LRO
reconstructs mostly 64 KiB packets that are fragmented by
our IP fragmentation code. The replication channel header
should result in a 0.2% decrease in peak throughput if the
workload is saturating the 100 Gbps link.

The receive-bound configuration reduces throughput by
3.4%, because of the higher input path processing costs and
the additional latency of waiting for the acknowledgment
from the replica, before completing TCP processing. In our
measurements, we found that the input path is the bottleneck
with over 90% of a single core used per connection.

The transmit-bound configuration reduces throughput by
0.3%, because the primary mostly performs bookkeeping to
track which outgoing packets are ready to be sent to the client.
Application CPU usage is lower than the baseline, because
the longer latency taken for application acknowledgments
results in more buffering in the outgoing socket buffer. The
increase in latency causes the application to block more often.
In response, the application increases the amount of data sent
in subsequent calls, which amortizes the system call overhead.

HA/TCP uses additional memory for replication. During
the steady state, both the primary and replica hold the repli-
cated packet in the packet queue until the conditions are met.
The memory overhead is small because HA/TCP reduces
memory consumption through shallow copying.

In our setup, under the maximum throughput of 100 Gbps
the RTT of the replication channel acknowledgments was
approximately 70 µs resulting in a peak memory usage of
875 KiB. The peak memory usage on the primary is derived
from the bandwidth delay product of the replication channel.
We expect the replica to use a similar amount of memory.

0 10 20 30 40 50 60
Time

0

25

50

75

100

T
hr

ou
gh

pu
t(

G
bp

s)

Replicated
Baseline

Baseline
Primary

Replica

0

100

200

300

C
PU

U
sa

ge
(%

) App
Input

Deliv.
Repl.

Figure 5: Replication overheads for iPerf3 with the transmit-
bound traffic configuration. The throughput and CPU over-
heads are low because HA/TCP is mainly doing bookkeeping
and replicating acknowledgments.

0th 10th 20th 30th 40th 50th 60th 70th 80th 90th 99th

Percentile

0

20

40

60

80

100

L
at

en
cy

(µ
s)

Replicated, 100000 QPS load
Baseline, 100000 QPS load

Figure 6: Latency overheads for replication. The client probes
the latency by sending requests at 1000 QPS while the server
is serving a 100k QPS workload. The latency increase reflects
the delay in replicating packets to the replica. We achieve
consistent low latency by avoiding the latency of waiting for
TCP processing on the replica.

5.4 Latency Overhead

We evaluated the latency response using a distributed work-
load simulator for key-value stores [56]. In this benchmark,
two clients connect to the server simultaneously. One client
generates 100k queries per second (QPS) while another client
measures the server response time by issuing 1k QPS. The
results are an average of ten runs for each configuration.

Figure 6 shows the application latency with and without
replication. The latency increases 11 µs on average.

The latency is lower than twice the RTT because the RTT
in the replication channel is lower than the RTT between
the client and the primary. We achieve this low replication
channel RTT by having the replica send acknowledgments
inline in the network stack, and our optimizations, including
using our IP-based replication protocol, which reduce the
CPU usage. Furthermore, the replica buffer hides processing
delays to avoid increasing tail latency.

0 10 20 30 40 50 60
Time

0

5

10

15
T

hr
ou

gh
pu

t(
G

bp
s)

Replicated
Baseline

Baseline
Primary

Replica

0

25

50

75

100

C
PU

U
sa

ge
(%

)

App
Input

Deliv.
Repl.

Figure 7: Replication overheads for the WAN accelerator.
This workload is CPU and latency bound.

5.5 WAN Accelerator

The WAN accelerator is our most complex NF. WAN acceler-
ators often serve as permanent VPNs connecting two or more
data centers, but with the addition of compressing and dedu-
plicating traffic to increase the effective bandwidth. They also
aggregate traffic and send them through fewer connections
between instances.

We found no open-source WAN accelerators and devel-
oped our own that will be available for others to use. WAN
accelerators have very high CPU requirements because of the
compression and deduplication, but commercial ones also pro-
vide protocol specific optimizations that require more CPU.
Our accelerator can support 9.7 Gbps, which is faster than
commercially available accelerators [48].

