
SKQ: Event Scheduling for Optimizing Tail Latency in a Traditional OS Kernel

Siyao Zhao
RCS Lab, University of Waterloo

Haoyu Gu
RCS Lab, University of Waterloo

Ali José Mashtizadeh
RCS Lab, University of Waterloo

Abstract
This paper presents Schedulable Kqueue (SKQ), a new design
to FreeBSD Kqueue that improves application tail latency and
low-latency throughput. SKQ introduces a new scalable archi-
tecture and event scheduling. We provide multiple scheduling
policies that improve cache locality and reduce workload
imbalance. SKQ also enables applications to prioritize pro-
cessing latency-sensitive requests over regular requests.

In the RocksDB benchmark, SKQ reduces tail latency by up
to 1022× and extends the low-latency throughput by 27.4×.
SKQ also closes the gap between traditional OS kernel net-
working and a state-of-the-art kernel-bypass networking sys-
tem by 83.7% for an imbalanced workload.

1 Introduction

Applications and hardware have evolved tremendously. Mod-
ern server applications span hundreds to thousands of nodes
across the data center to serve user requests. The depth and
breadth of the service tree cause users to experience request
latency dominated by the tail latency of any node in an ap-
plication [11]. Advancements in storage and networking are
making low latency services possible [2]. Recent research
systems propose using kernel-bypass and custom dataplanes
to reduce latency [3, 19, 23, 37].

However, most applications in data centers are still built
directly on top of traditional OSes and employ an event-
driven approach, which uses an event loop that polls the
kernel’s event subsystem. Even popular user-level thread-
ing systems internally depend on kernel event subsystems to
dispatch events efficiently across user-level threads, e.g., Go
language [16], Arachne [38] and Fred [27].

Event subsystems in traditional OSes such as Kqueue [28]
in FreeBSD and Mac OS X, epoll [30] in Linux, IO Com-
pletion Ports (IOCP) [9] in Windows and Event Completion
Framework [4] in Solaris were developed nearly 20 years ago,
predating many innovations in modern hardware. These event
subsystems undermine features such as receive side scaling

(RSS) [8] that can improve scalability and latency. Userspace
event libraries, e.g., libevent [33], are influenced by event sub-
systems and propagate these issues. Research systems such
as Megapipe [17] and Affinity-Accept [35] improve event
subsystems but only solve part of the problem.

The evolution of modern server applications and hardware
inspired us to revisit event facilities in traditional OS kernels
to address the latency problem. Improving tail latency in a tra-
ditional OS is challenging. Unlike kernel-bypass and custom
dataplanes, existing kernels are multipurpose and complex.
Kernel event facilities tightly integrate with many subsystems
including storage, network, and process management. Fur-
thermore, we must carefully tradeoff our system’s overhead
with the performance benefit to the rest of the system.

This paper presents Schedulable Kqueue (SKQ), a novel
event notification facility based on FreeBSD Kqueue that
provides a more flexible abstraction, and allows applications
to use features of modern hardware. SKQ improves tail la-
tency and extends low-latency throughput. SKQ introduces a
new architecture with improved scalability, fine-grained event
scheduling and event delivery control. Application threads
share a single, scalable SKQ instance, which automatically
schedules events across all threads. While improvements to
kernel event notification facilities have been proposed [17,35],
SKQ differentiates itself with the following contributions:

• SKQ offers multiple application-controlled scheduling
policies to improve cache locality and workload imbal-
ance. We present guidelines for policy selection in § 4.3.

• SKQ presents explicit control over event delivery includ-
ing event pinning and prioritization.

• SKQ has been extensively tested and deployed on pro-
duction servers. We also developed event libraries to
facilitate integration in existing applications.

We evaluate SKQ with microbenchmarks and multiple real
world workloads with different characteristics. We examine
workloads with uniform and non-uniform request service
times, and IO-bound workloads. In microbenchmarks, we



show that SKQ reduces lock contention, improves cache local-
ity and multicore scalability. In our RocksDB [14] benchmark
running the Facebook ZippyDB workload, SKQ extends the
low-latency throughput by 27.4× and reduces latency by up
to 1022×. Event prioritization allows a saturated server to
service low-latency requests to a high priority client with 8×
lower latency while having little performance impact on other
clients. Additionally, SKQ closes the gap between traditional
OS kernel networking and a state-of-the-art kernel-bypass
networking system by 83.7% for an imbalanced workload.

2 Background and Related Work

SKQ was motivated by the design and performance problems
with existing event subsystems. While our observations hold
on popular platforms, i.e., Linux epoll and Windows IOCP,
we will explain everything in the context of FreeBSD Kqueue.

Sources of Latency: Li et al. [29] studied several server
applications and identified multiple factors in the OS that
contribute to high tail latency. The authors suggested reduc-
ing background tasks, pinning threads to cores and avoiding
NUMA effects. Even after following all the recommendations,
we found two additional factors that lead to high tail latency.

One factor is cache misses due to receive side scaling
(RSS) [8] found in modern NICs. RSS creates a send and
a receive NIC queue per core and distributes connections
across them using hash functions. Recent implementations of
RSS also load balance by migrating groups of connections
between cores. However, applications are unable to detect
this and will process the connection on the original core,
losing connection affinity and causing cache misses. In our
Memcached benchmark, we found that up to 77% of total
L2 cache misses are due to improper connection affinity and
are avoidable. SKQ maintains connection affinity and follows
connection migration with the CPU affinity scheduling policy.

Another factor is workload imbalance that arises from dif-
ferences in request service time and suboptimal connection
distribution across worker threads. Workload imbalance over-
saturates some worker threads while under-saturating others.
To put this into perspective, we measured the difference in
total processing time between the most and least busy threads
in two workloads. In Memcached, a uniform workload, we
measured a 2.8% difference. In a GIS application with a Zipf-
like service time distribution, we measured a 46% difference.
As a result, the GIS application’s tail latency increases much
faster than Memcached as a function of throughput. SKQ
offers scheduling policies to minimize workload imbalance.

Event-Driven Models: Most modern event-driven appli-
cations use either the 1:1 model or the 1:N model.

Applications using the 1:1 model create one Kqueue per
thread where connections are assigned to thread private
Kqueues. This model scales well and maintains connection
affinity. However, the 1:1 model suffers from two problems.

First, it hinders efficient event migration. Moving events be-
tween Kqueues requires two system calls that remove events
from the source Kqueue and add them to the target Kqueue.
This migration process also involves multiple kernel and
userspace locks, leading to poor scalability. Second, this
model interacts poorly with RSS in modern NICs as applica-
tions cannot detect nor react to RSS connection migration.

The 1:N model means all threads share a single Kqueue
and process connections in a round-robin fashion. This model
maximizes CPU utilization and simplifies event scheduling,
but suffers from two problems. First, the model leads to
lock contention on multicore machines (see § 6). Second,
the model does not preserve connection affinity as each con-
nection is processed by different threads, which results in
cache misses. As a result, applications and event libraries
have mostly avoided the 1:N model except for a few low-
throughput services [25].

SKQ uses a hybrid architecture that offers the best of both
worlds through our event scheduler. SKQ exposes a 1:N model
to applications for efficient event scheduling and delivery
while internally using a 1:1 model for multicore scalability.

Need for Application Control: Applications often need
to deliver events to a specific thread. For example, one thread
needs to notify another thread of control events. Kqueue
does not provide applications using the 1:N model with fine-
grained event delivery control. SKQ allows applications to
pin events to specific threads.

SKQ also introduces application controlled event prioritiza-
tion, which allows applications to prioritize latency-sensitive
events over batch-processing events. To our knowledge, no
existing kernel event subsystem supports event prioritization.
The latest generation NICs provide hardware support for event
prioritization with application device queues (ADQs) [20].
SKQ can be used with ADQs to improve event prioritization
throughout the networking stack.

