
MemSnap µCheckpoints: A Data Single Level Store for
Fearless Persistence

Emil Tsalapatis
∗

emil.tsalapatis@uwaterloo.ca
RCS Lab, University of Waterloo

Waterloo, Canada

Ryan Hancock
∗

krhancoc@uwaterloo.ca
RCS Lab, University of Waterloo

Waterloo, Canada

Rakeeb Hossain

rakeeb.hossain@uwaterloo.ca
RCS Lab, University of Waterloo

Waterloo, Canada

Ali José Mashtizadeh

ali@rcs.uwaterloo.ca
RCS Lab, University of Waterloo

Waterloo, Canada

Abstract
Single level stores (SLSes) have recently resurfaced as a sys-

tem for persisting application data. SLSes like EROS, Aurora,

and TreeSLS use application checkpointing to replace file-

based APIs. These systems checkpoint at a coarse granularity

and must be combined with file persistence mechanisms like

WALs, undermining the benefits of their SLS design.

We present MemSnap, a new system that completes the

single level store vision by eliminating the need for the WAL

API. MemSnap introduces µCheckpoints that persist updates

to memory for individual write transactions concurrently

with other threads. We introduce a novel per-thread dirty set

tracking mechanism in the kernel and use it to transparently

persist application data. We use virtual memory techniques

to prevent modifications to in-flight µCheckpoints, without

blocking the application.

MemSnap-based persistence has 4.5×–30× lower latency

than file-based random IO and is within 2×of direct disk IO

latency. We integrate MemSnap with the SQLite, RocksDB,

and PostgreSQL databases, gaining performancewhile retain-

ing ACID. MemSnap increases the throughput of SQLite by

5× over file APIs and achieves a 4× throughput improvement

for RocksDB compared to Aurora.

CCS Concepts: • Computer systems organization→ Re-
liability; • Software and its engineering→ Operating
systems.

∗
Denotes equal contribution.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0386-7/24/04

https://doi.org/10.1145/3620666.3651334

Keywords: single level store, persistence, virtual memory

ACM Reference Format:
Emil Tsalapatis, Ryan Hancock, Rakeeb Hossain, and Ali José Mash-

tizadeh. 2024. MemSnap µCheckpoints: A Data Single Level Store

for Fearless Persistence. In 29th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 3 (ASPLOS ’24), April 27-May 1, 2024, La Jolla, CA,
USA. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/
3620666.3651334

1 Introduction
Single level stores (SLSes) like EROS [41], Aurora [44, 45],

and TreeSLS [48] promise to simplify the development of

application persistence by offering an alternative to file IO.

Application writers build applications completely in memory

as if they never fail, and SLSes provide transparent or nearly

transparent persistence by checkpointing entire applications.

Applications in an SLS forego file-based storage logic and its

semantics that have led to data loss even for mature systems

like PostgreSQL [3].

The problemwith current SLS systems is that they provide

persistence with coarse granularity that leads to them supple-

menting their APIs with traditional journaling mechanisms.

EROS persisted applications every 30 s on a spinning disk,

Aurora every 10 ms using PCIe SSDs, and TreeSLS achieves

persistence every 1 ms using non-volatile memory (NVM).

Aurora and EROS provide a write-ahead log API to bridge the

performance gap between the coarse grained checkpoints

and individual application operations that require durability.

SLS WAL APIs undermine the core premise of the single

level store by retaining much of the complexity of the file

API. Developers must still implement WAL and checkpoint

systems to achieve good performance in SLSes, same as the

file API. Thus, applications retain most of the code required

for crash consistency, which is prone to bugs [37, 39, 50].

Even worse, using the WAL usually leads to infrequent SLS

checkpoints causing larger and significant pause time to

atomically track memory. The pause time adds tail latency

to the application.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0003-2185-2029
https://orcid.org/0000-0001-6596-3623
https://orcid.org/0009-0009-2771-5421
https://orcid.org/0000-0002-8672-5138
https://doi.org/10.1145/3620666.3651334
https://doi.org/10.1145/3620666.3651334
https://doi.org/10.1145/3620666.3651334

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Emil Tsalapatis, Ryan Hancock, Rakeeb Hossain, and Ali José Mashtizadeh

SLSes will only qualitatively change how applications are

written if they truly deliver on memory semantics. We need

an API that has low latency and works at a fine granularity

to completely eliminate the checkpoint and WAL paradigm.