The WAN accelerator is configured to deduplicate and
compress traffic before encapsulating and sending the traffic
to the remote accelerator. This benchmark is unique because
we replicate both sides of the WAN accelerator. During the
test, the client creates eight long-live connections and issues
requests to fetch a 10 MiB size file from the HTTP server
through the accelerator. The accelerator uses eight cores for
traffic deduplication and eight cores for traffic compression.

Throughput Overheads. Figure 7 shows the throughput.
We apply HA/TCP to both the connection between accelerator
peers and the connection between the accelerator and the
server. We measured no statistically significant change in
client throughput. In this benchmark, the application is not
throughput bound or CPU bound, therefore we expect no
change in client throughput.

CPU Overheads. The application is CPU and latency
bound when passing data through the WAN accelerator’s
deduplication and compression pipeline on the side closest
to the server. HA/TCP consumes 6.4% more CPU on the
primary compared to the baseline CPU usage. Including the
total replica’s CPU usage, the replication consumes 106%
more CPU across both the primary and the replica.

0 10 20 30 40 50 60
Time

0

25

50

75

100

T
hr

ou
gh

pu
t(

G
bp

s)

Replicated
Baseline

Baseline
Primary

Replica

0

50

100

150

200

C
PU

U
sa

ge
(%

) App
Input

Deliv.
Repl.

Figure 8: Replication overhead for the SOCKS proxy that
shows a decrease in throughput of 2%. This workload is
transmit-bound with small incoming requests and large re-
sponses. The higher variance in throughput comes from the
replica’s queuing mechanism delaying a substantial amount
of response traffic from the server.

Failover. We tested failover using a multi-path setup with
three appliances. There is a primary and replica on each
site. This setup bridges two networks and allows for per-
connection load-balancing. CARP’s failure detection ac-
counts for most of the failover time, and HA/TCP fails over
all connections to the replica in 132 µs after failure detection.

5.6 SOCKS Proxy

A SOCKS proxy is an NF that forwards multiple protocols
through a server to restrict Internet access from inside a secure
network. It is often used to block phishing and other undesir-
able sites. We built an event-driven SOCKS proxy that con-
forms to the SOCKS5 protocol as defined in RFC1928 [34].

We used our multi-protocol load generator with 16 connec-
tions to fetch a 1 MiB file from the HTTP server through the
SOCKS proxy. The long-lived connection option is enabled
on the server and client. The connections between the SOCKS
proxy server and clients are replicated for the benchmark.

Throughput Overheads. Figure 8 shows the client
throughput with HA/TCP enabled. Replication reduces
throughput by 2%. The throughput is bounded by the remote
server response latency.

CPU Overheads. Figure 8 shows the CPU usage in the
application and the input path does not change significantly
from the baseline. HA/TCP consumes 29% CPU more on
primary compared to the baseline. Including the total replica’s
CPU usage, the replication consumes 102% more CPU in total
across both the primary and the replica.

Failover. Each buffered client request generates a 1 MiB
response from the server. Even a modest amount of queuing
on the replica leads to a large failover time. As part of the
steady state processing on the replica, the queue is drained
concurrently with failure detection. The replica is behind the
primary by roughly 44 requests. The failover completes in
84 ms after failure detection.

0 10 20 30 40 50 60
Time (s)

0

50

100

150

200

T
hr

ou
gh

pu
t(

G
bp

s)

Throughput

Figure 9: Connection level load-balancing. The load-balancer
is deployed on two nodes. Two clients initially connect to a
single server, and then load balancing is enabled to migrate
half the connections to the second node.

5.7 Load Balancer
HA/TCP allows transparent connection-level load balancing
among nodes. We implemented a distributed load-balancer
that uses HA/TCP to balance connections for an HTTP ser-
vice. The load-balancer works across multiple nodes to direct
traffic to an HTTP server instance.

In this experiment, we run the load balancer on two servers
and migrate half the connections while leaving the other con-
nections alone. We used two identical servers with 100 Gbps
NICs and two clients also with 100 Gbps NICs. Initially we
create 64 connections to one server, and we enable the load
balancing operation at around 22 s. HA/TCP then migrates
32 connections to the second server.