RFS, RPS and Intel Flow Director: Receive Flow Steer-
ing (RFS) [12] and Receive Packet Steering (RPS) [6] are
Linux networking stack features. RFS improves connection
locality by enabling the kernel to process packets on the core
where the corresponding application thread is running. RPS
is a software implementation of hardware RSS, which pro-
vides hash-based packet distribution across cores. Intel Flow
Director [18] is a hardware implementation of RFS. SKQ
eliminates the need for RFS with the CPU affinity policy.

io_uring: io_uring [7] is a recent Linux kernel feature
that enables efficient asynchronous IO and avoids system
call overhead via polling. Each io_uring object uses a single
submission queue and a single completion queue for kernel-
user communications. However, io_uring does not provide
event scheduling between threads, which is the goal of SKQ.

FreeBSD offers the lio_listio [42] interface for asyn-
chronous IO, which batches rather than eliminates system
calls. We benchmarked the benefit of lio_listio combined
with SKQ to improve low-latency throughput by roughly 40%,



compared to 19.8% with SKQ alone on our web server bench-
mark (§ 6.7). Our techniques are also applicable to io_uring.

Windows IOCP: Windows IOCP is functionally similar
to Kqueue and provides a developer friendly API for block-
ing IOs when used with the 1:N model [10, 39]. Each IOCP
internally uses one event queue and provides a concurrency
parameter to limit the number of running threads. Threads
beyond this limit block until a running thread sleeps on an un-
related IO operation (e.g. disk IO) [9]. IOCP also suffers from
lock contention at high core counts because of the 1:N model.
As a result, only applications with long running requests, such
as Exchange and MSSQL [25], use the 1:N model.

MegaPipe: MegaPipe [17] permanently affinitizes ac-
cepted connections to threads to improve cache affinity.
MegaPipe internally uses the 1:1 model. Prior to MegaPipe,
Affinity-Accept [35] and Chronos [26] also suggest maintain-
ing connection affinity. MegaPipe delivers socket data along
with triggered connections to reduce system call overhead.

SKQ’s queue affinity scheduling policy is similar to
MegaPipe’s behavior. However, queue affinity is inferior to
CPU affinity that takes into account connection migration in
kernel and NICs. MegaPipe was developed much earlier when
connection migration was less frequent due to the maturity of
RSS implementations.

Custom Networking Stack: Arrakis [36], Chronos [26],
DPDK [19], F-Stack [41], IX [3], and mTCP [22] use kernel-
bypass to reduce system calls and/or kernel networking stack
processing overhead. Other systems such as Snap [31], Shin-
juku [23], and ZygOS [37] apply thread scheduling on custom
dataplanes. Shenango [34] implements user-level scheduling
on top of DPDK and uses work stealing for load balancing.

SKQ differs from the systems above in three ways. First,
SKQ schedules events between threads rather than threads
between cores. Second, SKQ offers control over event deliv-
ery and scheduling policies in addition to work stealing. Last,
SKQ is implemented in a traditional OS where most server
applications are still being developed. SKQ enables applica-
tions to gain performance benefit with minimal changes. The
systems above however generally suffer from adoption issues.

3 Design Overview

Modern applications require increasingly better multicore
scalability, cache locality and scheduling support. FreeBSD
Kqueue was designed to solve the C10K [24] problem. Server
applications are now running with many cores and millions,
rather than thousands, of clients. The changes in applications’
scale and requirements require us to revisit Kqueue’s design.

The current design presents three major issues. First, using
Kqueue in the 1:N model results in scalability bottlenecks
due to lock contention in some multithreaded applications
with as few as 4 threads. Second, we observed cache misses
and load imbalances that could not be solved. Finally, Kqueue
processes events in FIFO order and lacks event prioritization.

SKQ is designed with three primary goals: scalability, event
scheduling, and event prioritization. SKQ is also designed to
be compatible with the Kqueue API.

• Scalability: SKQ scales to multicore machines and a
large number of events. Our design allows a single SKQ
to efficiently schedule events to multiple threads with
little overhead and lock contention.

• Event Scheduling: SKQ implements scheduling poli-
cies that improve cache locality and minimize workload
imbalance. Applications can select policies based on
workload characteristics to minimize tail latency.

• Event Prioritization: SKQ enables applications to pri-
oritize processing high priority events versus regular
events, with minimal performance impact.

One major challenge is providing low overhead scheduling
as any overhead can impact application performance. To put
this in perspective, for Memcached, an increase in process-
ing times of 150 cycles would result in a 1% drop in peak
throughput, while a single L3 cache miss reduces throughput
by 2.7%. Scheduling introduces unavoidable overhead due to
statistics collection and making scheduling decisions.

3.1 Kqueue
The Kqueue API consists of two system calls. The kqueue()
system call creates a Kqueue kernel object and returns a file
descriptor. The kevent() system call handles event registra-
tion, update and delivery.

Applications manipulate events by calling kevent() on a
Kqueue object with the file descriptor of a kernel object and
the type of event to monitor (e.g. read availability on a socket).
For event registration, the target Kqueue object allocates a
knote to track the information and the state of the registered
event. For fast lookups, all knotes on a Kqueue are kept in a
hash table in the Kqueue object.

Upon creation, the knote is also attached to the kernel
object of interest. In FreeBSD, all kernel objects supported by
Kqueue maintain a list of attached knotes. When the kernel
object triggers an event, it activates all attached knotes by
notifying their corresponding Kqueue objects.

Kqueue enqueues activated knotes into a single event queue
protected by a giant lock. Application threads retrieve events
with the kevent() system call and a userspace buffer used
to hold the returned events. Internally, all threads acquire the
giant lock and dequeue knotes from the event queue.

One correctness guarantee that a shared Kqueue provides is
to avoid returning an event that is being processed by a thread
to another thread. For example, a shared Kqueue must not
notify more than one thread of read availability on the same
socket, otherwise a race may occur. Kqueue achieves this
guarantee by relying on application threads marking shared
events as dispatch events, which instruct Kqueue to disable the
event after returning it to the application. Once an application



SKQ Object

...

knote Hash Table
knote file
knote socket

kevq kevq kevq

Event
Schedulerknote

Application Threads

Figure 1: System Overview. SKQ creates thread private kevqs
to reduce lock contention and introduces an event scheduler.
In this diagram a socket activated a knote and the event sched-
uler enqueued it into a specific kevq based on an application
defined scheduling policy.

thread finishes processing a shared event, the thread must call
kevent() to re-enable the event so it can trigger again.

Both the single event queue design and frequent event en-
abling/disabling cause lock contention. Therefore, a Kqueue
is rarely shared between threads in an application. Addition-
ally, using a single event queue hinders optimizing for cache
locality [17,35]. User-level scheduling is difficult as migrating
knotes between Kqueues is cumbersome and inefficient.

3.2 SKQ
SKQ provides applications with event scheduling and deliv-
ery controls by sharing a single scalable instance between
all application threads. Figure 1 shows the overall architec-
ture. SKQ extends Kqueue in three main ways: employing
a new scalable design, offering event scheduling and deliv-
ery control, and optimizing the event lifecycle. Additionally,
SKQ maintains a compatibility mode that exhibits the same
behavior as Kqueue.

Scalability: SKQ improves multicore scalability and en-
ables efficient event scheduling by introducing a new internal,
lightweight, per-thread kevq structure. Each SKQ creates one
kevq for each application thread, which is an event queue that
holds knotes assigned to the corresponding thread.