To support high performance applications with the full

promise of a simplified developer model, we need a system

that persists atomic checkpoints as small as a single memory

page in microseconds. This would fully replace the file API

abstraction with a simpler design that ensures atomicity

across memory and storage in the face of system crashes.

Developers would not need WALs or other approaches for

correctness in their storage systems. Furthermore, it can lead

to potential performance gains by eliminating the need to

write data both to the WAL and to the primary store.

This paper reexamines the core mechanism behind the

single level store: atomic checkpointing across virtual mem-

ory and storage. We focus on incremental checkpointing of

memory regions similar to Aurora’s region API. Applications

work only with memory-mapped data that they modify in

place and then update on disk with a single call. Our ap-

proach revisits the core idea of SLSes by providing a per-

thread memory tracking and checkpointing API that outper-

forms file APIs and existing SLSes.

We introduce MemSnap, a new novel single level store

that provides per-thread checkpoints as small as a 4 KiB

page with low overhead. MemSnap is the first single level

store to track individual per-thread transactions at the kernel

level as opposed to the entire process without application

intervention. MemSnap provides atomic checkpoints fast

enough to subsume the need for the WAL by introducing

new page table handling primitives in the virtual memory

system. MemSnap uses the hardware TLB and fast page

protection kernel code paths both to track the dirty set and

prevent application threads from modifying in-flight data.

MemSnap makes the following contributions:

• Low overhead dirty set tracking for individual threads.

MemSnap tracks the pages dirtied by each thread with-

out help from the application.

• A novel per-thread checkpointing mechanism that

persists dirty data into µCheckpoints with low pause

times. MemSnap supports the existing SLS semantics

of checkpointing all threads’ data.

• A data persistence API that does not depend on aWAL.

MemSnap’s atomic µCheckpoints across memory and

storage are fast enough to replace storage paradigms

such as WAL and checkpoint and LSM Trees.

• Three case studies that demonstrate MemSnap’s per-

formance gains and simplify the code of production

grade databases: SQLite, RocksDB, and PostgreSQL.

MemSnap is faster than existing file APIs and past SLS-

based approaches.MemSnap µCheckpoints have 2×-1.17× over-

head for writes of 4 KiB-64 Kib over direct disk IO. For com-

parison, file based randomwrite IO incurs a 9×-43× overhead.

In our case studies we show that MemSnap is faster in large

applications that use the file API or traditional SLSes. Mem-

Snap increases the performance of SQLite by 5× over file

APIs. For RocksDB, MemSnap achieves a 4× improvement

over Aurora’s checkpointing.

2 Motivation
File APIs lack atomicity in three important ways: write-

tearing, multi-file writes and multi threaded isolation. First,

write-tearing happens when a crash occurs during an IO that

spans multiple sectors, resulting in the partial writing of the

IO. The calls used by applications to flush changes to disk,

i.e., fsync and msync, are not atomic on disk. Disks provide

atomicity at the level of individual sectors.

Second, file systems lack the ability to atomically update

multiple files. The fsync and msync calls only operate on a

file or a contiguous file region.

Third, flushing changes is not atomic with respect to other

threads. Modifications made by other threads to the same

file will be flushed by any call to fsync or msync. There is
no way to differentiate the write-sets of individual threads.

The traditional solution to solving the first two problems

is through the use of a write-ahead log (WAL). Applications

first persist updates to the WAL, acknowledge the original

request, and then update the primary data structure in place

(e.g., B+ Tree, LSM Tree). If a crash were to occur during the

WAL write, the user is never acknowledged. If a crash occurs

while updating the primary data structure, the WAL is used

to complete the operation.

The third problem is solved by combining a variety of ap-

proaches including software level tracking of updates, check-

pointing of the main data and multi version concurrency

control (MVCC). This problem often leads to applications

making trade-offs between design complexity and perfor-

mance. For example, MVCC allows unfinished operations to

reach the disk, but introduces costly garbage collection.

Flushing the WAL to the primary data structure is ex-

pensive and necessary. Applications must flush the WAL to

reclaim space at some point. The flush operation depends

on how the system represents data, for example the SQLite

database creates a checkpoint of the database file, while the

RocksDB key-value store adds a new node to its LSM tree.

SQLite checkpoints generate many random IOs that increase

latency, while writes to RocksDB’s LSM trees are sequential

but require additional IO because of background compaction

operations (i.e., garbage collection).