Figure 9 shows the aggregate throughput of all servers. One
server is processing 90.6 Gbps and after the migration both
are processing an aggregate of 181.2 Gbps.

6 Related Work

In addition to the works described in the background, there
are other works on migration and replication of transport
protocols. Most of these approaches deviate substantially
from our criteria for HA/TCP.

Record-and-replay Based TCP Failover. FT-TCP [53,54]
replicates TCP using record and replay. During a connection’s
lifetime, FT-TCP records all client network traffic and system
calls on the server. When a failure occurs, the replica replays
the recorded traffic and the system calls to reconstruct the
primary’s state. This approach suffers from high overheads
and a slower failover.

Application Specific TCP Failover. Snoeren et al. [49]
proposed an approach that supports TCP failover and migra-
tion. This approach uses a non-transparent state replication
extension to facilitate the migration. The migration process
is based on a proposed TCP migration extension [5], which
requires the client to respond to a new MigrateSY N packet.
However, this proposal has since been abandoned.

Surton et al. [51] introduced a middleware system TCPR
that masks TCP failures from the border gateway protocol
(BGP). TCPR implements a protocol specific graceful recov-
ery technique, which avoids the cost of replaying the entire
session for long lived connections, to recover the BGP session
state quickly and resume communications. This proposal does
not include the transparent failover and the migration features
present in HA/TCP.

Other Protocols. QUIC [28, 33] is a transport protocol
initially made to improve performance for HTTPS traffic. The
protocol is based on UDP and allows multiple streams per con-
nection. QUIC replaces the IP-Port tuple with a connection-ID
to allow for connection migration. QUIC requires client appli-
cation support. Our techniques from HA/TCP can be applied
to support the failover of QUIC NFs.

Trickles [46] is a TCP-like transport protocol that is state-
less on the server. The server-side protocol state and the ap-
plication state are moved to the client and sent along with the
user payload every time. This allows the server to migrate
because all states are stored on the client. Trickles requires
kernel and application changes on both servers and clients.
Moreover, the state information that is included with every
request, is prohibitively expensive for small packet workloads.

Zandy et al. [55] proposed a reliable network connection
library. The library addresses issues for mobile clients. The
library is not transparent since it requires integration on both
server and client applications. In addition, the library only
supports server side connection migration using an external
checkpointing mechanism.

Other NF FT Techniques. FTvNF [23] combines replay of
state access, similar to FTMB [45], with in-chain replication,
similar to FTC [21], to provide low overhead reliability. None
of these systems provide support for TCP NFs.

7 Conclusion

We present HA/TCP, a scalable framework that enables migra-
tion and failover for TCP NFs. HA/TCP provides a replicated
socket interface to simplify the implementation of migration
and high availability in NFs. HA/TCP fails over in millisec-
onds after detecting the failure. The migration is faster than
the state-of-the-art systems. HA/TCP can also be used to
extend these benefits to server applications.

Our code is available at https://github.com/rcslab/
hatcp/

Acknowledgments

The authors would like to thank Amilios Tsalapatis, Xinan
Yan, and Oscar Zhao for fruitful discussions during HA/TCP
’s development. We would also like to thank the NSDI review-
ers for their valuable feedback. This research is supported by
the following grant: NSERC Discovery, CFI JELF, WHJIL,
and NSERC CRD.

https://github.com/rcslab/hatcp/
https://github.com/rcslab/hatcp/

References

[1] Ieee standard for information technology - local and
metropolitan area networks - part 3: Carrier sense mul-
tiple access with collision detection (csma/cd) access
method and physical layer specifications-aggregation of
multiple link segments. IEEE Std 802.3ad-2000, pages
1–184, 2000.

[2] L. Alvisi, T.C. Bressoud, A. El-Khashab, K. Marzullo,
and D. Zagorodnov. Wrapping server-side TCP to mask
connection failures. In Proceedings IEEE INFOCOM
2001. Conference on Computer Communications. Twen-
tieth Annual Joint Conference of the IEEE Computer
and Communications Society (Cat. No.01CH37213),
volume 1, pages 329–337 vol.1, 2001.