When applications query events, each worker thread locks
and retrieves knotes from its private kevq, eliminating a ma-
jor source of contention on the giant Kqueue lock. Further-
more, kevqs allow SKQ to quickly schedule events between
lightweight internal structures instead of kernel objects. Im-
plementing event scheduling between kernel objects requires
extra locking (e.g. file descriptor locks) and complicates re-
source cleanup. SKQ approximates the benefit of the 1:N
model without scalability bottlenecks or poor cache affinity

through scheduling on top of an internal 1:1 model.
When an SKQ is destroyed, all of its kevqs are destroyed.

If a thread exits while an SKQ is still active, only the exiting
thread’s kevq is drained and destroyed. Knotes already queued
to the kevq are rescheduled to other available threads.

Applications are allowed to create multiple SKQs at a time,
meaning each application thread can correspond to multiple
kevqs belonging to different SKQs. We use a hash table that
maintains the mapping from kevqs to their respective SKQs
in the kernel thread object.

The per-thread design allows SKQ to more easily handle
applications that spawn greater or fewer threads than available
cores, and thread migration. While it might seem natural to use
a per-core design, some applications process blocking IO calls
and have more threads than cores. Applications with fewer
threads than cores would require extra handling to prevent
events from being left on cores with no threads.

Event Scheduling and Delivery Control: SKQ intro-
duces an event scheduler to schedule knotes both passively
and actively. Upon event activation, the event scheduler de-
termines the target kevq of the activated knote based on the
selected scheduling policy. When a kevq has no active knotes,
the kevq also actively tries to steal knotes from other kevqs.
Applications can control the scheduling policy via ioctl()
and new per-event flags for pinning and priorities.

SKQ also allows applications to mark individual events as
high priority. SKQ favors returning high priority events first.
Two tunables are provided to control the exact behavior. Ap-
plications can adjust the tunables based on their requirements.
We elaborate on both features in § 4.

Optimized Event Lifecycle: We optimize SKQ’s event
handling to eliminate the need of re-enabling events after
processing and to improve scheduling fairness.

SKQ adds a processing flag to knotes and a processing
queue to kevq. Each processing queue holds knotes returned
to the application from the last kevent() call. SKQ marks
these knotes as processing, which can be scheduled to a dif-
ferent kevq although they are temporarily ignored by event
queries. When the original thread finishes processing events,
it calls kevent() again, which releases all knotes on its pro-
cessing queue so they can be returned by future event queries.

Applications do not need to re-enable events because SKQ
marks them as processing in the kernel and will not deliver
them to other threads until the original thread releases them.
This optimization improves scheduling fairness as processing
events are always scheduled on activation rather than after the
original thread returns, preserving the relative order of arrival.

4 Event Scheduling Policies

The event scheduler selects the kevq for an activated knote
based on the scheduling policy. SKQ offers two categories
of scheduling policies that improve cache locality and reduce



workload imbalance, which can be combined. Additionally,
applications can pin events to threads and prioritize events.

We originally planned to provide a single policy that would
perform well for all workloads. However, we realized from
our experiments that the best scheduling policy is application
and workload dependent (§ 4.3 describes policy selection).
To this end, SKQ provides applications with control over
scheduling policy to better meet the developer and user needs.

The biggest challenge is balancing the overhead and the
optimality of making scheduling decisions. Since the event
scheduler runs on every event activation, we must minimize
the overhead so that the cost of scheduling does not over-
shadow its benefit. Towards this goal, we carefully designed
SKQ while considering the impact of lock contention, CPU
overhead and cache footprint.

4.1 Cache Locality Policies
Cache misses are detrimental to applications. For example,
a read request in Memcached takes about 15k cycles from
the NIC receiving the request to sending the response on our
machine, while a L3 cache miss takes 400 cycles. This means
that each cache miss increases processing time by 2.67%
and correspondingly reduces throughput. SKQ provides two
policies to help applications improve cache locality.

Both policies use our kqdom structure, which is a multi-
level N-ary tree that mirrors the system’s cache and memory
topology, and keeps track of the core affinity of all kevqs.
Each kqdom leaf node corresponds to a core and contains
a list of local kevqs. Each kqdom level represents a shared
cache level. During initialization, each SKQ creates a private
kqdom. When an SKQ object registers a thread, the kevq is
inserted into the corresponding kqdom leaf node. When the
CPU scheduler reschedules a thread to a different core, the
kevq is also moved to the new kqdom leaf node.

On a multi-socket machine, a kqdom typically contains
3 levels. The top level nodes represent different NUMA do-
mains. The second level contains all cores that share the last-
level cache within a NUMA domain. The third level consists
of leaf nodes corresponding to a core containing hyperthreads.

Queue Affinity: The queue affinity policy always deliv-
ers events to the core where the event first triggered, which
reduces userspace cache misses by maintaining affinity.

When a knote is activated for the first time, SKQ stores the
corresponding kqdom leaf node in the knote. On subsequent
activations, the event scheduler queues the knote to a kevq in
the same kqdom leaf node. When multiple kevqs are present
in the same kqdom leaf node, a random kevq is selected.
However, when connections migrate, this policy results in
more cache misses in the kernel.

CPU Affinity: The CPU affinity policy delivers events
to the application threads local to the triggering core. For
network sockets, the policy always queues knotes to the core
that received the NIC interrupt and processed the packet.

This policy improves cache locality within the kernel. Be-
fore an event activation, the networking stack has already
processed the incoming packet, which pulls socket buffers
and metadata into the local core’s cache. CPU affinity policy
keeps these cache lines local so subsequent reads and writes
in userspace will more likely result in cache hits.

Furthermore, CPU affinity cooperates well with all sources
of connection migration including RSS. After a connection
migrates to a different core, the policy follows the migration
and queues the event to a kevq on the new core. This reduces
the cache misses caused by the application and kernel pro-
cessing the event on different cores. This also reduces kevq
lock contention during event activation as cores will deliver
events to their local kevq from the packet processing, rather
than competing to deliver events to the same kevq.

4.2 Workload Balancing Policies
Workload imbalance is another major cause of suboptimal
performance. An imbalanced load distribution leads to re-
source under-utilization where some worker threads are idling
whereas others are overloaded. We implement two policies
that mitigate imbalances.

Best of Two: The best of two policy load balances events
between threads by randomly selecting two kevqs and choos-
ing the kevq with a lower expected wait time. Mitzen-
macher [32] shows that this policy offers good optimality.
Expected wait time E[t] refers to the wait time before the
activated knote is serviced by an application thread.

For each kevq, we maintain the number of knotes currently
queued ncur, the number of knotes returned to userspace of the
last kevent() call nret , the timestamp of the last kevent()
call tret , and a moving average of the processing time in cy-
cles per knote tavg. We use an exponential moving average
with α = 0.05, hence t ′avg = 0.05 ∗ tnew + 0.95 ∗ tavg, which
we found to react fast enough while smoothing out workload
behavior and noise from interrupts and scheduling. When
applications finish processing a knote and return it to SKQ
via kevent(), the moving average is updated.

On knote activation, the event scheduler calculates the
expected wait time with E[t] = tret + tavg ∗ (nret + ncur) for
both selected kevqs. Finally, the event scheduler enqueues the
knote to the kevq with earlier E[t].

A potential issue is that a thread may unexpectedly stall in
userspace. In this case, E[t] can lag far behind and be in the
past. To prevent the event scheduler from assigning too many
knotes to the thread, we set tret to MAX(tret , tcur− tavg ∗nret),
where tcur is the current timestamp.