Systems that build on fsync and msync share the same

limitations as the original calls and still need WALs to func-

tion. Atomic msync [35] extends msync to be atomic in the

presence of crashes, so an interrupted msync call does not

corrupt data. AdvFS has the syncv [46] call that persists mul-

tiple files atomically using copy-on-write (COW) at the file

system level. Both systems are slow, taking milliseconds to

MemSnap µCheckpoints: A Data Single Level Store for Fearless Persistence ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Task % Time Task % Time

Userspace Kernel
Tx Memory 18.3% Buffer Cache 5.1%

Log 8.0% File System 3.1%

Tx Disk 8.5% VFS 6.4%

IO Generation 4.3% Locking 6.1%

Serialization 1.1% Rangelock 2.1%

Other Userspace 16.2% Syscall 4.4%

Table 1. Breakdown of RocksDB’s total execution time

between userspace and the kernel. Only 18.3% of CPU time

is spent on the in-memory transaction - the rest is spent on

persistence across userspace and the kernel.

flush data to disk, require an internal WAL for consistency

across multiple files, and do not address per-thread isolation.

The Cost of Persistence File APIs are not only lacking

in atomicity, but expensive due to a tight integration with

bulky subsystems such as the virtual file system (VFS). To

illustrate the cost of file based persistence used by databases,

we examine RocksDB [6] running the Facebook MixGraph

workload [14]. RocksDB is a popular key-value store that

is representative of other systems. Table 1 shows the CPU

breakdown between components of RocksDB and the OS

kernel for the workload.

RocksDB spends the majority of its CPU time on per-

sistence instead of servicing requests. Approximately 40%

of RocksDB’s total time is spent writing the WAL, serializ-

ing records and issuing IO. RocksDB splits its time between

userspace (56%) and the kernel (44%). Only 18.3% of userspace

cycles are updating the in-memory representation, and al-

most half of its userspace cycles are spent on IO-related

work like logging to the WAL, creating LSM tree nodes, and

garbage collecting stale data. Almost all of RocksDB’s time

in the kernel is IO related: taking file rangelocks, running

file system-specific code, and updating the buffer cache with

new file data.

The userspace IO handling code also adds to RocksDB’s

complexity. Approximately 40% of RocksDB’s code is per-

sistence related. This contributes to the complexity of the

system and to bugs. Worst of all, bugs in the persistence code

can lead to data loss and corruption [1].

Together these overheads present an opportunity for per-

formance gains and improving the reliability of storage sys-

tems. Storage systems can benefit from consolidating the

software stack through a better API.

Single Level Stores Single level stores (SLSes) [41, 45, 48]
unify virtual memory and persistent storage to simplify

application persistence. SLSes eliminate the dichotomy be-

tween memory and storage by saving incremental applica-

tion checkpoints, which include the entire memory, OS and

CPU state of a running application. SLSes recover from a

crash by restoring the application from the on-disk image.

Operation Aurora

Stopping Threads 26.7 µs

Shadow Creation 79.8 µs

Write IO 27.9 µs

Shadow Collapse 91.7 µs

Total 208.1 µs

Table 2. Latency breakdown for synchronous Aurora region
checkpointing during RocksDB’s dbbench benchmark. Most

of the overhead comes from the shadowing mechanism that

applies to entire mappings, even though the amount of dirty

data is 64 KiB.

Checkpointing application state is complex and too slow

for individual database transactions. For example, EROS

checkpoints every 30 s while Aurora checkpoints every 10ms

on PCIe flash. TreeSLS [48] breaks POSIX compatibility and

requires byte-addressable persistentmemoryDIMMs for low-

latency persistence every 1ms. All of these SLSes are still too

slow and require serialization across all threads. To remedy

the overhead, Aurora and EROS complement checkpointing

with a WAL API, however, this undermines the single level

store goal of eliminating application storage logic.

Aurora offers an intermediate API that persists single ad-

dressmappings (regions), to reduce the amount of data check-

pointed and avoid the overhead of OS state. However, region

checkpointing still uses Aurora’s underlying system shadow-

ing mechanism, which requires the stopping of all threads

resulting in a serialization point that induces high overheads.

This API is still too slow for single transactions and thus

requires a WAL.