[3] James W. Anderson, Ryan Braud, Rishi Kapoor, George
Porter, and Amin Vahdat. xomb: Extensible open mid-
dleboxes with commodity servers. In 2012 ACM/IEEE
Symposium on Architectures for Networking and Com-
munications Systems (ANCS), pages 49–60, 2012.

[4] Narjess Ayari, Denis Barbaron, Laurent Lefevre, and
Pascale Primet. T2CP-AR: A system for Transparent
TCP Active Replication. In 21st International Confer-
ence on Advanced Information Networking and Appli-
cations (AINA ’07), pages 648–655, May 2007.

[5] Hari Balakrishnan and A Snoeren. TCP Connection
Migration. Internet-Draft draft-snoeren-tcp-migrate-00,
Internet Engineering Task Force, November 2000. Work
in Progress.

[6] Stephen Bensley, Dave Thaler, Praveen Balasubrama-
nian, Lars Eggert, and Glenn Judd. Data Center TCP
(DCTCP): TCP Congestion Control for Data Centers.
RFC 8257, October 2017.

[7] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta
Higuchi, Masayoshi Kobayashi, Toshio Koide, Bob
Lantz, Brian O’Connor, Pavlin Radoslavov, William
Snow, and Guru Parulkar. ONOS: Towards an Open,
Distributed SDN OS. In Proceedings of the Third Work-
shop on Hot Topics in Software Defined Networking,
HotSDN ’14, page 1–6, New York, NY, USA, 2014. As-
sociation for Computing Machinery.

[8] D. Borman, B. Braden, V. Jacobson, and R. Scheffeneg-
ger. TCP Extensions for High Performance. RFC 7323,
RFC Editor, September 2014.

[9] BSD Kernel Interfaces Manual. Common Address Re-
dundancy Protocol, Feb 2022.

[10] Lukasz Budzisz, Rade Stanojevic, Robert Shorten, and
Fred Baker. A strategy for fair coexistence of loss and

delay-based congestion control algorithms. IEEE Com-
munications Letters, 13(7):555–557, 2009.

[11] John Carmack. .plan File. unpublished, October 1998.

[12] Inho Choi, Nimish Wadekar, Raj Joshi, Joshua Fried,
Dan R. K. Ports, Irene Zhang, and Jialin Li. Capybara:
µSecond-Scale Live TCP Migration. In Proceedings
of the 14th ACM SIGOPS Asia-Pacific Workshop on
Systems, APSys ’23, page 30–36, New York, NY, USA,
2023. Association for Computing Machinery.

[13] Cisco Systems, Inc. Best Practice Design - MX Security
and SD-WAN . https://documentation.meraki.
com/Architectures_and_Best_Practices/Cisco_
Meraki_Best_Practice_Design/Best_Practice_
Design_-_MX_Security_and_SD-WAN, 2020.

[14] Ariel Cohen, Sampath Rangarajan, and Hamilton Slye.
On the performance of TCP splicing for URL-Aware
redirection. In Second USENIX Symposium on Inter-
net Technologies & Systems (USITS 99), Boulder, CO,
October 1999. USENIX Association.

[15] Intel Corporation. Introduction to Intel(R) Ethernet
Flow Director and Memcached Performance. White
paper, Intel Corporation, 2014.

[16] C. Fetzer, M. Marwah, and S. Mishra. TCP Server Fault
Tolerance Using Connection Migration to a Backup
Server. In 2013 43rd Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks
(DSN), page 373, Los Alamitos, CA, USA, jun 2003.
IEEE Computer Society.

[17] R. Fielding and J. Reschke. Hypertext Transfer Protocol
(HTTP/1.1): Message Syntax and Routing. RFC 7230,
RFC Editor, June 2014.

[18] R. Fielding and J. Reschke. Hypertext transfer protocol
(http/1.1): Semantics and content. RFC 7231, RFC
Editor, June 2014.

[19] Edward Gately. Cloudflare outage knocks out "signifi-
cant portion" of global traffic, Dec 2023.