Work Stealing: Work stealing allows idle threads to steal
knotes from another thread’s kevq. Unlike other schedul-
ing policies, work stealing operates during the dequeuing
of knotes rather than knote activation. When a thread has no
knotes to process, it normally blocks until some knotes ar-
rive. With work stealing enabled, instead of blocking, the idle



thread picks a random victim kevq and tries to steal knotes.
The system will periodically retry until either new knotes ar-
rive or at least one knote is stolen. Applications can control
the maximum stolen knotes per attempt (defaults to 1).

In order to reduce the overhead and lock contention of work
stealing, we use trylocks to check the availability of the victim
kevq and knotes. The idle thread first trylocks the victim kevq.
If the victim kevq is busy, the idle thread sleeps for a fixed
amount of time then retries. Otherwise, the idle thread scans
the victim kevq for knotes. We use the same trylock technique
to probe each knote, skipping knotes that are undergoing
changes (e.g., being scheduled). To avoid locking the victim
kevq for too long, we bound the maximum number of scanned
knotes to twice the maximum stolen knotes.

Another issue is thrashing that can occur because of lock
ordering issues. When a knote is stolen by an idle thread it
is moved to the idle thread’s kevq. For a short window of
time we must drop all kevq locks to not violate lock ordering.
This allows another thread to steal events from the idle thread
before it can process any stolen knotes. This causes thrashing
of events as they can bounce around due to this race. We
added a flag to denote whether it is stolen. Knotes with the
flag set are skipped during work stealing. The flag is cleared
after the stolen knote is processed by the idle thread.

Our measurements show that for applicable workloads,
work stealing improves the latency response and reduces tail
latency (see § 6.5). We also observe negligible lock contention
because of the trylock optimization using FreeBSD lockstat.
Our earlier implementation did not employ the trylock op-
timization that caused work stealing to increase the overall
latency in some workloads due to the aforementioned issues.

Hybrid Policies: SKQ allows applications to combine
cache locality policies with workload balancing policies. In
this case, the event scheduler picks the first kevq according
to the cache locality policy, and then uses best of two to pick
a second kevq from the rest. The expected wait time of both
selected kevqs are then compared with a constant cache miss
penalty applied to the kevq selected by best of two. While
the cache miss penalty of migrating to a random core is both
application and workload dependent, in our experiments we
found a constant penalty was enough to prevent unnecessary
migration when the imbalance was not significant.

Work stealing can be used with other policy combinations
as it operates during knote dequeuing. In our experiments,
hybrid policies that combine all three scheduling options com-
prise the best-performing polices for imbalanced workloads.

4.3 Policy Selection Criteria

Policy selection is based on the application’s workload char-
acteristics. Applications with uniform and low response times
should use the CPU affinity policy to maximize cache affinity.
Applications with imbalanced or IO-heavy workloads should
use the hybrid policy consisting of CPU affinity and best of

two with work stealing to balance the threads and extend
low-latency throughput. The rationale is discussed in § 6.

4.4 Fine-grained Event Delivery Controls

Besides scheduling, SKQ allows applications to control event
delivery on a per-event level. We currently offer two controls
to handle event pinning and event prioritization.

Event Pinning: SKQ allows applications to pin individual
events to specific threads. Application threads use the affinity
flag for each event during event registration. The flag ensures
that the event is always delivered to the registering thread.

This is useful to applications where threads communicate
based on pipes or user events. For example, in Memcached,
the main thread uses a pipe to communicate control mes-
sages to each worker thread. Scheduling these events between
threads would break the notification system.

Event Prioritization: Event prioritization enables appli-
cations to prioritize latency-sensitive traffic such as end user
requests over batch processing. SKQ defines two event prior-
ity levels: regular and high priority. By default, all registered
events are of regular priority. Applications can promote an
event to high priority by setting the high priority flag.

In each kevq, we maintain a separate event queue for high
priority knotes. During event activation, the event scheduler
queues activated knotes to their corresponding queue. Dur-
ing event queries, kevent() prioritizes dequeuing knotes
from the high priority queue. The remaining space left in
the userspace buffer is filled with regular priority events.

Our design also addresses two potential problems of event
prioritization. First, too many high priority events may cause
starvation. To prevent starvation, we introduced the rtshare
parameter that controls the maximum percentage of returned
high priority events. For example, an rtshare of 80 means
at most 8 high priority events out of 10 total events will be
returned to the application per kevent() call.

Second, if kevent() returns too many events per call,
which is common at high throughput, the application thread
might spend a long time processing all events, postponing
the delivery of newly arrived high priority events. To address
this issue, applications can set the rtfreq parameter to control
the number of kevent() calls a thread should perform per
second, bounding the latency of high priority events. SKQ
dynamically limits the number of events returned to the appli-
cation based on the average processing time statistics.

Applications gain the full benefit of event prioritization by
tuning rtshare and rtfreq based on workload characteristics
and user requirements. In our benchmark, we observed an
8× tail latency improvement of a high priority client at peak
throughput with little impact on regular clients.



5 Implementation

We implemented SKQ in FreeBSD 13 (commit 04816a1) with
∼3000 source lines of code (SLOC). We also developed two
SKQ event libraries libevent-skq and libskq for easy adoption
in∼1700 SLOC. libevent-skq is compatible with libevent and
solves its limitation with concurrent event processing on a
single event base. libskq uses a custom API with reduced lock
contention and system call batching via lio_listio (disabled
in our evaluation). Additionally, we implemented a custom
webserver in ∼1000 SLOC on top of libskq that conforms
with HTTP/1.1 as defined in RFCs 7230–7237 [21].

6 Evaluation

We evaluate our system using microbenchmarks and four
applications. We choose workloads based on their request
service time characteristics, e.g. Memcached has a uniform
request service time whereas RocksDB displays workload
imbalance. We also measure the event prioritization benefit
and compare SKQ with Shenango, a kernel-bypass system.

All server applications run on a server with dual 2.1 GHz
Intel Skylake-SP Silver 4116 with an Intel X722 10 GbE NIC.
The workload generating clients run on 6 identical Skylake
machines and 4 additional machines with dual Intel Xeon
E5-2680 and a Mellanox ConnectX-3 10 GbE. Turbo boost
is disabled on all machines to minimize measurement error.
Hyperthreading is enabled with one application thread per
core and NIC interrupts scheduled to the adjacent hyperthread
as recommended by NIC vendors.

In all experiments we use 12 server threads, 12 client
threads and 12 connections per client thread. Each run consists
of a 5-second warmup followed by a 25-second measurement.
All threads are pinned to the first socket. The measurement
client establishes one connection per thread to probe the server
response time. Each data point is obtained as the average of
three runs and all results are statistically significant.

In the following sections, vanilla refers to multiple SKQs
(the 1:1 model) to isolate the scheduling benefit. We do this
because SKQ in compatibility mode provides a modest per-
formance improvement over Kqueue (§ 6.2).

6.1 Scalability
We built a benchmark that generates events via UNIX pipes
to measure the scalability of Kqueue/SKQ. Each client thread
establishes 12 pipe pairs and sends requests with a constant
processing time of 5 µs. We run four configurations in total
while varying the number of threads.

Shared SKQ scales linearly and on par with both multiple
Kqueues and multiple SKQs. We see a constant throughput
increase with each additional core, since all three setups have
little lock contention and SKQ schedules events with low
overhead. Shared Kqueue starts to contend after 4 cores. At

1 2 3 4 5 6 7 8 9 10 11 12
Number of cores

0

500k

1.0M

1.5M

2.0M

2.5M

T
hr

ou
gh

pu
t(

re
q.

/s
)

Multiple Kqueues
Multiple SKQs
Shared Kqueue
Shared SKQ

Figure 2: The impact of adding cores on various configura-
tions’ peak throughput. Shared refers to the 1:N model while
Multiple refers to the 1:1 model. We use the CPU affinity
policy for shared SKQ.