Table 2 breaks down the performance overhead of region

checkpointing for a single IO done by RocksDB for the Mix-

Graph workload. Aurora’s checkpointing is based on the

“system shadowing” mechanism, which is responsible for

180 µs of latency out of 208 µs. System shadowing stops all

threads, applies COW by creating a “shadow object”, and

resumes the threads in parallel with issuing IOs. “Shadow

objects” are created to retain an atomic snapshot of memory

while allowing threads to continue executing during the IO

write. After the IOs complete, Aurora “collapses” the shadow

object back into the base object. The operation merges the

page lists of the shadow with those of the base and costs

90 µs because its latency is proportional to the mapping’s

size. The frequency of executing region checkpointing is

limited by the total time including collapsing.

MemSnap: Our ApproachMemSnap is a novel approach

to the single level store, which runs on commodity PCIe SSDs

and subsumes the need for a WAL by addressing the three

aforementioned problems of the file API with microsecond

level performance.

MemSnap provides an API for persisting in-memory data

to the disk without file operations or a WAL. MemSnap

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Emil Tsalapatis, Ryan Hancock, Rakeeb Hossain, and Ali José Mashtizadeh

System Subset Atomic Per-Thread <1 ms

fsync No No No Yes

msync Contig. No No Yes

atomic msync Contig. Yes No No

Aurora Contig. Yes No No

memsnap Yes Yes Yes Yes

Table 3. Comparison between different persistence mech-

anisms. fsync and msync flush an entire file or region’s

dirty set without atomicity. Atomic msync requires conti-

guity and does not track the per-thread dirty set. Aurora is

not microsecond-scale and does not track the dirty set per

thread. MemSnap combines strong guarantees, performance

and per-thread set tracking.

tracks the per-thread dirty set of the application at a page

granularity, rather than a global view of the dirty set that

requires serializing across all threads. The result is an API

that fully delivers on the single level store vision of writing

applications that solely modify memory and do not require

additional logic for atomicity and persistence, and addresses

the limitations of existing systems (Table 3).

3 Design
MemSnap replaces file I/O based persistence with a fast and

intuitive API shown in Table 4. Users create/open memory

regions that are used to hold the main dataset they wish

to persist atomically. Users modify data in these regions

then persist it with a single call. Applications do not track

their dirty pages/blocks explicitly as MemSnap does this

transparently.

Applications use msnap_open to open or create new mem-

ory regions. The call maps the region into the process address

space and returns a descriptor md. Similar to POSIX shared

memory descriptors, these are opaque descriptors, not files.

Each MemSnap mapping has a unique address where it is

mapped every time. This ensures that pointers in the persis-

tent data set are valid across reboots. We use the high end of

the address space for MemSnap mappings, for a total address

space of 32 PiB for machines with 5-level page tables.

Applications use msnap_persist to atomically persist

modifications, then continue executing. msnap_persist is
synchronous by default, but is callable with an MS_ASYNC flag
that makes the call return after initiating the IO. The thread

can later wait for the IO to complete using msnap_wait.
Flags to msnap_persist also specify which part of the

dirty set it should persist. Passing a region descriptor to the

call persists only the pages belonging to the correspond-

ing region. Passing a descriptor of -1 persists all modifica-

tions across all regions. msnap_persist by default persists

modifications made by the calling thread unless passed the

MS_GLOBAL flag to persist modifications made by all threads.

On a msnap_persist callMemSnap creates a µCheckpoint

to persist the dirty pages required by the call. To track dirty

dataMemSnap uses a page-granularity copy-on-write (COW)

storage mechanism and the hardware TLB. MemSnap stores

the data on its COW object store. Using MemSnap, applica-

tion threads can safely modify memory even if it is currently

being flushed. Applications use page-granularity locking or

equivalent mechanisms only for concurrency, while Mem-

Snap handles the atomicity of persistence-related IO. Mem-

Snap’s asynchronous mode lets a thread unlock the data in

memory after msnap_persist to unblock other transactions.
Our design introduces three novel mechanisms that span

the virtual memory and storage subsystems. First, the usage

of a custom page handling technique that uses the hardware

TLB and allows for the transparent tracking of dirty data for

each thread. Second, our unified COW mechanism, which

bridges the virtual memory and storage systems by trans-

parently performing page table modifications in response

to concurrent accesses to flushing data. Third, a fast COW

storage system that solely provides direct IO and namespace

requirements for our persisted objects.

Hardware Assisted Dirty Set Tracking Our dirty page

tracking mechanism tracks the dirty set of each application

thread individually across all memory mappings. We use the

TLB hardware to track page writes by read protecting pages

and trapping writes using a custom page fault handler.

