
The Aurora Operating System
Revisiting the Single Level Store

Emil Tsalapatis
RCS Lab, University of Waterloo
emil.tsalapatis@uwaterloo.ca

Ryan Hancock
RCS Lab, University of Waterloo

krhancoc@uwaterloo.ca

Tavian Barnes
RCS Lab, University of Waterloo

tbarnes@uwaterloo.ca

Ali José Mashtizadeh
RCS Lab, University of Waterloo

ali@rcs.uwaterloo.ca

ABSTRACT
Applications on modern operating systems manage their
ephemeral state in memory, and persistent state on disk. En-
suring consistency between them is a source of significant
developer effort, yet still a source of significant bugs in ma-
ture applications. We present the Aurora single level store
(SLS), an OS that simplifies persistence by automatically per-
sisting all traditionally ephemeral application state. With
recent storage hardware like NVMe SSDs and NVDIMMs,
Aurora is able to continuously checkpoint entire applications
with millisecond granularity.

Aurora is the first full POSIX single level store to han-
dle complex applications ranging from databases to web
browsers. Moreover, by providing new ways to interact with
and manipulate application state, it enables applications to
provide features that would otherwise be prohibitively dif-
ficult to implement. We argue that this provides strong evi-
dence that manipulation and persistence of application state
naturally belong in an operating system.

CCS CONCEPTS
• Software and its engineering→ Operating systems; •
Computer systems organization→ Secondary storage
organization;Reliability;Dependable and fault-tolerant
systems and networks; • Information systems → Stor-
age architectures.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
HotOS ’21, June 1-June 3, 2021, Ann Arbor, MI, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8438-4/21/05.
https://doi.org/10.1145/3458336.3465285

KEYWORDS
single level stores, transparent persistence, snapshots, check-
point/restore

ACM Reference Format:
Emil Tsalapatis, Ryan Hancock, Tavian Barnes, and Ali José Mash-
tizadeh. 2021. The Aurora Operating System: Revisiting the Single
Level Store. InWorkshop on Hot Topics in Operating Systems (HotOS
’21), June 1-June 3, 2021, Ann Arbor, MI, USA. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3458336.3465285

1 INTRODUCTION
Single level storage (SLS) systems provide persistence of
applications as an operating system service. Their advantage
lies in removing the semantic gap between the in-memory
representation and the serialized on-disk representation that
uses file IO APIs. This gap often leads to increased code
complexity and software bugs [13, 41]. Instead, applications
solely use memory and the operating system persists this
state to disk. Developers design programs as if they never
crash and thus do not write code for persistence and recovery.
After a crash, the SLS restores the application, including
all state (i.e., CPU registers, OS state, and memory), which
continues executing oblivious to the interruption.
SLSes have been impractical to build for decades for per-

formance reasons, but this has changed with the advent
of new storage technologies. Past systems suffered from a
large performance gap between memory and disks in terms
of bandwidth and latency. This was compounded by write-
amplification due to the tracking of memory modifications
at page granularity, and the overhead of CPU and OS state.
Modern flash, coupled with fast PCIe Gen 4–5, has largely
closed the performance gap with memory.

We introduce the Aurora Operating System, a novel non-
traditional single level storage system that enables persis-
tence and manipulation of execution state. Aurora is based
on the FreeBSD kernel and is the first SLS that can run un-
modified POSIX applications. Aurora provides persistence at

https://orcid.org/0000-0003-2185-2029
https://orcid.org/0000-0001-6596-3623
https://orcid.org/0000-0002-0343-1530
https://orcid.org/0000-0002-8672-5138
https://doi.org/10.1145/3458336.3465285
https://doi.org/10.1145/3458336.3465285


HotOS ’21, June 1-June 3, 2021, Ann Arbor, MI, USA Emil Tsalapatis, Ryan Hancock, Tavian Barnes, and Ali José Mashtizadeh

the granularity of process trees or containers, and supports
multi-process applications with nearly all POSIX primitives.
This allows for the persistence of complex applications like
Firefox, a popular web browser.
Aurora differs from previous systems in several ways.

EROS [45] requires application cooperation to achieve per-
formance and its main contributions are optimizing check-
pointing and swap for spinning disks. IBM’s AS/400 uses
runtime and compile time hooks along with application hints
to achieve good performance [46].

Aurora revisits the single level store with three main con-
tributions. First, we depend on improvements in hardware to
achieve performance and functionality including new flash
storage and large virtual address spaces. Second, we develop
an architecture designed to support both unmodified and
modified POSIX applications. Third, we expand the concept
of a single level store with new primitives for the manipulat-
ing execution state to enable novel applications.