12 cores, shared Kqueue only achieves 4.8% of the throughput
of other configurations. This reduction in throughput comes
from lock contention in Kqueue. Additional experiments show
that the result of shared Kqueue is workload dependent. For
requests with very short processing time, the giant Kqueue
lock is the main source of contention. The lock contention
decreases as the processing time increases.

We use FreeBSD lockstat [15] to compare the lock con-
tention of shared Kqueue with SKQ at maximum throughput
with 12 cores. The result shows that shared Kqueue has sig-
nificantly higher lock contention due to threads competing
for the single event queue and the giant lock.

For shared Kqueue, the top three contending system locks
belong to Kqueue, which comprise 69% of total lock con-
tention. Shared SKQ displays much lower contention with
the worst contending SKQ lock ranked the 4th in the system.
The top three contending SKQ locks only comprise 12% of
total lock contention.

By breaking up Kqueue’s giant lock and introducing thread
private kevqs, SKQ significantly lowers the lock contention
at high core counts, achieving much better scalability.

CPU Affinity vs. Queue Affinity: In our benchmarks,
CPU affinity performs on par or better than queue affinity.
As we mentioned before, this is due to connection migration,
which breaks connection affinity with queue affinity. Thus,
we consider CPU affinity superior to queue affinity in general
and will omit queue affinity from further discussions.

6.2 Multiple SKQs vs. Multiple Kqueues

Figure 3 shows the latency response of an unmodified Mem-
cached using multiple Kqueues vs. multiple SKQs (the 1:1
model). We improve tail latency at throughputs between 750k–
1.1M req./s. At maximum throughput, we lower tail latency
by 33%. The improvement comes from the new SKQ archi-



0 200k 400k 600k 800k 1M
100 µs

1 ms

10 ms

A
ve

ra
ge

L
at

en
cy

Kqueues
SKQs

0 200k 400k 600k 800k 1M
Throughput (req./s)

100 µs

1 ms

10 ms

100 ms

99
th

Pe
rc

en
til

e
L

at
en

cy

Figure 3: The latency response of Memcached using multiple
SKQs vs. multiple Kqueues. SKQ lowers the tail latency by
33% at high throughput due to fine-grained locking.

tecture and fine-grained locking.
Throughout the evaluation, "vanilla" refers to multiple

SKQs (the 1:1 model) to accurately measure the benefit of
our scheduling policies. This isolates the improvement due to
architectural changes.

6.3 Cache Miss Analysis

We use an RPC echo service to understand how cache locality
policies affect cache miss rates. Figure 4 shows the latency
response for an RPC echo client while varying throughput
against three different policies. Both CPU and queue affinity
outperform vanilla above 500k req./s. At 580k req./s, both
policies show the maximum benefit over the vanilla with a
6.8× (269 µs vs. 1839 µs) lower tail latency and 20% more
low-latency throughput (585k req./s vs. 487k req./s).

Using CPU performance counters, we analyze the cache
behavior to understand where the benefit comes from. Table 1
shows the L2 cache misses at 580k req./s broken down by
various kernel code paths.

Both scheduling policies significantly reduce L2 cache
misses in the TCP input/output path and event query path. The
TCP input path includes receive-side packet processing, while
the TCP output path includes processing the socket buffer
into packets. The event query path is all the code executed
during kevent() calls to retrieve events. In all paths, SKQ
outperforms as both cache locality policies preserve cache
affinity better, thus reducing cache misses.

The vanilla configuration of Memcached (see § 6.4) is typi-
cal of other applications that ignore cache affinity information

100k 200k 300k 400k 500k 600k 700k 800k
100 µs

1 ms

10 ms

A
ve

ra
ge

L
at

en
cy

CPU affinity
Queue affinity
Vanilla

100k 200k 300k 400k 500k 600k 700k 800k
Throughput (req./s)

100 µs

1 ms

10 ms

100 ms

99
th

Pe
rc

en
til

e
L

at
en

cy

Figure 4: Cache locality policies’ latency improvements of a
lightweight RPC echo endpoint.

Policy TCP TCP Event Event Total
input output activation query

CPU 252k 15k 63k 166k 496k
Queue 343k 33k 95k 250k 721k
Vanilla 828k 76k 45k 1235k 2184k

Table 1: L2 data cache misses collected using hardware
performance counters for 20 s running at 580k req./s. TCP in-
put/output refer to the packet transmit and receive path, event
activation includes event activation and scheduling, and event
query is the application retrieving events with kevent().

(unavailable in userspace) and use a round-robin assignment
of connections to worker threads. As a result, vanilla contains
many mismatched connections, i.e. connections processed by
the kernel on one core but processed by an application thread
on a different core, leading to more cache misses and worse
tail latency.

In the event activation path, vanilla has fewer cache misses
than our scheduling policies. This is expected as both policies
require extra scheduling logic and accesses to new data struc-
tures like the kqdom. However, the cache miss difference is
minor in comparison to the other three code paths and has
little impact on the overall performance.

CPU affinity has fewer cache misses compared to queue
affinity. This is due to connection migration between cores.
Recall that the queue affinity policy does not follow the mi-
gration. In this workload, the difference is minor enough to
not show a significant latency difference.



0 200k 400k 600k 800k 1M
100 µs

1 ms

10 ms

A
ve

ra
ge

L
at

en
cy

CPU affinity
Vanilla

0 200k 400k 600k 800k 1M
Throughput (req./s)

100 µs

1 ms

10 ms

100 ms

99
th

Pe
rc

en
til

e
L

at
en

cy

Figure 5: The latency response of Memcached using vanilla
and our cache affinity policies. The CPU affinity policy in-
creases low-latency throughput and exhibits lower tail latency
in medium to high throughput range.

6.4 Memcached
We benchmark Memcached using Mutilate with the Facebook
ETC workload [1]. Figure 5 shows the latency response of
the best-performing policy. The largest latency gap occurs at
640k req./s where CPU affinity had 3× lower latency than
vanilla. With a maximum tail latency of 320 µs, SKQ effec-
tively increases 9% of low-latency throughput (650k req./s vs.
600k req./s). At high load, SKQ achieves 5% higher through-
put and 26% lower tail latency.

Mutilate’s request service time distribution is nearly uni-
form as it only issues GET and PUT requests. We measure
the total time each worker thread spent processing requests
in userspace at maximum throughput. The thread with the
highest processing time spent 2.8% more than that of the
thread with the lowest processing time, indicating that load
imbalance is insignificant among worker threads.

With a uniform and balanced workload, cache locality poli-
cies offer cache affinity without the scheduling overhead of
the load balancing policies. Besides preserving cache locality,
there is little that can be done in the kernel event subsystem to
improve the performance of Memcached without optimizing
the application itself, e.g. reducing lock contention [26].

6.5 Application Server
Server applications often need to service client connections
with different latency characteristics, e.g. connections that
issue only light requests vs. heavy requests. To investigate the
benefit of SKQ on such workloads, we developed a GIS appli-

cation server with a Zipf-like distribution of request service
times that models MyBikeRoutes-OSM traffic [40].

In this benchmark, each client issues requests that are either
light, medium or heavy computation tasks (approximately
10 µs, 50 µs and 200 µs). Each client connection is assigned to
perform a single task. The overall connection characteristics
follow a Zipf-like distribution consisting of 95% light, 4%
medium and 1% heavy connections. We collect the latency
response of all the policies.