MemSnap uses minor write faults to track dirty pages. All

pages in a MemSnap memory region are initially read-only.

MemSnap marks the region as writable (but not COW) and

the PTE (page table entry) of each page as readable. This

mapping configuration is unique to MemSnap and does not

interfere with existing code paths in the VM fault handler or

with swapping.When an application writes to a page, it takes

a minor page fault. The page fault handler appends the dirty

page to a thread-local list if the page is not already being

tracked. MemSnap tracks the working set at the physical

page level to avoid the overheads of tracking the write set of

each mapping separately, e.g. using shadowing (Section 2).

The minor write fault has a lower cost than a regular COW

fault because no page copy is necessary. The overall cost of

a write fault is a small part of the total cost of persistence.

Every page faulted is eventually committed to the disk, which

is a much larger cost than the write fault itself.

MemSnap constructs the µCheckpoint using the threads’

page list. The msnap_persist call goes through the list to

create and issue a scatter/gather IO (i.e., vectored IO).

MemSnap reapplies read protection to each flushed page

after writing, so subsequent writes to a page will attach it

to a new µCheckpoint. msnap_persist reapplies read pro-

tection efficiently by going through the thread-local page

list of the caller and marking the PTEs corresponding to

the page as read-only. To handle multiprocess applications,

MemSnap uses the page’s physical-to-virtual mappings to

find all page tables that contain it and modify their PTE. For

MemSnap µCheckpoints: A Data Single Level Store for Fearless Persistence ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Command Description

int msnap_open(char *name, void **addr, size_t len, int flags) Create or open a region for snapshotting and return id

epoch_t msnap_persist(int md, int flags) Persist the snapshot synchronously or asynchronously

int msnap_wait(int md, epoch_t epoch) Wait for the snapshot to persist

Table 4. The MemSnap API. Users either explicitly register page-aligned regions of memory into the snapshot or implicitly track them

throughout execution. MemSnap atomically persists these pages. Threads that should block until the data persists do so using msnap_persist
with the MS_SYNC flag or msnap_wait.

4KiB 4MiB

Dirty Set Size

0

100

200

300

400

L
a
te
n
c
y
(𝜇
s
)

232.0

314.0

4.0

76.0

4.0 5.0

Aurora (region)

MemSnap w/o Trace

MemSnap

Figure 1. Comparison of the three techniques for marking

pages as read only. Traversing the mapping’s page tables

is expensive even for small dirty sets, and traversing the

page table for each page adds overhead for large dirty sets.

MemSnap’s trace buffer is both fast and scalable.

small checkpoints MemSnap then issues a TLB shootdown

for the dirty pages, or invalidates the entire TLB for larger

working sets.

MemSnap’s design minimizes the time necessary for reap-

plying read protections.MemSnap does not stop other threads

to read protect the dirty set because it does not modify the

address mappings themselves, unlike existing fork-based
read-protection routines that directly manipulate the address

space. The dirty per-thread page list also means that Mem-

Snap only reapplies protection to the pages added to the

checkpoint instead of the entire address space. This is done

instead of the default routine which scans the entire page

table region for the mapping to find dirty data.

To reduce the costs of traversing the page table, Mem-

Snap records the physical address of the PTE during the

page fault and stores it in a thread-private trace buffer. The

OS is guaranteed not to move the PTE entry so the map-

ping stays stable. When reapplying page protections after a

µCheckpoint we avoid traversing the page tables from the

root by locking them, traversing the trace buffer and directly

modifying the stored PTEs. This optimization eliminates the

need for multiple page table traversals to reapply COW due

to dirty pages being sparsely spread throughout the table.

We show the performance gains of our design in Figure 1.

The baseline system traverses the page tables of a 1 GiB

memory mapping to find and protect the dirty pages, and

has large overheads even when protecting a single 4 KiB

data page. Moving to a page-based approach to page pro-

tection reduces the cost of protecting a single page but its

cost scales for larger dirty sets like 4 MiB. MemSnap’s trace

buffer reduces the cost of page protection to almost nothing.

MemSnap manages contention for hot pages through a

per-page COW mechanism. Avoiding locking the pages in

the µCheckpoint is important to prevent contention with

userspace threads, e.g., for the root of a tree data structure.

MemSnap sets a new “checkpoint in progress” flag in the

physical page structure (vm_page) to signify the page as

busy. Once complete, MemSnap returns to the calling thread.