Aurora also accurately captures application state by treat-
ing all POSIX primitives (e.g., Unix domain sockets, System
V shared memory, and file descriptors) as first class objects,
rather than as parts of a process. This allows Aurora to han-
dle applications composed of processes that share memory or
files in arbitrary ways, without duplicating work or leaving
edge cases unhandled. Using this approach, Aurora supports
complex programs like the Firefoxweb browser, the RocksDB
key value store, and the Mosh remote shell.
Aurora provides a system level service for manipulating

arbitrary application state. It goes much further than tradi-
tional SLSes by blurring the line between applications and
data. Users can operate on running applications to persist,
copy, revert, or transfer them the same way they would a
file. Aurora makes state manipulation an explicit operation,
which programs often need to do in an ad hoc manner by
themselves. Aurora creates application checkpoints that en-
capsulate all information required to recreate the application,
even across reboots and machines.
We argue that application persistence and manipulation

of execution state naturally belong in the operating system,
which enables novel applications to modern systems. Aurora
allows us to solve a wide range of complex systems problems,
from reducing startup times and increasing density of server-
less computing, to improving debugging and simplifying
database design.

2 BACKGROUND
Single level stores have existed for decades both in industry
and academia [20, 23, 32, 45, 46]. These systems simplified
software development by providing persistence, but were
not POSIX compatible and not transparent. Developer effort
was required for correctness and performance. They used

incremental checkpointing [51] to persist applications at
regular intervals with runtime and/or application specific
hooks. These systems were severely limited by the speed of
storage devices at the time, e.g., the EROS research OS spent
a large effort on masking spinning disk latency [45].

Existing persistent-by-default designs like TheMachine [31]
and Twizzler [17] are not transparent and depend on special
hardware. The Machine was an attempt to build a supercom-
puter based on memristors, while Twizzler is an OS that uses
only NVDIMMs for storage. These systems break compati-
bility with existing systems in that they depend on the byte
addressability of persistent storage. Single level stores like
Aurora conversely use regular DRAM and disks, and hide
the distinction between the two from the application.
Aurora makes a key observation that device bandwidth

and latency has improved to rival the memory bus. Mod-
ern CPUs can provide an aggregate PCIe bandwidth up to
256 GB/s, more than that of memory [16]. New Intel 3D
XPoint SSD’s reduce IO latency to 10 𝜇𝑠 [8], within two
orders of magnitude of memory. The combination of high
bandwidth and low latency makes transparent persistence
possible without needing byte addressability.
Popular checkpoint/restore mechanisms have been used

for scientific computing to recover from failures and migrate
workloads [29, 42, 47]. These systems do not checkpoint
frequently enough to provide transparent persistence and
the resulting checkpoints are not self contained.
Checkpointing of virtual machines (VM) has enjoyed a

lot of popularity and applications. VMs package the applica-
tion and all dependencies into a portable checkpoint. Live
migration and incremental checkpointing have enabled dis-
tributed resource management, fault tolerance and other
applications [5, 24, 36, 38].

Containers, which have less overhead than virtualization,
have traditionally lacked these features. Providing the same
functionality for containers enables the same distributed
resource management and fault tolerance applications. Sys-
tems like CRIU [6], the standard for Linux container migra-
tion [40], piece together application state by querying the
kernel through system calls and the proc file system.
While CRIU’s performance is tolerable for migration, its

overheads are prohibitive for other applications including
transparent persistence. Even research systems that optimize
memory checkpointing in CRIU have failed to reduce over-
heads enough [50]. Furthermore, CRIU is incredibly complex,
requiring 7 years to properly add UNIX socket support [7].
Aurora is different from previous systems in two ways.

First, rather than checkpointing objects exposed at the sys-
tem call boundary it provides persistence throughout the OS.
This includes internal kernel state, the file system, and the
virtual memory subsystem. Second, Aurora treats all POSIX
primitives as first class objects, persisting and replicating the



The Aurora Operating System: Revisiting the Single Level Store HotOS ’21, June 1-June 3, 2021, Ann Arbor, MI, USA

POSIX object model as seen by the kernel. Aurora’s design
enables broad application support comparable to CRIU with
a far simpler design.

Serverless Computing and Scale Out: In the serverless par-
adigm, developers write small stateless functions that run
in the cloud. Invoking a function involves creating a new
container or VM and starting the application, an operation
that adds significant latency.

Frameworks and language based approaches have reduced
invocation latencies by colocating functions [26, 52], or by
restoring initialized application checkpoints. Catalyzer [25]
achieves submillisecond restore times from inmemory check-
points using a combination of virtualization and kernel based
techniques unique to the gVisor application kernel.

Aurora’s restore mechanism enables autoscaling and fast
starts using OS containers. Aurora’s restore times from disk
rival the state of the art because of lazy restores (see § 3)
and cooperative warm ups (see § 4). The object store also
deduplicates otherwise unrelated checkpoints on disk for
higher storage density.