Figure 6 shows the most interesting policies. The hybrid
policy (CPU affinity and best of two with work stealing) has
6% lower peak throughput compared to vanilla due to the
overhead of scheduling. However, the hybrid policy provides
much lower tail latency and more low-latency throughput
at mid range. At 460k req./s, the hybrid policy reached the
largest gap of 9.9× lower tail latency and 3.4× lower average
latency. For a maximum tail latency of 280 µs, the hybrid
policy extends the low-latency throughput by 3×. It is also
worth noting that the hybrid policies show benefit even at low
throughput. The analysis is further discussed in § 6.6.

To quantify the imbalances, we again measure the total
amount of time each worker thread spent processing events in
userspace at 460k req./s (the largest gap) for both vanilla and
the hybrid policy. The percent difference between the busiest
and the least busy thread is 46.1% for vanilla and 1.4% for the
hybrid policy. This shows that the hybrid policy significantly
reduced the workload imbalance between threads.

Work Stealing: Figure 6 shows the latency response of
best of two with and without work stealing. Although best
of two mitigates the imbalance to some extent, work stealing
further shifts the curve outward, providing lower tail latency
and more low-latency throughput. This is because while best
of two balances the threads according to statistics at event
activation time, work stealing enables SKQ to react faster and
respond immediately to runtime changes and imbalance.

Hybrid Policy: Figure 6 also shows that a hybrid policy
of CPU affinity and best of two with work stealing further
extends the low latency throughput. This is because CPU
affinity also considers cache locality. The hybrid policy al-
ways considers the thread with the better cache locality, and
prefers it unless best of two shows substantial benefit.

6.6 RocksDB
RocksDB is a fast and persistent embeddable key-value store.
Cao et al. [5] characterized and modeled several Facebook
workloads that use RocksDB as the backend. We developed
a frontend to RocksDB that services GET, SEEK and PUT
requests. In this benchmark, we use the same client configu-
ration as the ZippyDB (prefix_dist) model specified by Cao.
We place the RocksDB directory on a memory backed file
system and preload it with 50M keys.

Unlike Memcached, the ZippyDB workload presents heavy
imbalances due to its 3% SEEK requests. As an experiment,



100k 200k 300k 400k 500k
100 µs

1 ms

10 ms

A
ve

ra
ge

L
at

en
cy

Best of two
Best of two with work stealing
Hybrid Policy
Vanilla

100k 200k 300k 400k 500k
Throughput (req./s)

100 µs

1 ms

10 ms

99
th

Pe
rc

en
til

e
L

at
en

cy

Figure 6: The latency response of the application server using
various policies. The hybrid policy refers to CPU affinity
and best of two with work stealing. All workload balancing
policies lower the latency to different extents.

we eliminate all SEEK requests from the workload and ob-
served 5.85× higher maximum throughput (737k req./s vs.
126k req./s). Figures 7 and 8 show the latency data over full
and low throughput range. At low throughput, the tail latency
of vanilla starts to increase at only 2.3k req./s whereas the hy-
brid policy (CPU affinity and best of two with work stealing)
stays flat. This indicates extreme imbalances in the workload
and is in line with what Cao reported.

Despite a lower peak throughput, the hybrid policy ex-
tends the low-latency throughput by 27.4× (63k req./s vs.
2.3k req./s). The largest latency gap occurs at 63k req./s where
the hybrid policy achieves 1022× (263 µs vs. 269 µs) lower
tail latency. This benchmark demonstrates SKQ’s benefit to
highly imbalanced workloads.

Unlike the GIS application workload where connections
have a fixed request type, RocksDB connections all have the
same request service time distribution. At low throughput,
heavy SEEK requests are relatively rare where they can still
be handled in time and do not queue up. In the GIS application,
even a few misassigned heavy connections could overload
a thread at low throughput, which is why the hybrid policy
showed benefit earlier.

6.7 Web Server

So far we showed the benefit of SKQ on both balanced and
imbalanced in-memory workloads. In this benchmark, we use
our custom web server to demonstrate how SKQ improves
IO-heavy workloads.

0 20k 40k 60k 80k 100k 120k
100 µs

1 ms

10 ms

100 ms

A
ve

ra
ge

L
at

en
cy

Hybrid Policy
Vanilla

0 20k 40k 60k 80k 100k 120k
Throughput (req./s)

100 µs

1 ms

10 ms

100 ms

1 s

99
th

Pe
rc

en
til

e
L

at
en

cy

Figure 7: The latency response of RocksDB using the Face-
book ZippyDB workload. The hybrid policy refers to CPU
affinity and best of two with work stealing. SKQ significantly
improves the low-latency throughput.

The web server is configured to service HTTP requests of
small HTML pages (∼640 bytes) without caching residing
on a HDD. Figure 9 shows the results of the best-performing
policy. Similar to other imbalanced benchmarks, the hybrid
policy has marginally lower peak throughput, but provides
19.8% higher low-latency throughput with 300 µs maximum
tail latency. The biggest tail latency improvement occurs
at 341k req./s where vanilla has 3.6× higher tail latency
(1386 µs vs 384 µs). We can see that SKQ also offers ben-
efit on heavy, uniform IO workloads.

In this benchmark, clients request web pages of similar
size, which is a uniform IO workload. However, the web
server benefits most from a workload balancing policy. This
is because IO requests have high variance in latency. Some
HTML pages might be in the file system buffer cache whereas
others need to be read from the hard disk. This results in
different access times and leads to an imbalanced workload.
However, compared to our RocksDB and application server
benchmark, IO does not induce as much imbalance. Thus,
the web server benchmark shows less benefit than the other
imbalanced workloads.

6.8 Event Prioritization
This benchmark demonstrates the effect of event prioritiza-
tion on a lightweight high priority client. We use the same
workload distribution as the application server.

The measurement client is assigned regular priority in the
first experiment but high priority in the second experiment.



1k 2k 3k 4k 5k 6k
100 µs

1 ms

10 ms

A
ve

ra
ge

L
at

en
cy

Hybrid Policy
Vanilla

1k 2k 3k 4k 5k 6k
Throughput (req./s)

100 µs

1 ms

10 ms

100 ms

1 s

99
th

Pe
rc

en
til

e
L

at
en

cy

Figure 8: The low throughput latency response of Figure 7.
Vanilla’s latency rises at very low throughput.

The measurement client also sends 30000 lightweight requests
per second to probe the latency. We set rtfreq to be 10000
so that server threads call kevent() every 100 µs. rtshare
is left at 100 to let SKQ pass back as many high priority
events as possible. We measure the latency experienced by
the measurement client in both settings and the regular clients’
latency in the second experiment.

Figure 10 shows the latency response. At peak through-
put, the high priority client’s throughput comprises 5% of
all traffic. The high priority measurement client’s tail latency
only increases by 1.2× (371 µs) than that at low throughput
(263 µs) whereas the regular priority measurement client’s
tail latency increases by almost 10× (2656 µs). In addition,
the regular clients did not experience increased latency due
to the addition of the high priority client but the server did
lose 0.9% maximum throughput. This benchmark shows that
event prioritization enables the server to service a lightweight,
high priority client with low tail latency while having minimal
impact on regular clients even when the server is fully loaded.

The tunables (rtshare, rtfreq, high priority client’s request
rate) used are specifically tuned for this workload. Blindly
changing the tunables to meet unrealistic goals only lead to
decreased performance. For example, if the request rate of the
high priority client is too high, it will experience increased
latency as serving a large amount of high priority requests
with low latency without starvation is difficult. Furthermore,
using inappropriate rtshare and rtfreq may cause starvation or
priority loss. Therefore, we do not offer recommended values
for the tunables as they are highly situational.