All threads can continue to read and write pages as they are

being flushed to the disk. Writes to pages that have the check-

point in progress flag trigger a COW path that duplicates

the original page and updates the mapping and page tables

to point to the new copy. This allows MemSnap to create an

atomic checkpoint, while avoiding the cost of copy-on-write

operations on all pages. Pages that do not have the check-

point in progress flag are handled by the dirty set tracking

fault code path.

Persisting MemSnap RegionsMemSnap uses a COW

object store to persist µCheckpoints. The API of the store is

similar to the internal APIs of popular COW file systems [4,

9, 12, 22], and these file systems are potential backends for

the MemSnap mechanism if their API is extended to expose

lightweight object checkpoints. Our object store is a simple

implementation of the minimum viable design required to

support MemSnap.

The store uses COW radix trees instead of the more com-

plex, read optimized, COW B-Trees used by many storage

systems [40]. The object store optimizes for random access

patterns and small object sizes and heavily prioritizes writes

over reads. Radix trees work well for the write patterns gen-

erated by the workload because they are block based and

do not suffer from the extent fragmentation problems that

B-Trees have if snapshotted frequently.

The object store has a key-value interface and is not bur-

dened by the traditional file system API or POSIX standards.

The object store does not integrate with the buffer cache and

instead does direct IO, deferring the management of mem-

ory pressure to the VM page cache. The store only allows

memory mapping the data and does not support file IO.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Emil Tsalapatis, Ryan Hancock, Rakeeb Hossain, and Ali José Mashtizadeh

Operation Overhead
Resetting Tracking 5.1 µs

Initiating Writes 6.5 µs

Waiting on IO 39.7 µs

Total 51.4 µs

Table 5. Breakdown of an msnap_persist call for 64 KiB
worth of dirty pages. The call protects the pages to reset

tracking in 5.1 µs, and spends 39.7 µs waiting for the IO to

complete. Minimizing COW application time quickly frees

up the modified pages to be accessed and modified by other

threads and thus avoids contention.

Each object maintains its own logical history. An on disk

object contains a monotonic epoch number that increments

after each µCheckpoint that the object is a part of. This

allows for restores independent of the state of the object store.

Further, it allows for µCheckpoints to occur concurrently

with each other as objects are not tied to some global epoch.

MemSnap’s OS/workload co-design reduces the cost of

persistence close to the latency of the disk without any opti-

mizations from the user at all. Table 5 shows the cost of per-

sistence for a single 64 KiB transaction done by the RocksDB

workload we presented in Section 2. An msnap_persist call
from RocksDB takes 51.4 µs, only 7 µs more than the latency

of 44 µs for a direct disk IO of the same size. Most of the

additional latency is in resetting tracking to the pages by

modifying their PTEs, a fundamental cost for dirty page

tracking. The other 45.2 µs are spent on the actual IO, same

latency as a direct IO.

4 MemSnap-based Crash Consistency
We now present how to adapt an application to the Mem-

Snap API. First, we describe how MemSnap replaces the file

interface while leaving its ACID guarantees intact. We then

enumerate the key properties that the in-memory data struc-

tures must adhere to. Finally, we show how these properties

combine with the data structures’ existing locking mecha-

nisms to guarantee on-disk consistency.

MemSnap modifies the lowest level of the database’s soft-

ware stack and leavesmost components unmodified. Databases

split their logic into a storage engine that manages the data

across memory and files, and an upper layer that implements

abstractions like tables and transactions. The upper layers

manage high level data modifications and transactional lock-

ing and do not directly interact with on-disk data, instead

using the storage engine for serialization and disk access.

Enabling MemSnap only changes the storage engine’s per-

sistence calls and leaves the upper-layer logic as-is.

We modify the storage engine to use MemSnap regions

instead of files. The unmodified storage engine stores the

data in files for persistence, and also caches part of it in an

in-memory data structure, e.g., a B-tree, for fast access. We

2

MemSnap Region

Thread A Thread B

Dirty

Page

(A)

Clean

Page

Dirty

Page

(B)

Untracked

Page

Untracked

Page

MemSnap Region

Thread A Thread B

Dirty

Page

(A)

Dirty

Page

(A)

Dirty

Page

(B)

Dirty

Page

(A)

Dirty (A)

Dirty (B)

MemSnap Region

Thread A Thread B

Dirty

Page

(A)

Dirty

Page

(A)

Clean

Page

Dirty

Page

(B)

Dirty

Page

(A)

Figure 2. The three conditions required for MemSnap-based

persistence. 1 MemSnap persists only dirty pages that are

in a MemSnap region. 2 Two threads cannot simultaneously

dirty different parts of the same page. 3 A page dirtied by a

thread cannot be dirtied by another until it is flushed out.

expand the in-memory data structure to hold all data and

place it in MemSnap persistent regions, removing the files.