Debugging and Speculation: Record/replay systems [21, 27,
28, 33, 35, 44, 49] record non-deterministic inputs to an ap-
plication to replay the complete execution. Recordings can
be large and checkpointing has been a common technique
for bounding the storage overhead. Aurora’s low overhead
checkpointing makes record/replay practical in production,
enabling developers to capture an application moments be-
fore a crash.

Limited forms of checkpoint/restore are used for applica-
tion level speculation, which restores application memory
to a prior state. This operation has been proposed as an
OS service implemented using hardware virtualization for
speculative execution and efficient backtracking [19]. Roll-
backs have also been used for application security, namely
intraprocess isolation [34].

Databases: Databases [10–12] and key-value stores [9, 14,
15] often spend a significant amount of their code manag-
ing persistence and paging of database state. The fsync and
msync calls have subtle semantic issues depending on hard-
ware and software configuration leading to data loss bugs
in even mature projects like LevelDB [1–4, 41] and Post-
greSQL [13]. Databases also implement memory tracking in
software, which duplicates the work of the hardware MMU
and the operating system.

Aurora gives developers fine-grained control over persis-
tence behavior for modified applications. An area of ongoing
work is developing a richer API for applications to communi-
cate with the OS to further optimize paging and persistence.

Application libsls sls

Userspace
Kernel

Virtual
Memory

SLS
Orchestrator

SLS
File System

ioctl

TCP/IP Object
Store

Kernel
Hardware

NIC NVMe NVDIMM

IPC Socket VFS Process Thread

Figure 1: Basic system diagram

3 THE AURORA OPERATING SYSTEM
Figure 1 shows the architecture of the Aurora persistent oper-
ating system. Aurora has three components: the SLS orches-
trator, the object store, and a custom file system. Each POSIX
object in the operating system (e.g., socket pairs, POSIX
shared memory or System V message queues) contains code
that continuously serializes and stores the state in the object
store. Each object is serialized independently, and contains
enough user and kernel state to recreate the object on restore.
The SLS orchestrator maps kernel objects to the on-disk

store and manages the checkpoint and resume operations.
Aurora provides persistence for individual processes, pro-
cess trees or containers. The orchestrator provides serial-
ization barriers across the entire OS to provide consistent
application-wide checkpoints. All processes are momentarily
paused and remaining unflushed state is copied into mem-
ory buffers or tracked using copy-on-write (COW). These
updates are flushed asynchronously to disk. In our current
prototype this occurs up to 100× per second with modest
overhead. The orchestrator also manages restores by recre-
ating all POSIX objects and resuming applications.



HotOS ’21, June 1-June 3, 2021, Ann Arbor, MI, USA Emil Tsalapatis, Ryan Hancock, Tavian Barnes, and Ali José Mashtizadeh

Aurora uses an optimized and custom COW mechanism
for its applications. The standard COW scheme used by fork
breaks shared memory semantics by forcing each process
within an application to create their own private copy on
a write. The OS normally prohibits marking shared pages
as COW to avoid this problem. Aurora instead modifies
FreeBSD’s Mach derived VM subsystem [43] to create a new
page shared between all processes on a copy-on-write fault,
while Aurora flushes the original page.

Aurora optimizes checkpoints by only flushing dirtied data
on every checkpoint. It implements incremental checkpoint-
ing using our custom COW mechanism that tracks writes
between successive checkpoints. It thus never flushes the
same page twice for shared memory or COW memory re-
gions. On restore, Aurora faithfully reproduces the entire
memory hierarchy to preserve page deduplication.

The object store simplifies synchronizing memory and file
system checkpoints. The snapshot operations of popular file
systems are too slow to keep up with the SLS orchestrator.
The object store does hundreds of checkpoints per second
using a lower overhead COW layout than that of WAFL [30]
and ZFS [18] that snapshot less frequently. The COW lay-
out enables in-place garbage collection without needing to
rewrite incremental checkpoints.

Applications are placed into a persistence group attached to
one or more backing devices. Locally persistent applications
are backed by NVMe flash or NVDIMMs when available.
Applications can also be remotely persisted through the net-
work backend to another host. For debugging and speculative
execution applications can use a local memory backend to
store ephemeral checkpoints. Aurora allows for attaching
multiple backends at the same time, e.g., sending an appli-
cation’s incremental checkpoints to both a local disk and a
remote machine for replication.

The Aurora file system provides a file API into the object
store that enables functionality and fixes limitations in POSIX
file systems. Users can create zero copy snapshots and clones
of a container including process and file system state. The file
system must handle special edge cases that are not normally
considered in a typical POSIX file system.
An example of an edge case is unlinked but open files

(i.e., anonymous files). In POSIX file systems, these files
would be reclaimed after a crash, preventing application
restoration. We solve this by maintaining an on-disk open
reference count storing the number of persistent virtual file
system vnodes.