100k 200k 300k
100 µs

1 ms

10 ms

A
ve

ra
ge

L
at

en
cy

Hybrid Policy
Vanilla

100k 200k 300k
Throughput (req./s)

100 µs

1 ms

10 ms

99
th

Pe
rc

en
til

e
L

at
en

cy

Figure 9: The latency response of our web server with file
caching turned off. The hybrid policy refers to CPU affinity
and best of two with work stealing. SKQ provides more low-
latency throughput for IO-heavy workloads.

6.9 Comparing with a Kernel-bypass System

We compare SKQ with the state-of-the-art kernel-bypass sys-
tem Shenango to illustrate the benefits and tradeoffs. We also
considered porting SKQ to F-Stack, a kernel-bypass library
based on FreeBSD’s networking stack. Unfortunately, F-Stack
does not support multithreading within a single instance [13].
While outperforming kernel-bypass techniques in a traditional
OS is unlikely without significant advances in hardware and
software, we can still narrow the performance gap.

We built Shenango on Debian 10 running on a Skylake
machine with an Intel 82599 NIC as Shenango only supports
two modified NIC drivers in DPDK. We use one Skylake
machine as the measuring client and six Skylake machines as
workload generation clients. We benchmark three synthetic
workloads with different request service time distributions:
two with uniform distribution (10 µs, 20 µs) and one with
imbalanced Zipf-like distribution (85% 10 µs, 12% 50 µs, 3%
200 µs). We compare how each system maximizes the low-
latency throughput (<150 µs 99th percentile latency).

This comparison is unfair due to vastly different approaches
and environments. First, Shenango implements a custom net-
working stack using DPDK and user-level scheduling, both of
which bypass the Linux kernel. SKQ only redesigns the event
subsystem in FreeBSD. Second, Shenango’s TCP stack is a
research prototype and lacks TCP features such as congestion
control, while SKQ uses FreeBSD’s networking stack.

In Figure 11, at 10 µs request service time, Shenango shows
1.67× higher low-latency throughput than SKQ. However,



100k 200k 300k 400k 500k
100 µs

1 ms

10 ms

A
ve

ra
ge

L
at

en
cy

High priority client
Regular clients
Regular clients with a high priority client

100k 200k 300k 400k 500k
Throughput (req./s)

100 µs

1 ms

10 ms

99
th

Pe
rc

en
til

e
L

at
en

cy

Figure 10: The latency response of two runs where the mea-
surement client is marked as high priority vs. regular priority.
The server services a high priority client with low latency
while having little impact on other clients at peak throughput.

for 20 µs request service time, Shenango only achieves 1.5×
higher low-latency throughput. This is because system call
overhead comprises a larger fraction of time when the re-
quest service time is low. Heavier requests mask system call
overhead as applications spend more time in userspace.

For the imbalanced workload, Shenango shows less benefit
than uniform workloads – only 16.7% higher low-latency
throughput than SKQ. This gap is lower because of the longer
average service times and correspondingly lower OS overhead.
SKQ achieves a result very close to Shenango as we measure
nearly no load imbalance (§ 6.5). We also measure the latency
response of vanilla, i.e., multiple SKQs, and found that SKQ
closes the gap between vanilla and Shenango by 83.7%.

Kernel-bypassing shows bigger improvements when the
request service time is low and uniform. For imbalanced work-
loads and heavier requests, the benefit of kernel-bypassing
diminishes compared to kernel event scheduling.

Additionally, Shenango suffers from difficult adoption.
First, Shenango requires changes to the threading model, syn-
chronization and networking APIs. Porting complex appli-
cations such as RocksDB proved to be challenging. SKQ
requires less invasive changes and affects only one system
call. As a comparison, Shenango’s Memcached results in
~1200 SLOC changed whereas SKQ’s Memcached modifies
only ~200 SLOC, including SKQ statistics collection and ex-
posing SKQ controls to configuration files. Second, Shenango
requires DPDK and patching NIC drivers, which increases
maintenance effort. SKQ is built into the kernel and supports
all NICs supported by the operating system.

100k 200k 300k 400k 500k 600k 700k 800k 900k
10 µs

100 µs

1 ms

10 ms

A
ve

ra
ge

L
at

en
cy

SKQ 10 µs
SKQ 20 µs
SKQ Zipf
Shenango 10 µs
Shenango 20 µs
Shenango Zipf

100k 200k 300k 400k 500k 600k 700k 800k 900k
Throughput (req./s)

10 µs

100 µs

1 ms

10 ms

99
th

Pe
rc

en
til

e
L

at
en

cy

Figure 11: The latency response of three workloads running
on Shenango and SKQ. SKQ uses CPU affinity scheduling
policy for 10 µs, 20 µs benchmarks; CPU affinity and best of
two with work stealing for the Zipf-like benchmark.

7 Conclusions

SKQ revisits existing kernel event facilities and provides a
practical solution to the latency problem for applications run-
ning in traditional OSes. SKQ offers novel features and a
production quality implementation that has been developed
over the course of nearly two years. We show significant per-
formance gains in applications by only revisiting kernel event
subsystems. This suggests that there are still optimization
opportunities in traditional OS kernels.

Availability

All of our code and scripts to run experiments are available at
https://rcs.uwaterloo.ca/skq/.

Acknowledgments

The authors would like to thank Samer Al-Kiswany, Tim
Brecht, Ryan Hancock, Martin Karsten, Amilios Tsalapatis
and Bernard Wong for fruitful discussions during SKQ’s
development. We would also like to thank the anonymous
USENIX ATC reviewers for their valuable feedback, espe-
cially our shepherd Anton Burtsev. This research is supported
by NSERC Discovery grant, Waterloo-Huawei Joint Innova-
tion Lab grant, and NSERC CRD grant.

https://rcs.uwaterloo.ca/skq/


References

[1] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload Analysis of a
Large-scale Key-value Store. In Proceedings of the
12th ACM SIGMETRICS/PERFORMANCE Joint Inter-
national Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’12, pages 53–64,
New York, NY, USA, 2012. ACM.

[2] Luiz Barroso, Mike Marty, David Patterson, and
Parthasarathy Ranganathan. Attack of the Killer Mi-
croseconds. Commun. ACM, 60(4):48–54, March 2017.

[3] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. In 11th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 14), pages 49–65, Broomfield, CO, October 2014.
USENIX Association.

[4] Robert Benson. The Event Completion
Framework for the Solaris Operating System.
http://developers.sun.com/solaris/articles/
event_completion.html, July 2004.

[5] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC
Du. Characterizing, Modeling, and Benchmarking
RocksDB Key-Value Workloads at Facebook. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20), pages 209–223, 2020.

[6] Jonathan Corbet. Receive packet steering. https://
lwn.net/Articles/362339/, November 2009.

[7] Jonathan Corbet. Ringing in a new asynchronous I/O
API. https://lwn.net/Articles/776703/, January
2019.

[8] Microsoft Corporation. Introduction to Receive
Side Scaling. https://docs.microsoft.com/
en-us/windows-hardware/drivers/network/
introduction-to-receive-side-scaling, 2017.

[9] Microsoft Corporation. I/O Completion Ports.
https://docs.microsoft.com/en-us/windows/
win32/fileio/i-o-completion-ports, May 2018.

[10] Helen Custer. Inside Windows NT. Microsoft Press,
Redmond, Washington, First edition, 1992.

[11] Jeffrey Dean and Luiz André Barroso. The Tail at Scale.
Commun. ACM, 56(2):74–80, February 2013.

[12] Jake Edge. Receive flow steering. https://lwn.net/
Articles/382428/, April 2010.

[13] F-Stack. Can f-stack network stack run as 1 process on
multiple cores with multiple threads? https://github.
com/F-Stack/f-stack/issues/27, June 2017.

[14] Facebook. RocksDB. https://rocksdb.org, 2020.