[20] Aaron Gember-Jacobson, Raajay Viswanathan,
Chaithan Prakash, Robert Grandl, Junaid Khalid,
Sourav Das, and Aditya Akella. Opennf: Enabling inno-
vation in network function control. In Proceedings of
the 2014 ACM Conference on SIGCOMM, SIGCOMM
’14, pages 163–174, New York, NY, USA, 2014. ACM.

[21] Milad Ghaznavi, Elaheh Jalalpour, Bernard Wong,
Raouf Boutaba, and Ali José Mashtizadeh. Fault toler-
ant service function chaining. In Proceedings of the An-
nual Conference of the ACM Special Interest Group on
Data Communication on the Applications, Technologies,

https://documentation.meraki.com/Architectures_and_Best_Practices/Cisco_Meraki_Best_Practice_Design/Best_Practice_Design_-_MX_Security_and_SD-WAN
https://documentation.meraki.com/Architectures_and_Best_Practices/Cisco_Meraki_Best_Practice_Design/Best_Practice_Design_-_MX_Security_and_SD-WAN
https://documentation.meraki.com/Architectures_and_Best_Practices/Cisco_Meraki_Best_Practice_Design/Best_Practice_Design_-_MX_Security_and_SD-WAN
https://documentation.meraki.com/Architectures_and_Best_Practices/Cisco_Meraki_Best_Practice_Design/Best_Practice_Design_-_MX_Security_and_SD-WAN

Architectures, and Protocols for Computer Communi-
cation, SIGCOMM ’20, page 198–210, New York, NY,
USA, 2020. Association for Computing Machinery.

[22] Andrei Gurtov, Tom Henderson, and Sally Floyd. The
NewReno Modification to TCP’s Fast Recovery Algo-
rithm. RFC 3782, April 2004.

[23] Yotam Harchol, David Hay, and Tal Orenstein. Ftvnf:
fault tolerant virtual network functions. In Proceed-
ings of the 2018 Symposium on Architectures for Net-
working and Communications Systems, ANCS ’18, page
141–147, New York, NY, USA, 2018. Association for
Computing Machinery.

[24] Yutaro Hayakawa, Michio Honda, Douglas Santry, and
Lars Eggert. Prism: Proxies without the Pain. In 18th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), pages 535–549. USENIX
Association, April 2021.

[25] David A. Hayes and Grenville Armitage. Improved
coexistence and loss tolerance for delay based tcp con-
gestion control. In IEEE Local Computer Network Con-
ference, pages 24–31, 2010.

[26] J. Heffner, M. Mathis, and B. Chandler. IPv4 Reassem-
bly Errors at High Data Rates. RFC 4963, RFC Editor,
July 2007.

[27] Osamu Honda, Hiroyuki Ohsaki, Makoto Imase, Mika
Ishizuka, and Junichi Murayama. Understanding tcp
over tcp: effects of tcp tunneling on end-to-end through-
put and latency. In Performance, Quality of Service, and
Control of Next-Generation Communication and Sensor
Networks III, volume 6011, pages 138–146. SPIE, 2005.

[28] J. Iyengar and M. Thomson. Quic: A udp-based mul-
tiplexed and secure transport. RFC 9000, RFC Editor,
May 2021.

[29] Muhammad Asim Jamshed, YoungGyoun Moon,
Donghwi Kim, Dongsu Han, and KyoungSoo Park.
mOS: A reusable networking stack for flow monitor-
ing middleboxes. In 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 17),
pages 113–129, Boston, MA, March 2017. USENIX
Association.

[30] K. Poul-Henning. Varnish HTTP Cache, Mar 2023.

[31] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck
Le. Stateless network functions: Breaking the tight cou-
pling of state and processing. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 17), pages 97–112, Boston, MA, 2017. USENIX
Association.

[32] Junaid Khalid and Aditya Akella. Correctness and per-
formance for stateful chained network functions. In
16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 501–516, Boston,
MA, 2019. USENIX Association.

[33] Adam Langley, Alistair Riddoch, Alyssa Wilk, Anto-
nio Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fe-
dor Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bailey,
Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik
Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton,
Victor Vasiliev, Wan-Teh Chang, and Zhongyi Shi. The
QUIC Transport Protocol: Design and Internet-Scale
Deployment. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’17, page 183–196, New York, NY, USA,
2017. Association for Computing Machinery.