Integrating swap with Aurora optimizes restores by lazily
paging application memory. Aurora restores the minimal ap-
plication state, including the OS and CPU state, with memory
effectively swapped out. Applications fault in their working
set during execution. Aurora uses the clock page replacement
algorithm [22] to optimize restore by eagerly paging in the

Command Description

sls persist Add an application to a persistence group
sls attach Attach a persistence group to a backend
sls detach Detach a persistence group from a backend
sls checkpoint Checkpoint an application
sls restore Restore an application from an image
sls ps List applications in Aurora
sls send Send an application to a remote
sls recv Receive an application from a remote
Table 1: A subset of the command line interface available
to users.

Function Description

sls_checkpoint() Create an image
sls_restore() Restore a checkpoint
sls_rollback() Roll back state to last checkpoint
sls_ntflush() Non-temporal flush (outside checkpoint)
sls_barrier() Wait for a checkpoint to be flushed
sls_mctl() Include/exclude memory regions
sls_fdctl() Enable/disable external consistency
Table 2: A subset of the API available to developers from
the Aurora library.

hottest pages to avoid excessive page faults. When pages are
swapped out due to memory pressure they are incorporated
into the subsequent checkpoint.

3.1 Command Line Interface
To help illustrate Aurora we show the usage of a subset of
the command line interface as shown in Table 1. Users begin
by enabling transparent persistence of an application using
the persist command. This registers all OS state that is
part of the application with the orchestrator. By default the
application is persisted 100× per second. The host and each
container have their own persistence group. The attach and
detach commands allow the user to register backends with
persistence groups.
Users can manually create named checkpoints with the

checkpoint command and view all application checkpoints
in Aurora using ps. Users can restore to a point in time or
resume execution of a persistence group after a system crash
using restore. Aurora uses free space on-disk to provide a
short execution history as incremental checkpoints.
Users can easily share or migrate applications using the

send and recv commands to serialize a checkpoint state or
continually feed incremental checkpoints to a remote host.
Flags to these commands allow the user to pipe a single
checkpoint to a file to give to another user, live migrate the
application, or provide fault tolerance.



The Aurora Operating System: Revisiting the Single Level Store HotOS ’21, June 1-June 3, 2021, Ann Arbor, MI, USA

3.2 Aurora API
Table 2 shows the Aurora API that custom applications use to
control and optimize persistence. Applications can manually
initiate checkpoints, restore, or roll back checkpoint state.
Applications control persistence using sls_barrier as

a persistence barrier for a given thread and sls_ntflush
to initiate a low latency flush of an append-only log to a
storage medium. These applications require custom code
during restore to repair data structures based on the log.

Applications can also control the behavior of memory and
other resources. Using sls_mctl, applications can selectively
include/exclude memory regions and hint to Aurora the best
policy for lazy restore. Developers can control the external
consistency per file descriptor using sls_fdctl.

External consistency [39] is enforced when a communica-
tions spans a persistence group boundary (including remote
hosts). Any data transmitted on a file descriptor are buffered
until the corresponding checkpoint is persisted on disk to
prevent other machines from seeing state that could be lost
in a crash. If the remote application can handle observing
such state, the developer can disable external consistency to
improve latency.

4 APPLICATIONS OF AURORA
In this section we show how Aurora’s abstractions enable
very different applications including serverless computing
and scale out, debugging and speculation, and databases.

Serverless Computing and Scale Out. Aurora can be used
to optimize serverless warm starts using its lazy restore,
combined with its ability to distribute and scale function
runtimes. Serverless function warm starts are similarly im-
plemented by restoring a container with the function already
initialized. Scaling out amounts to repeatedly restoring an
already checkpointed application.

Aurora’s COW design maximizes function density in per-
sistent storage by deduplicating shared runtime memory be-
tween different functions. The object store represents each
function as a small delta over the runtime container’s check-
point. All functions share this data, allowing machines to
potentially hold billions of functions.

Similar functions share unmodified pages, increasing func-
tion density and memory efficiency. This sharing causes in-
stances to warm each other up: an instance faulting a page
into memory shares it with the rest using COW. Recent re-
search [48] shows that the working set of many workloads
is almost identical between invocations, leading Aurora to
eliminate major faults for popular functions.

Debugging and Speculation. Aurora can also provide im-
provements to application debugging. Aurora creates peri-
odic checkpoints of a running application that can later be

inspected with a debugger or executed. We can use this to
build a type of time travel debugger [37] or, since new in-
cremental checkpoints leave old ones intact, to bisect the
history to find violations of invariants. Repeatedly restoring
from the same image can uncover nondeterministic failures
that do not manifest on every execution. We regularly used
this while developing Aurora itself.
Aurora integrates with record/replay systems to bound

record log size by only keeping the records since the last
checkpoint. On a failure, the application is rolled back to this
checkpoint and replays the remaining log. Developers can
thus witness the last seconds before a crash on a production
machine with a very small disk and CPU overhead compared
to standalone RR.