[15] FreeBSD Foundation. lockstat – report kernel lock and
profiling statistics. https://www.freebsd.org/cgi/
man.cgi?query=lockstat&sektion=1&manpath=
freebsd-release-ports, 2015.

[16] Google, Inc. The Go Programming Language. https:
//golang.org/, September 2019.

[17] Sangjin Han, Scott Marshall, Byung-Gon Chun, and
Sylvia Ratnasamy. MegaPipe: A New Programming
Interface for Scalable Network I/O. In Proceedings
of the 10th USENIX Conference on Operating Systems
Design and Implementation, OSDI’12, pages 135–148,
Berkeley, CA, USA, 2012. USENIX Association.

[18] Intel. Introduction to Intel Ethernet Flow
Director and Memcached Performance.
https://www.intel.com/content/dam/www/
public/us/en/documents/white-papers/
intel-ethernet-flow-director.pdf, 2017.

[19] Intel. Data Plane Development Kit (DPDK). https:
//www.dpdk.org, 2020.

[20] Intel Corporation. Performance Testing Ap-
plication Device Queues (ADQ) with Redis.
https://www.intel.com/content/www/us/
en/architecture-and-technology/ethernet/
application-device-queues-with-redis-brief.
html, 2019.

[21] Internet Engineering Task Force. IETF HTTP Working
Group. https://httpwg.org/, May 2020.

[22] EunYoung Jeong, Shinae Wood, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and Ky-
oungSoo Park. mTCP: a Highly Scalable User-level
TCP Stack for Multicore Systems. In 11th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 14), pages 489–502, 2014.

[23] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, and Christos Kozyrakis.
Shinjuku: Preemptive scheduling for µsecond-scale tail
latency. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
345–360, 2019.

[24] Dan Kagel. The C10K Problem. http://www.kegel.
com/c10k.html, May 1999.

http://developers.sun.com/solaris/articles/event_completion.html
http://developers.sun.com/solaris/articles/event_completion.html
https://lwn.net/Articles/362339/
https://lwn.net/Articles/362339/
https://lwn.net/Articles/776703/
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
https://docs.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
https://lwn.net/Articles/382428/
https://lwn.net/Articles/382428/
https://github.com/F-Stack/f-stack/issues/27
https://github.com/F-Stack/f-stack/issues/27
https://rocksdb.org
https://www.freebsd.org/cgi/man.cgi?query=lockstat&sektion=1&manpath=freebsd-release-ports
https://www.freebsd.org/cgi/man.cgi?query=lockstat&sektion=1&manpath=freebsd-release-ports
https://www.freebsd.org/cgi/man.cgi?query=lockstat&sektion=1&manpath=freebsd-release-ports
https://golang.org/
https://golang.org/
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.dpdk.org
https://www.dpdk.org
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/application-device-queues-with-redis-brief.html
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/application-device-queues-with-redis-brief.html
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/application-device-queues-with-redis-brief.html
https://www.intel.com/content/www/us/en/architecture-and-technology/ethernet/application-device-queues-with-redis-brief.html
https://httpwg.org/
http://www.kegel.com/c10k.html
http://www.kegel.com/c10k.html


[25] Kimberly L. Tripp Conor Cunningham Adam Machanic
Ben Nevarez Kalen Delaney, Paul S. Randal. Microsoft
SQL Server 2008 Internals. Microsoft Press, Redmond,
Washington, 1 edition, 2008.

[26] Rishi Kapoor, George Porter, Malveeka Tewari, Geof-
frey M Voelker, and Amin Vahdat. Chronos: Predictable
Low Latency for Data Center Applications. In Proceed-
ings of the Third ACM Symposium on Cloud Computing,
page 9. ACM, 2012.

[27] Martin Karsten and Saman Barghi. User-Level Thread-
ing: Have Your Cake and Eat It Too. Proc. ACM Meas.
Anal. Comput. Syst., 4(1), May 2020.

[28] Jonathan Lemon. Kqueue: A Generic and Scalable
Event Notification Facility. In USENIX Annual Tech-
nical Conference, FREENIX Track, ATC ’01, Berkeley,
CA, USA, 2001. USENIX Association.

[29] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and
Steven D. Gribble. Tales of the Tail: Hardware, OS,
and Application-Level Sources of Tail Latency. In Pro-
ceedings of the ACM Symposium on Cloud Computing,
SOCC ’14, page 1–14, New York, NY, USA, 2014. As-
sociation for Computing Machinery.

[30] Linux Man Page Project. epoll - I/O event notifica-
tion facility. http://man7.org/linux/man-pages/
man7/epoll.7.html, September 2019.

[31] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-
ton, Nandita Dukkipati, William C Evans, Steve Gribble,
et al. Snap: a Microkernel Approach to Host Network-
ing. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles, pages 399–413, 2019.

[32] Michael Mitzenmacher. The Power of Two Choices
in Randomized Load Balancing. IEEE Trans. Parallel
Distrib. Syst., 12(10):1094–1104, October 2001.

[33] Nick Mattewson, Azat Khuzhin, and Niels Provos.
libevent - an event notification library. https://
libevent.org, September 2019.

[34] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving

High CPU Efficiency for Latency-sensitive Datacenter
Workloads. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
361–378, 2019.

[35] Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich,
and Robert T. Morris. Improving Network Connection
Locality on Multicore Systems. In Proceedings of the
7th ACM European Conference on Computer Systems,
EuroSys ’12, pages 337–350, New York, NY, USA, 2012.
ACM.

[36] Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports, Doug
Woos, Arvind Krishnamurthy, Thomas Anderson, and
Timothy Roscoe. Arrakis: The Operating System is the
Control Plane. ACM Transactions on Computer Systems
(TOCS), 33(4):1–30, 2015.

[37] George Prekas, Marios Kogias, and Edouard Bugnion.
ZygOS: Achieving Low Tail Latency for Microsecond-
scale Networked Tasks. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages 325–
341, 2017.

[38] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and
John Ousterhout. Arachne: Core-aware Thread Man-
agement. In Proceedings of the 12th USENIX Confer-
ence on Operating Systems Design and Implementation,
OSDI’18, pages 145–160, Berkeley, CA, USA, 2018.
USENIX Association.

[39] Mark E. Russinovich, David A. Solomon, and Alex
Ionescu. Windows Internals, Part 2. Microsoft Press,
Redmond, Washington, Sixth edition, 2012.

[40] Yasir Shoaib and Olivia Das. Web Application Per-
formance Modeling Using Layered Queueing Net-
works. Electronic Notes in Theoretical Computer Sci-
ence, 275:123–142, 2011.

[41] Tencent Cloud. F-Stack | High Performance Network
Framework Based On DPDK. http://www.f-stack.
org/, 2020.

[42] The Open Group. lio_listio - list directed
I/O. https://pubs.opengroup.org/onlinepubs/
9699919799/functions/lio_listio.html, 2017.

http://man7.org/linux/man-pages/man7/epoll.7.html
http://man7.org/linux/man-pages/man7/epoll.7.html
https://libevent.org
https://libevent.org
http://www.f-stack.org/
http://www.f-stack.org/
https://pubs.opengroup.org/onlinepubs/9699919799/functions/lio_listio.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/lio_listio.html

	Introduction
	Background and Related Work
	Design Overview
	Kqueue
	SKQ

	Event Scheduling Policies
	Cache Locality Policies
	Workload Balancing Policies
	Policy Selection Criteria
	Fine-grained Event Delivery Controls

	Implementation
	Evaluation
	Scalability
	Multiple SKQs vs. Multiple Kqueues
	Cache Miss Analysis
	Memcached
	Application Server
	RocksDB
	Web Server
	Event Prioritization
	Comparing with a Kernel-bypass System

	Conclusions