[34] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and
L. Jones. SOCKS Protocol Version 5. RFC 1928, RFC
Editor, March 1996.

[35] Doug Leith. H-TCP: TCP Congestion Control for High
Bandwidth-Delay Product Paths. Internet-Draft draft-
leith-tcp-htcp-06, Internet Engineering Task Force, April
2008. Work in Progress.

[36] Guyue Liu, Yuxin Ren, Mykola Yurchenko, K. K. Ra-
makrishnan, and Timothy Wood. Microboxes: high
performance nfv with customizable, asynchronous tcp
stacks and dynamic subscriptions. In Proceedings of the
2018 Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’18, page 504–517,
New York, NY, USA, 2018. Association for Computing
Machinery.

[37] D.A. Maltz and P. Bhagwat. Msocks: an architecture
for transport layer mobility. In Proceedings. IEEE IN-
FOCOM ’98, the Conference on Computer Communica-
tions. Seventeenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Gateway to
the 21st Century (Cat. No.98, volume 3, pages 1037–
1045 vol.3, 1998.

[38] Ali José Mashtizadeh, Tal Garfinkel, David Terei, David
Mazieres, and Mendel Rosenblum. Towards Practical
Default-On Multi-Core Record/Replay. SIGPLAN Not.,
52(4):693–708, apr 2017.

[39] Stephen Nadas. Virtual Router Redundancy Protocol
(VRRP) Version 3 for IPv4 and IPv6. RFC 5798, March
2010.

[40] David Naylor, Kyle Schomp, Matteo Varvello, Ilias
Leontiadis, Jeremy Blackburn, Diego R. López, Kon-
stantina Papagiannaki, Pablo Rodriguez Rodriguez, and
Peter Steenkiste. Multi-context tls (mctls): Enabling

secure in-network functionality in tls. 45(4):199–212,
aug 2015.

[41] Rahul Potharaju and Navendu Jain. Demystifying the
Dark Side of the Middle: A Field Study of Middlebox
Failures in Datacenters. In Proceedings of the 2013
Conference on Internet Measurement Conference, IMC
’13, page 9–22, New York, NY, USA, 2013. Association
for Computing Machinery.

[42] Shriram Rajagopalan, Dan Williams, and Hani Jamjoom.
Pico replication: a high availability framework for mid-
dleboxes. In Proceedings of the 4th Annual Symposium
on Cloud Computing, SOCC ’13, New York, NY, USA,
2013. Association for Computing Machinery.

[43] Riverbed Technology, Inc. SD-WAN Deployment
Guide. https://support.riverbed.com/bin/
support/static/bk3e4nsvev67aokj3qg5gtcfv4/
html/ulhrppo7aoojclf7jbgjnlji07/scm_dg_
html/index.html, 2022.

[44] Riverbed Technology, Inc. SteelHead CX. https:
//www.riverbed.com/sites/default/files/
file/2021-10/steelhead-cx-data-sheet.pdf,
2022.

[45] Justine Sherry, Peter Xiang Gao, Soumya Basu, Auro-
jit Panda, Arvind Krishnamurthy, Christian Maciocco,
Maziar Manesh, João Martins, Sylvia Ratnasamy, Luigi
Rizzo, and Scott Shenker. Rollback-Recovery for Mid-
dleboxes. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, SIG-
COMM ’15, page 227–240, New York, NY, USA, 2015.
Association for Computing Machinery.

[46] Alan Shieh, Andrew C. Myers, and Emin Gün Sirer.
Trickles: A Stateless Network Stack for Improved Scala-
bility, Resilience, and Flexibility. In Proceedings of the
2nd Conference on Symposium on Networked Systems
Design & Implementation - Volume 2, NSDI’05, page
175–188, USA, 2005. USENIX Association.

[47] Shinae Woo and Justine Sherry and Sangjin Han and
Sue Moon and Sylvia Ratnasamy and Scott Shenker.
Elastic Scaling of Stateful Network Functions. In 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pages 299–312, Renton, WA,
2018. USENIX Association.

