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ABSTRACT
Applications on modern operating systems manage their
ephemeral state in memory, and persistent state on disk. En-
suring consistency between them is a source of significant
developer effort, yet still a source of significant bugs in ma-
ture applications. We present the Aurora single level store
(SLS), an OS that simplifies persistence by automatically per-
sisting all traditionally ephemeral application state. With
recent storage hardware like NVMe SSDs and NVDIMMs,
Aurora is able to continuously checkpoint entire applications
with millisecond granularity.

Aurora is the first full POSIX single level store to han-
dle complex applications ranging from databases to web
browsers. Moreover, by providing new ways to interact with
and manipulate application state, it enables applications to
provide features that would otherwise be prohibitively dif-
ficult to implement. We argue that this provides strong evi-
dence that manipulation and persistence of application state
naturally belong in an operating system.

CCS CONCEPTS
• Software and its engineering→ Operating systems; •
Computer systems organization→ Secondary storage
organization;Reliability;Dependable and fault-tolerant
systems and networks; • Information systems → Stor-
age architectures.
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1 INTRODUCTION
Single level storage (SLS) systems provide persistence of
applications as an operating system service. Their advantage
lies in removing the semantic gap between the in-memory
representation and the serialized on-disk representation that
uses file IO APIs. This gap often leads to increased code
complexity and software bugs [13, 41]. Instead, applications
solely use memory and the operating system persists this
state to disk. Developers design programs as if they never
crash and thus do not write code for persistence and recovery.
After a crash, the SLS restores the application, including
all state (i.e., CPU registers, OS state, and memory), which
continues executing oblivious to the interruption.
SLSes have been impractical to build for decades for per-

formance reasons, but this has changed with the advent
of new storage technologies. Past systems suffered from a
large performance gap between memory and disks in terms
of bandwidth and latency. This was compounded by write-
amplification due to the tracking of memory modifications
at page granularity, and the overhead of CPU and OS state.
Modern flash, coupled with fast PCIe Gen 4–5, has largely
closed the performance gap with memory.

We introduce the Aurora Operating System, a novel non-
traditional single level storage system that enables persis-
tence and manipulation of execution state. Aurora is based
on the FreeBSD kernel and is the first SLS that can run un-
modified POSIX applications. Aurora provides persistence at
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the granularity of process trees or containers, and supports
multi-process applications with nearly all POSIX primitives.
This allows for the persistence of complex applications like
Firefox, a popular web browser.
Aurora differs from previous systems in several ways.

EROS [45] requires application cooperation to achieve per-
formance and its main contributions are optimizing check-
pointing and swap for spinning disks. IBM’s AS/400 uses
runtime and compile time hooks along with application hints
to achieve good performance [46].

Aurora revisits the single level store with three main con-
tributions. First, we depend on improvements in hardware to
achieve performance and functionality including new flash
storage and large virtual address spaces. Second, we develop
an architecture designed to support both unmodified and
modified POSIX applications. Third, we expand the concept
of a single level store with new primitives for the manipulat-
ing execution state to enable novel applications.

Aurora also accurately captures application state by treat-
ing all POSIX primitives (e.g., Unix domain sockets, System
V shared memory, and file descriptors) as first class objects,
rather than as parts of a process. This allows Aurora to han-
dle applications composed of processes that share memory or
files in arbitrary ways, without duplicating work or leaving
edge cases unhandled. Using this approach, Aurora supports
complex programs like the Firefoxweb browser, the RocksDB
key value store, and the Mosh remote shell.
Aurora provides a system level service for manipulating

arbitrary application state. It goes much further than tradi-
tional SLSes by blurring the line between applications and
data. Users can operate on running applications to persist,
copy, revert, or transfer them the same way they would a
file. Aurora makes state manipulation an explicit operation,
which programs often need to do in an ad hoc manner by
themselves. Aurora creates application checkpoints that en-
capsulate all information required to recreate the application,
even across reboots and machines.
We argue that application persistence and manipulation

of execution state naturally belong in the operating system,
which enables novel applications to modern systems. Aurora
allows us to solve a wide range of complex systems problems,
from reducing startup times and increasing density of server-
less computing, to improving debugging and simplifying
database design.

2 BACKGROUND
Single level stores have existed for decades both in industry
and academia [20, 23, 32, 45, 46]. These systems simplified
software development by providing persistence, but were
not POSIX compatible and not transparent. Developer effort
was required for correctness and performance. They used

incremental checkpointing [51] to persist applications at
regular intervals with runtime and/or application specific
hooks. These systems were severely limited by the speed of
storage devices at the time, e.g., the EROS research OS spent
a large effort on masking spinning disk latency [45].