Aurora’s rollback primitive allows apps to implement spec-
ulative execution for increased performance. For example, a
client sending data to a server can execute assuming that the
server received it, saving a round trip’s worth of time. If the
transfer ends up failing, the client rolls back to before it sent
the data. Aurora notifies the client of the rollback, allowing
it to try a more conservative code path.

Databases. Aurora aims to provide a clean memory man-
agement interface between database applications and the
OS. Databases communicate application and workload spe-
cific memory management policies to Aurora, and use check-
pointing to trigger data transfers to and from storage. Aurora
allows applications to checkpoint data without associated
execution state, providing an explicit persistence primitive
that does not suffer from the semantic complexities of file
and memory syncing.

Aurora’s APIs provide a drop in replacement for common
persistence mechanisms found in key value stores. We use
Aurora’s persistent log (sls_ntflush), manual checkpoints
(sls_checkpoint) and barriers (sls_barrier), to replace
existing persistence mechanisms in RocksDB that uses a log
structured merge tree and Redis that uses fork for check-
points with a write ahead log. In the case of Redis our initial
port is already faster with less code.

5 PRELIMINARY RESULTS
Aurora is a fully working system that we continue to de-
velop, comprising ∼19k SLOC on top of FreeBSD 12.1. We
have been testing the system on a dual 2.1 GHz Intel Xeon
Silver 4116 CPU (Skylake-SP) with 96 GiB of RAM, four Intel
Optane 900P NVMe drives and an Intel X722 10 GbT net-
work interface card. We continue to explore how to improve
APIs for different use cases and improve performance by
optimizing various system components.
We have evaluated Aurora’s fitness for the use cases we

outlined by measuring the checkpoint and restore times of
two workloads: Redis, a key value store, with a working set



HotOS ’21, June 1-June 3, 2021, Ann Arbor, MI, USA Emil Tsalapatis, Ryan Hancock, Tavian Barnes, and Ali José Mashtizadeh

Checkpoint Full Incremental

Metadata copy 267.9 𝜇𝑠 239.7 𝜇𝑠
Lazy data copy 5145.9 𝜇𝑠 711.1 𝜇𝑠
Application stop time 5413.8 𝜇𝑠 950.8 𝜇𝑠

Table 3: Stop time breakdown when checkpointing a Redis
instancewith a 2 GiBworking set. Aurora flushes data in the
background concurrently with application execution.

of 2 GiB, and a smaller hello world application. Redis repre-
sents heavier applications that use Aurora for persistence
or debugging purposes, and the hello world app represents
serverless functions.

We checkpointed Redis both by copying its entire address
space, and by using incremental checkpointing. The results
in Table 3 show that, while the cost of grabbing metadata
is the same in both cases, lazily copying the address space
using COW is 7× faster with incremental checkpointing, for
a total stop time below 1𝑚𝑠 . In neither case does Redis stop
to wait for the data to reach storage, due to Aurora’s external
consistency semantics.

Application overhead includes the stop time for each check-
point and the cost of servicing COW faults while the appli-
cation runs. Most of the stop time is spent applying COW
tracking through page table manipulations. Checkpointing
frequency is bounded by the speed with which Aurora can
flush incremental checkpoints to disk.
Next, we restored the same Redis instance after bringing

the image to memory, as we would do when using Aurora
for debugging. According to the results in Table 4, restoring
takes around 755 𝜇𝑠 , two thirds of which are spent recreating
the address space. No memory is copied, since Aurora uses
COW semantics to share pages between the image and the
running application.

Finally, we measured the potential improvement in server-
less function startup time by restoring a small workload both
from memory and disk. Table 4 includes the results, which
show that the only extra latency when restoring from back-
ing storage is due to bringing in the function metadata from
the object store. In both cases, restore times are well under
a millisecond. Restoring metadata state for disk restores is
slightly faster, because reading in the checkpoint implicitly
restores some application state.

Restore Redis Serverless Serverless
Backend Memory Memory Disk

Object Store Read N/A N/A 322.7 𝜇𝑠
Memory state 494.4 𝜇𝑠 144.6 𝜇𝑠 122.6 𝜇𝑠
Metadata state 261.1 𝜇𝑠 240.4 𝜇𝑠 206.9 𝜇𝑠
Total latency 755.5 𝜇𝑠 454.4 𝜇𝑠 652.2 𝜇𝑠

Table 4: Restore time breakdown for a Redis instance with
a 2 GiB working set from an in-memory image, and a server-
less workload from an in-memory image and from disk.
Reading data from the object store implicitly restores some
state, causing lower memory and metadata restore times.

6 CONCLUSION
We present Aurora, the first modern single level store, and
the first to provide a complete POSIX interface. Aurora’s
performance characteristics show that, due to recent stor-
age hardware advances, SLSes are once again a practical
approach to OS design. SLSes provide both a simple and
elegant solution for application and data persistence, and
a flexible tool for manipulating execution state in new and
interesting ways.