[48] Silver Peak Systems, Inc. VX Virtual WAN Optimiza-
tion Software. https://www.silver-peak.com/
sites/default/files/infoctr/silver-peak_ds_
vx-virtual-wan-optimization.pdf, 2022.

[49] Alex C. Snoeren, David G. Andersen, and Hari Balakr-
ishnan. Fine-Grained failover using connection migra-
tion. In 3rd USENIX Symposium on Internet Technolo-
gies and Systems (USITS 01), San Francisco, CA, March
2001. USENIX Association.

[50] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode. Migra-
tory TCP: connection migration for service continuity in
the Internet. In Proceedings 22nd International Confer-
ence on Distributed Computing Systems, pages 469–470,
2002.

[51] Robert Surton, Ken Birman, and Robbert van Renesse.
Application-driven tcp recovery and non-stop bgp. In
2013 43rd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages
1–12, 2013.

[52] Paul Walsh. Cloudflare outage to cause $16M of busi-
ness interruption losses, Jul 2019.

[53] D. Zagorodnov, K. Marzullo, L. Alvisi, and T.C. Bres-
soud. Engineering fault-tolerant TCP/IP servers using
FT-TCP. In 2003 International Conference on Depend-
able Systems and Networks, 2003. Proceedings., pages
393–402, 2003.

[54] Dmitrii Zagorodnov, Keith Marzullo, Lorenzo Alvisi,
and Thomas C. Bressoud. Practical and Low-Overhead
Masking of Failures of TCP-Based Servers. ACM Trans.
Comput. Syst., 27(2), may 2009.

[55] Victor C. Zandy and Barton P. Miller. Reliable Net-
work Connections. In Proceedings of the 8th Annual
International Conference on Mobile Computing and Net-
working, MobiCom ’02, page 95–106, New York, NY,
USA, 2002. Association for Computing Machinery.

[56] Siyao Zhao, Haoyu Gu, and Ali José Mashtizadeh. SKQ:
Event scheduling for optimizing tail latency in a tra-
ditional OS kernel. In 2021 USENIX Annual Tech-
nical Conference (USENIX ATC 21), pages 759–772.
USENIX Association, July 2021.

https://support.riverbed.com/bin/support/static/bk3e4nsvev67aokj3qg5gtcfv4/html/ulhrppo7aoojclf7jbgjnlji07/scm_dg_html/index.html
https://support.riverbed.com/bin/support/static/bk3e4nsvev67aokj3qg5gtcfv4/html/ulhrppo7aoojclf7jbgjnlji07/scm_dg_html/index.html
https://support.riverbed.com/bin/support/static/bk3e4nsvev67aokj3qg5gtcfv4/html/ulhrppo7aoojclf7jbgjnlji07/scm_dg_html/index.html
https://support.riverbed.com/bin/support/static/bk3e4nsvev67aokj3qg5gtcfv4/html/ulhrppo7aoojclf7jbgjnlji07/scm_dg_html/index.html
https://www.riverbed.com/sites/default/files/file/2021-10/steelhead-cx-data-sheet.pdf
https://www.riverbed.com/sites/default/files/file/2021-10/steelhead-cx-data-sheet.pdf
https://www.riverbed.com/sites/default/files/file/2021-10/steelhead-cx-data-sheet.pdf
https://www.silver-peak.com/sites/default/files/infoctr/silver-peak_ds_vx-virtual-wan-optimization.pdf
https://www.silver-peak.com/sites/default/files/infoctr/silver-peak_ds_vx-virtual-wan-optimization.pdf
https://www.silver-peak.com/sites/default/files/infoctr/silver-peak_ds_vx-virtual-wan-optimization.pdf

	Introduction
	Background
	Design
	Overview
	Replicated Sockets
	Steady State Processing on Primary
	Steady State Processing on Replica
	Performance Optimizations
	Additional Optimizations
	Challenges with TCP options
	Load Balancing, Failover and Migration

	Implementation
	Evaluation
	Scalability
	Migration and Failover
	Replication Overhead
	Latency Overhead
	WAN Accelerator
	SOCKS Proxy
	Load Balancer

	Related Work
	Conclusion