Existing persistent-by-default designs like TheMachine [31]
and Twizzler [17] are not transparent and depend on special
hardware. The Machine was an attempt to build a supercom-
puter based on memristors, while Twizzler is an OS that uses
only NVDIMMs for storage. These systems break compati-
bility with existing systems in that they depend on the byte
addressability of persistent storage. Single level stores like
Aurora conversely use regular DRAM and disks, and hide
the distinction between the two from the application.
Aurora makes a key observation that device bandwidth

and latency has improved to rival the memory bus. Mod-
ern CPUs can provide an aggregate PCIe bandwidth up to
256 GB/s, more than that of memory [16]. New Intel 3D
XPoint SSD’s reduce IO latency to 10 𝜇𝑠 [8], within two
orders of magnitude of memory. The combination of high
bandwidth and low latency makes transparent persistence
possible without needing byte addressability.
Popular checkpoint/restore mechanisms have been used

for scientific computing to recover from failures and migrate
workloads [29, 42, 47]. These systems do not checkpoint
frequently enough to provide transparent persistence and
the resulting checkpoints are not self contained.
Checkpointing of virtual machines (VM) has enjoyed a

lot of popularity and applications. VMs package the applica-
tion and all dependencies into a portable checkpoint. Live
migration and incremental checkpointing have enabled dis-
tributed resource management, fault tolerance and other
applications [5, 24, 36, 38].

Containers, which have less overhead than virtualization,
have traditionally lacked these features. Providing the same
functionality for containers enables the same distributed
resource management and fault tolerance applications. Sys-
tems like CRIU [6], the standard for Linux container migra-
tion [40], piece together application state by querying the
kernel through system calls and the proc file system.
While CRIU’s performance is tolerable for migration, its

overheads are prohibitive for other applications including
transparent persistence. Even research systems that optimize
memory checkpointing in CRIU have failed to reduce over-
heads enough [50]. Furthermore, CRIU is incredibly complex,
requiring 7 years to properly add UNIX socket support [7].
Aurora is different from previous systems in two ways.

First, rather than checkpointing objects exposed at the sys-
tem call boundary it provides persistence throughout the OS.
This includes internal kernel state, the file system, and the
virtual memory subsystem. Second, Aurora treats all POSIX
primitives as first class objects, persisting and replicating the
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POSIX object model as seen by the kernel. Aurora’s design
enables broad application support comparable to CRIU with
a far simpler design.

Serverless Computing and Scale Out: In the serverless par-
adigm, developers write small stateless functions that run
in the cloud. Invoking a function involves creating a new
container or VM and starting the application, an operation
that adds significant latency.

Frameworks and language based approaches have reduced
invocation latencies by colocating functions [26, 52], or by
restoring initialized application checkpoints. Catalyzer [25]
achieves submillisecond restore times from inmemory check-
points using a combination of virtualization and kernel based
techniques unique to the gVisor application kernel.

Aurora’s restore mechanism enables autoscaling and fast
starts using OS containers. Aurora’s restore times from disk
rival the state of the art because of lazy restores (see § 3)
and cooperative warm ups (see § 4). The object store also
deduplicates otherwise unrelated checkpoints on disk for
higher storage density.

Debugging and Speculation: Record/replay systems [21, 27,
28, 33, 35, 44, 49] record non-deterministic inputs to an ap-
plication to replay the complete execution. Recordings can
be large and checkpointing has been a common technique
for bounding the storage overhead. Aurora’s low overhead
checkpointing makes record/replay practical in production,
enabling developers to capture an application moments be-
fore a crash.

Limited forms of checkpoint/restore are used for applica-
tion level speculation, which restores application memory
to a prior state. This operation has been proposed as an
OS service implemented using hardware virtualization for
speculative execution and efficient backtracking [19]. Roll-
backs have also been used for application security, namely
intraprocess isolation [34].

Databases: Databases [10–12] and key-value stores [9, 14,
15] often spend a significant amount of their code manag-
ing persistence and paging of database state. The fsync and
msync calls have subtle semantic issues depending on hard-
ware and software configuration leading to data loss bugs
in even mature projects like LevelDB [1–4, 41] and Post-
greSQL [13]. Databases also implement memory tracking in
software, which duplicates the work of the hardware MMU
and the operating system.

Aurora gives developers fine-grained control over persis-
tence behavior for modified applications. An area of ongoing
work is developing a richer API for applications to communi-
cate with the OS to further optimize paging and persistence.