We have applied Aurora to a wide variety of domains, in-
cluding serverless computing and scale out, debugging and
speculation, and databases. In these domains, the combina-
tion of simple but efficient persistence and extremely fast
checkpoints and restores allows us to provide both perfor-
mance benefits and new functionality while reducing ap-
plication complexity. Many of its benefits are available to
applications without any modifications at all; additional ben-
efits are available through a simple but powerful API.

We believe that Aurora will enable creating new and com-
plex applications with a fraction of the effort they would
otherwise need, and will pave the way for new research into
application/OS co-design.

ACKNOWLEDGMENTS
The authors thank Haoyu Gu, Samer Al-Kiswany, Bernard
Wong and Oscar Zhao for fruitful discussions during Au-
rora’s development. We would also like to thank the anony-
mous HotOS reviewers for their valuable feedback. The au-
thors would like to thank Hongbo Zhang for his work on
Aurora’s initial prototype. This research is supported by an
NSERC Discovery grant, Waterloo-Huawei Joint Innovation
Lab grant, and NSERC CRD grant.



The Aurora Operating System: Revisiting the Single Level Store HotOS ’21, June 1-June 3, 2021, Ann Arbor, MI, USA

REFERENCES
[1] Issue 261623: Unrecoverable chrome.storage.sync database corruption.

https://bugs.chromium.org/p/chromium/issues/detail?id=261623, July
2013.

[2] Panic: leveldb/table: corruption on data-block. https://forum.syncthing.
net/t/panic-leveldb-table-corruption-on-data-block/2526, April 2015.

[3] Corruption on data-block while synchronising. https:
//ethereum.stackexchange.com/questions/1159/corruption-on-
data-block-while-synchronising, February 2016.

[4] Db corruption observed with powerloss #333. https://github.com/
google/leveldb/issues/333, January 2016.

[5] VMware vSphere: What’s New - Availability Enhancements. http:
//www.slideshare.net/muk_ua/vswn6-m08-avalabilityenhancements,
Jan 2017.

[6] CRIU website. https://www.criu.org/Main_Page, April 2019.
[7] CRIU Release 3.6. https://criu.org/Download/criu/3.6, January 2021.
[8] Intel Optane SSD DC P4800X Series. https://www.intel.ca/content/

www/ca/en/products/memory-storage/solid-state-drives/data-
center-ssds/optane-dc-ssd-series/optane-dc-p4800x-series/p4800x-
1-5tb-aic.html, May 2021.

[9] LevelDB Source Repository. https://github.com/google/leveldb, Janu-
ary 2021.

[10] MongoDB: The most popular Database for Modern Apps . https:
//www.mongodb.com/, January 2021.

[11] MySQL Website. https://www.mysql.com/, January 2021.
[12] PostgreSQL: The world’s most advanced open source database. https:

//www.postgresql.org/, January 2021.
[13] PostgreSQL’s fsync() surprise. https://lwn.net/Articles/752063/, Janu-

ary 2021.
[14] Redis Website. https://www.redis.io, January 2021.
[15] RocksDB | A persistent key-value store. https://www.rocksdb.org,

January 2021.
[16] Advanced Micro Devices, Inc. AMD EPYC™ 7003 Processors (Data

Sheet). https://www.amd.com/system/files/documents/amd-epyc-
7003-series-datasheet.pdf, 2021.

[17] Daniel Bittman, Peter Alvaro, Pankaj Mehra, Darrell D. E. Long, and
Ethan L. Miller. Twizzler: a Data-Centric OS for Non-Volatile Memory.
In 2020 USENIX Annual Technical Conference (USENIX ATC 20), pages
65–80. USENIX Association, July 2020.

[18] Jeff Bonwick, Matt Ahrens, Val Henson, Mark Maybee, and Mark
Shellenbaum. The Zettabyte File System. Technical report, 2003.

[19] Edouard Bugnion, Vitaly Chipounov, and George Candea. Lightweight
Snapshots and System-level Backtracking. In Presented as part of the
14th Workshop on Hot Topics in Operating Systems, 2013.

[20] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas:
Leveraging Locks for Non-volatileMemory Consistency. In Proceedings
of the 2014 ACM International Conference on Object Oriented Program-
ming Systems Languages & Applications, OOPSLA ’14, pages 433–452,
New York, NY, USA, 2014. ACM.

[21] Yunji Chen, Shijin Zhang, Qi Guo, Ling Li, Ruiyang Wu, and Tianshi
Chen. Deterministic Replay: A Survey. ACM Comput. Surv., 48(2):17:1–
17:47, September 2015.

[22] Fernando J Corbato. A paging experiment with the multics system,
1968.