Application libsls sls

Userspace
Kernel

Virtual
Memory

SLS
Orchestrator

SLS
File System

ioctl

TCP/IP Object
Store

Kernel
Hardware

NIC NVMe NVDIMM

IPC Socket VFS Process Thread

Figure 1: Basic system diagram

3 THE AURORA OPERATING SYSTEM
Figure 1 shows the architecture of the Aurora persistent oper-
ating system. Aurora has three components: the SLS orches-
trator, the object store, and a custom file system. Each POSIX
object in the operating system (e.g., socket pairs, POSIX
shared memory or System V message queues) contains code
that continuously serializes and stores the state in the object
store. Each object is serialized independently, and contains
enough user and kernel state to recreate the object on restore.
The SLS orchestrator maps kernel objects to the on-disk

store and manages the checkpoint and resume operations.
Aurora provides persistence for individual processes, pro-
cess trees or containers. The orchestrator provides serial-
ization barriers across the entire OS to provide consistent
application-wide checkpoints. All processes are momentarily
paused and remaining unflushed state is copied into mem-
ory buffers or tracked using copy-on-write (COW). These
updates are flushed asynchronously to disk. In our current
prototype this occurs up to 100× per second with modest
overhead. The orchestrator also manages restores by recre-
ating all POSIX objects and resuming applications.



HotOS ’21, June 1-June 3, 2021, Ann Arbor, MI, USA Emil Tsalapatis, Ryan Hancock, Tavian Barnes, and Ali José Mashtizadeh

Aurora uses an optimized and custom COW mechanism
for its applications. The standard COW scheme used by fork
breaks shared memory semantics by forcing each process
within an application to create their own private copy on
a write. The OS normally prohibits marking shared pages
as COW to avoid this problem. Aurora instead modifies
FreeBSD’s Mach derived VM subsystem [43] to create a new
page shared between all processes on a copy-on-write fault,
while Aurora flushes the original page.

Aurora optimizes checkpoints by only flushing dirtied data
on every checkpoint. It implements incremental checkpoint-
ing using our custom COW mechanism that tracks writes
between successive checkpoints. It thus never flushes the
same page twice for shared memory or COW memory re-
gions. On restore, Aurora faithfully reproduces the entire
memory hierarchy to preserve page deduplication.

The object store simplifies synchronizing memory and file
system checkpoints. The snapshot operations of popular file
systems are too slow to keep up with the SLS orchestrator.
The object store does hundreds of checkpoints per second
using a lower overhead COW layout than that of WAFL [30]
and ZFS [18] that snapshot less frequently. The COW lay-
out enables in-place garbage collection without needing to
rewrite incremental checkpoints.

Applications are placed into a persistence group attached to
one or more backing devices. Locally persistent applications
are backed by NVMe flash or NVDIMMs when available.
Applications can also be remotely persisted through the net-
work backend to another host. For debugging and speculative
execution applications can use a local memory backend to
store ephemeral checkpoints. Aurora allows for attaching
multiple backends at the same time, e.g., sending an appli-
cation’s incremental checkpoints to both a local disk and a
remote machine for replication.

The Aurora file system provides a file API into the object
store that enables functionality and fixes limitations in POSIX
file systems. Users can create zero copy snapshots and clones
of a container including process and file system state. The file
system must handle special edge cases that are not normally
considered in a typical POSIX file system.
An example of an edge case is unlinked but open files

(i.e., anonymous files). In POSIX file systems, these files
would be reclaimed after a crash, preventing application
restoration. We solve this by maintaining an on-disk open
reference count storing the number of persistent virtual file
system vnodes.

Integrating swap with Aurora optimizes restores by lazily
paging application memory. Aurora restores the minimal ap-
plication state, including the OS and CPU state, with memory
effectively swapped out. Applications fault in their working
set during execution. Aurora uses the clock page replacement
algorithm [22] to optimize restore by eagerly paging in the

Command Description

sls persist Add an application to a persistence group
sls attach Attach a persistence group to a backend
sls detach Detach a persistence group from a backend
sls checkpoint Checkpoint an application
sls restore Restore an application from an image
sls ps List applications in Aurora
sls send Send an application to a remote
sls recv Receive an application from a remote
Table 1: A subset of the command line interface available
to users.

Function Description

sls_checkpoint() Create an image
sls_restore() Restore a checkpoint
sls_rollback() Roll back state to last checkpoint
sls_ntflush() Non-temporal flush (outside checkpoint)
sls_barrier() Wait for a checkpoint to be flushed
sls_mctl() Include/exclude memory regions
sls_fdctl() Enable/disable external consistency
Table 2: A subset of the API available to developers from
the Aurora library.

hottest pages to avoid excessive page faults. When pages are
swapped out due to memory pressure they are incorporated
into the subsequent checkpoint.

3.1 Command Line Interface
To help illustrate Aurora we show the usage of a subset of
the command line interface as shown in Table 1. Users begin
by enabling transparent persistence of an application using
the persist command. This registers all OS state that is
part of the application with the orchestrator. By default the
application is persisted 100× per second. The host and each
container have their own persistence group. The attach and
detach commands allow the user to register backends with
persistence groups.
Users can manually create named checkpoints with the

checkpoint command and view all application checkpoints
in Aurora using ps. Users can restore to a point in time or
resume execution of a persistence group after a system crash
using restore. Aurora uses free space on-disk to provide a
short execution history as incremental checkpoints.
Users can easily share or migrate applications using the

send and recv commands to serialize a checkpoint state or
continually feed incremental checkpoints to a remote host.
Flags to these commands allow the user to pipe a single
checkpoint to a file to give to another user, live migrate the
application, or provide fault tolerance.
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3.2 Aurora API
Table 2 shows the Aurora API that custom applications use to
control and optimize persistence. Applications can manually
initiate checkpoints, restore, or roll back checkpoint state.
Applications control persistence using sls_barrier as

a persistence barrier for a given thread and sls_ntflush
to initiate a low latency flush of an append-only log to a
storage medium. These applications require custom code
during restore to repair data structures based on the log.

Applications can also control the behavior of memory and
other resources. Using sls_mctl, applications can selectively
include/exclude memory regions and hint to Aurora the best
policy for lazy restore. Developers can control the external
consistency per file descriptor using sls_fdctl.

External consistency [39] is enforced when a communica-
tions spans a persistence group boundary (including remote
hosts). Any data transmitted on a file descriptor are buffered
until the corresponding checkpoint is persisted on disk to
prevent other machines from seeing state that could be lost
in a crash. If the remote application can handle observing
such state, the developer can disable external consistency to
improve latency.

4 APPLICATIONS OF AURORA
In this section we show how Aurora’s abstractions enable
very different applications including serverless computing
and scale out, debugging and speculation, and databases.

Serverless Computing and Scale Out. Aurora can be used
to optimize serverless warm starts using its lazy restore,
combined with its ability to distribute and scale function
runtimes. Serverless function warm starts are similarly im-
plemented by restoring a container with the function already
initialized. Scaling out amounts to repeatedly restoring an
already checkpointed application.

Aurora’s COW design maximizes function density in per-
sistent storage by deduplicating shared runtime memory be-
tween different functions. The object store represents each
function as a small delta over the runtime container’s check-
point. All functions share this data, allowing machines to
potentially hold billions of functions.

Similar functions share unmodified pages, increasing func-
tion density and memory efficiency. This sharing causes in-
stances to warm each other up: an instance faulting a page
into memory shares it with the rest using COW. Recent re-
search [48] shows that the working set of many workloads
is almost identical between invocations, leading Aurora to
eliminate major faults for popular functions.

Debugging and Speculation. Aurora can also provide im-
provements to application debugging. Aurora creates peri-
odic checkpoints of a running application that can later be

inspected with a debugger or executed. We can use this to
build a type of time travel debugger [37] or, since new in-
cremental checkpoints leave old ones intact, to bisect the
history to find violations of invariants. Repeatedly restoring
from the same image can uncover nondeterministic failures
that do not manifest on every execution. We regularly used
this while developing Aurora itself.
Aurora integrates with record/replay systems to bound

record log size by only keeping the records since the last
checkpoint. On a failure, the application is rolled back to this
checkpoint and replays the remaining log. Developers can
thus witness the last seconds before a crash on a production
machine with a very small disk and CPU overhead compared
to standalone RR.

Aurora’s rollback primitive allows apps to implement spec-
ulative execution for increased performance. For example, a
client sending data to a server can execute assuming that the
server received it, saving a round trip’s worth of time. If the
transfer ends up failing, the client rolls back to before it sent
the data. Aurora notifies the client of the rollback, allowing
it to try a more conservative code path.

Databases. Aurora aims to provide a clean memory man-
agement interface between database applications and the
OS. Databases communicate application and workload spe-
cific memory management policies to Aurora, and use check-
pointing to trigger data transfers to and from storage. Aurora
allows applications to checkpoint data without associated
execution state, providing an explicit persistence primitive
that does not suffer from the semantic complexities of file
and memory syncing.