[23] Fernando J Corbató and Victor A Vyssotsky. Introduction and
Overview of the Multics System. In Proceedings of the November 30–
December 1, 1965, fall joint computer conference, part I, pages 185–196,
1965.

[24] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm
Hutchinson, and Andrew Warfield. Remus: High Availability via
Asynchronous Virtual Machine Replication. In Proceedings of the 5th

USENIX symposium on networked systems design and implementation,
pages 161–174. San Francisco, 2008.

[25] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Cheng-
gang Qin, Qixuan Wu, and Haibo Chen. Catalyzer: Sub-millisecond
Startup for Serverless Computing with Initialization-less Booting. In
Proceedings of the Twenty-Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, pages
467–481, 2020.

[26] Vojislav Dukic, Rodrigo Bruno, Ankit Singla, and Gustavo Alonso.
Photons: Lambdas on a Diet. In Proceedings of the 11th ACM Symposium
on Cloud Computing, SoCC ’20, page 45–59, New York, NY, USA, 2020.
Association for Computing Machinery.

[27] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Bas-
rai, and Peter M. Chen. ReVirt: Enabling Intrusion Analysis through
Virtual-Machine Logging and Replay. In Proceedings of the 5th Sym-
posium on Operating Systems Design and Implementation (Copyright
Restrictions Prevent ACM from Being Able to Make the PDFs for This
Conference Available for Downloading), OSDI ’02, page 211–224, USA,
2002. USENIX Association.

[28] George W. Dunlap, Dominic G. Lucchetti, Michael A. Fetterman, and
Peter M. Chen. Execution Replay of Multiprocessor Virtual Machines.
In Proceedings of the Fourth ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments, VEE ’08, pages 121–130,
New York, NY, USA, 2008. ACM.

[29] Paul H Hargrove and Jason C Duell. Berkeley Lab Checkpoint/Restart
(BLCR) for Linux Clusters. In Journal of Physics: Conference Series,
volume 46, page 494. IOP Publishing, 2006.

[30] Dave Hitz, James Lau, and Michael Malcolm. File System Design for
an NFS File Server Appliance. In Proceedings of the USENIX Winter
1994 Technical Conference on USENIX Winter 1994 Technical Conference,
WTEC’94, pages 19–19, Berkeley, CA, USA, 1994. USENIX Association.

[31] Kimberly Keeton. The Machine: An Architecture for Memory-Centric
Computing. In Workshop on Runtime and Operating Systems for Super-
computers (ROSS), volume 10, 2015.

[32] C.R. Landau. The checkpoint mechanism in KeyKOS. In Proceedings of
the Second International Workshop on Object Orientation in Operating
Systems, pages 86 – 91, 10 1992.

[33] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging Parallel Programs
with Instant Replay. IEEE Trans. Comput., 36(4):471–482, April 1987.

[34] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak
Garg, Bobby Bhattacharjee, and Peter Druschel. Light-weight Con-
texts: An OS Abstraction for Safety and Performance. In Proceedings
of the 12th USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI’16, pages 49–64, Berkeley, CA, USA, 2016. USENIX
Association.

[35] Ali José Mashtizadeh, Tal Garfinkel, David Terei, David Mazieres,
and Mendel Rosenblum. Towards Practical Default-On Multi-Core
Record/Replay. In Proceedings of the Twenty-Second International Con-
ference on Architectural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’17, page 693–708, New York, NY, USA, 2017.
Association for Computing Machinery.

[36] Umar Farooq Minhas, Shriram Rajagopalan, Brendan Cully, Ashraf
Aboulnaga, Kenneth Salem, and Andrew Warfield. Remusdb: Trans-
parent high availability for database systems. The VLDB Journal,
22(1):29–45, February 2013.

[37] ArmandoMiraglia, Dirk Vogt, Herbert Bos, Andy Tanenbaum, and Cris-
tiano Giuffrida. Peeking into the Past: Efficient Checkpoint-Assisted
Time-Traveling Debugging. In 2016 IEEE 27th International Symposium
on Software Reliability Engineering (ISSRE), pages 455–466. IEEE, 2016.

[38] Michael Nelson, Beng-Hong Lim, and Greg Hutchins. Fast Transparent
Migration for Virtual Machines. In Proceedings of the Annual Confer-
ence on USENIX Annual Technical Conference, ATEC ’05, pages 25–25,