Aurora’s APIs provide a drop in replacement for common
persistence mechanisms found in key value stores. We use
Aurora’s persistent log (sls_ntflush), manual checkpoints
(sls_checkpoint) and barriers (sls_barrier), to replace
existing persistence mechanisms in RocksDB that uses a log
structured merge tree and Redis that uses fork for check-
points with a write ahead log. In the case of Redis our initial
port is already faster with less code.

5 PRELIMINARY RESULTS
Aurora is a fully working system that we continue to de-
velop, comprising ∼19k SLOC on top of FreeBSD 12.1. We
have been testing the system on a dual 2.1 GHz Intel Xeon
Silver 4116 CPU (Skylake-SP) with 96 GiB of RAM, four Intel
Optane 900P NVMe drives and an Intel X722 10 GbT net-
work interface card. We continue to explore how to improve
APIs for different use cases and improve performance by
optimizing various system components.
We have evaluated Aurora’s fitness for the use cases we

outlined by measuring the checkpoint and restore times of
two workloads: Redis, a key value store, with a working set
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Checkpoint Full Incremental

Metadata copy 267.9 𝜇𝑠 239.7 𝜇𝑠
Lazy data copy 5145.9 𝜇𝑠 711.1 𝜇𝑠
Application stop time 5413.8 𝜇𝑠 950.8 𝜇𝑠

Table 3: Stop time breakdown when checkpointing a Redis
instancewith a 2 GiBworking set. Aurora flushes data in the
background concurrently with application execution.

of 2 GiB, and a smaller hello world application. Redis repre-
sents heavier applications that use Aurora for persistence
or debugging purposes, and the hello world app represents
serverless functions.

We checkpointed Redis both by copying its entire address
space, and by using incremental checkpointing. The results
in Table 3 show that, while the cost of grabbing metadata
is the same in both cases, lazily copying the address space
using COW is 7× faster with incremental checkpointing, for
a total stop time below 1𝑚𝑠 . In neither case does Redis stop
to wait for the data to reach storage, due to Aurora’s external
consistency semantics.

Application overhead includes the stop time for each check-
point and the cost of servicing COW faults while the appli-
cation runs. Most of the stop time is spent applying COW
tracking through page table manipulations. Checkpointing
frequency is bounded by the speed with which Aurora can
flush incremental checkpoints to disk.
Next, we restored the same Redis instance after bringing

the image to memory, as we would do when using Aurora
for debugging. According to the results in Table 4, restoring
takes around 755 𝜇𝑠 , two thirds of which are spent recreating
the address space. No memory is copied, since Aurora uses
COW semantics to share pages between the image and the
running application.

Finally, we measured the potential improvement in server-
less function startup time by restoring a small workload both
from memory and disk. Table 4 includes the results, which
show that the only extra latency when restoring from back-
ing storage is due to bringing in the function metadata from
the object store. In both cases, restore times are well under
a millisecond. Restoring metadata state for disk restores is
slightly faster, because reading in the checkpoint implicitly
restores some application state.

Restore Redis Serverless Serverless
Backend Memory Memory Disk

Object Store Read N/A N/A 322.7 𝜇𝑠
Memory state 494.4 𝜇𝑠 144.6 𝜇𝑠 122.6 𝜇𝑠
Metadata state 261.1 𝜇𝑠 240.4 𝜇𝑠 206.9 𝜇𝑠
Total latency 755.5 𝜇𝑠 454.4 𝜇𝑠 652.2 𝜇𝑠

Table 4: Restore time breakdown for a Redis instance with
a 2 GiB working set from an in-memory image, and a server-
less workload from an in-memory image and from disk.
Reading data from the object store implicitly restores some
state, causing lower memory and metadata restore times.

6 CONCLUSION
We present Aurora, the first modern single level store, and
the first to provide a complete POSIX interface. Aurora’s
performance characteristics show that, due to recent stor-
age hardware advances, SLSes are once again a practical
approach to OS design. SLSes provide both a simple and
elegant solution for application and data persistence, and
a flexible tool for manipulating execution state in new and
interesting ways.

We have applied Aurora to a wide variety of domains, in-
cluding serverless computing and scale out, debugging and
speculation, and databases. In these domains, the combina-
tion of simple but efficient persistence and extremely fast
checkpoints and restores allows us to provide both perfor-
mance benefits and new functionality while reducing ap-
plication complexity. Many of its benefits are available to
applications without any modifications at all; additional ben-
efits are available through a simple but powerful API.

We believe that Aurora will enable creating new and com-
plex applications with a fraction of the effort they would
otherwise need, and will pave the way for new research into
application/OS co-design.
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