https://bugs.chromium.org/p/chromium/issues/detail?id=261623
https://forum.syncthing.net/t/panic-leveldb-table-corruption-on-data-block/2526
https://forum.syncthing.net/t/panic-leveldb-table-corruption-on-data-block/2526
https://ethereum.stackexchange.com/questions/1159/corruption-on-data-block-while-synchronising
https://ethereum.stackexchange.com/questions/1159/corruption-on-data-block-while-synchronising
https://ethereum.stackexchange.com/questions/1159/corruption-on-data-block-while-synchronising
https://github.com/google/leveldb/issues/333
https://github.com/google/leveldb/issues/333
http://www.slideshare.net/muk_ua/vswn6-m08-avalabilityenhancements
http://www.slideshare.net/muk_ua/vswn6-m08-avalabilityenhancements
https://www.criu.org/Main_Page
https://criu.org/Download/criu/3.6
https://www.intel.ca/content/www/ca/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-ssd-series/optane-dc-p4800x-series/p4800x-1-5tb-aic.html
https://www.intel.ca/content/www/ca/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-ssd-series/optane-dc-p4800x-series/p4800x-1-5tb-aic.html
https://www.intel.ca/content/www/ca/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-ssd-series/optane-dc-p4800x-series/p4800x-1-5tb-aic.html
https://www.intel.ca/content/www/ca/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-ssd-series/optane-dc-p4800x-series/p4800x-1-5tb-aic.html
https://github.com/google/leveldb
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mysql.com/
https://www.postgresql.org/
https://www.postgresql.org/
https://lwn.net/Articles/752063/
https://www.redis.io
https://www.rocksdb.org
https://www.amd.com/system/files/documents/amd-epyc-7003-series-datasheet.pdf
https://www.amd.com/system/files/documents/amd-epyc-7003-series-datasheet.pdf


HotOS ’21, June 1-June 3, 2021, Ann Arbor, MI, USA Emil Tsalapatis, Ryan Hancock, Tavian Barnes, and Ali José Mashtizadeh

Berkeley, CA, USA, 2005. USENIX Association.
[39] Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and

Jason Flinn. Rethink the Sync. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, OSDI ’06, page 1–14,
USA, 2006. USENIX Association.

[40] Simon Pickartz, Niklas Eiling, Stefan Lankes, Lukas Razik, and An-
tonelloMonti. Migrating LinuX containers using CRIU. In International
Conference on High Performance Computing, pages 674–684. Springer,
2016.

[41] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-
natthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. All File Systems Are Not Created Equal:
On the Complexity of Crafting Crash-Consistent Applications. In 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14), pages 433–448, Broomfield, CO, 2014. USENIX Association.

[42] James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. Libckpt: Trans-
parent Checkpointing under Unix. In Usenix Winter 1995 Technical
Conference, 1995.

[43] Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert
Baron, David Black, William Bolosky, and Jonathan Chew. Machine-
Independent VirtualMemoryManagement for Paged Uniprocessor and
Multiprocessor Architectures. In Proceedings of the Second International
Conference on Architectual Support for Programming Languages and
Operating Systems, ASPLOS II, page 31–39, Washington, DC, USA,
1987. IEEE Computer Society Press.

[44] Michiel Ronsse and Koen De Bosschere. RecPlay: A Fully Integrated
Practical Record/Replay System. ACM Trans. Comput. Syst., 17(2):133–
152, May 1999.

[45] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS:
A Fast Capability System. In Proceedings of the Seventeenth ACM
Symposium on Operating Systems Principles, SOSP ’99, pages 170–185,

New York, NY, USA, 1999. ACM.
[46] Frank G. Soltis. Fortress Rochester: The Inside Story of the IBM iSeries.

May 2001.
[47] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed

computing in practice: the Condor experience. Concurrency and com-
putation: practice and experience, 17(2-4):323–356, 2005.

[48] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and
Boris Grot. Benchmarking, analysis, and optimization of serverless
function snapshots. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’21). ACM, 2021.

[49] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica
Ouyang, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. Dou-
blePlay: Parallelizing Sequential Logging and Replay. In Proceedings
of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XVI, pages
15–26, New York, NY, USA, 2011. ACM.

[50] Ranjan Sarpangala Venkatesh, Till Smejkal, Dejan S. Milojicic, and
Ada Gavrilovska. Fast In-Memory CRIU for Docker Containers. In Pro-
ceedings of the International Symposium on Memory Systems, MEMSYS
’19, page 53–65, New York, NY, USA, 2019. Association for Computing
Machinery.

[51] Dirk Vogt, Armando Miraglia, Georgios Portokalidis, Herbert Bos,
Andy Tanenbaum, and CristianoGiuffrida. SpeculativeMemory Check-
pointing. In Proceedings of the 16th Annual Middleware Conference,
Middleware ’15, page 197–209, New York, NY, USA, 2015. Association
for Computing Machinery.

[52] Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker. Kappa: A
Programming Framework for Serverless Computing. In Proceedings of
the 11th ACM Symposium on Cloud Computing, pages 328–343, 2020.


	Abstract
	1 Introduction
	2 Background
	3 The Aurora Operating System
	3.1 Command Line Interface
	3.2 Aurora API

	4 Applications of Aurora
	5 Preliminary Results
	6 Conclusion
	Acknowledgments
	References