MemSnap flusheswrite transactions by tracking the changes

it makes to the data structure’s memory, and writing the

changes as a µCheckpoint to disk. The unmodified storage

engine handles writes by first logging the data in a WAL,

then modifying the in-memory copy. We replace WAL writes

withMemSnap’s dirty page tracking, and replaceWAL fsync
with msnap_persist calls.

We do not modify the storage engine’s concurrency con-

trol. We call msnap_persist where fsync was previously

called. The calls provide the same persistence guarantees, so

the surrounding code’s assumptions remain valid.

Persisting the In-Memory RepresentationMemSnap

uses its COW-based dirty page tracking to determine the

contents of each transaction’s corresponding µCheckpoint.

For a µCheckpoint to correctly update the on-disk copy, it

must include all the data structure pages dirtied by the trans-

action that created it. The µCheckpoint must not include any

MemSnap µCheckpoints: A Data Single Level Store for Fearless Persistence ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

pages dirtied by other concurrently executing transactions

to avoid persisting uncommitted data through a crash.

An example is a B-tree updated by a write transaction

with new keys. The corresponding µCheckpoint must persist

the new key-value pairs, and any B-tree nodes dirtied by

the operation. The µCheckpoint must also not persist any

changes made to the B-tree by other transactions.

The in-memory data structures must adhere to three prop-

erties to ensure MemSnap’s correctness (Figure 2):

1 All data falls within MemSnap persistent regions for

compatibility with our API. We enforce this property by allo-

cating the in-memory data structure from MemSnap regions.

2 Two key-value pairs or data structure nodes cannot be

on the same OS page. By nodes we refer to the individual

components of the data structure, e.g., a B-tree node or a

skip list node. We ensure this property by making each node

or key value pair of a data structure page-aligned, if this is

not already the case. Two transactions with non-overlapping

write sets will then write to non-overlapping pages.

3 A node cannot be simultaneously modified by multiple

active transactions. When a transaction modifies a key, it

must lock it to prevent others from writing to it until it is

persisted. This is already done by some storage engines, e.g.,

SQLite. However, some data structures like RocksDB’s skip

lists require additional fine-grained locking (Section 7.2).

This extra locking does not change data structure semantics.

These properties combined ensure that we update the

on-disk dataset in a serializable fashion, i.e., our persistence
operations form a series of transactions applied to the im-

age one by one. Property 2 ensures that MemSnap’s page

tracking adds to a thread’s working set all the data it has

dirtied, and never includes unrelated dirty data. Property 3
ensures that pages added to the dirty set were initially clean

and cannot be written until the transaction commits to the

disk, so the µCheckpoint does not include other transactions’

changes. MemSnap’s msnap_persist calls thus write out all
data structure modifications done by a single transaction.

MemSnap applications restore after a crash by mapping

persisted data back into memory. The new instance first

recreates components e.g., transaction managers, allocators,

lost during the crash. The instance then retrieves a list of all

MemSnap regions in an application, along with their address

in memory. It recreates these mappings and uses memory

accesses to page in the data. All pointers in the mappings

that point to persistent data are still valid after the crash

because regions are always mapped at the same address. The

application also updates stale pointers to lost volatile state.

MemSnap Region Crash Consistency All MemSnap

regions are crash consistent due to our COW object store.

Each MemSnap region is an object in the store and its data is

stored in a radix tree. The object store uses COW to update

data without overwriting it. Every µCheckpoint first writes

the data to newly allocated space. Because of COW the object

store then creates a copy of the leaf node that points to the

new data, then a copy of that node’s parent that points to the

new node, and so on until it writes a new tree root. Changes

commit after the new root persists.

Region data is consistent after a crash. Interrupted trans-

actions and µCheckpoints do not persist and the application

recovers from the last completed µCheckpoint.

5 Scope and Limitations
MemSnap handles persistence and does not address memory

overcommit. The file API’s semantics for memory-mapped

data is problematic both for persistence, and for tiering

larger-than-memory datasets between disk andmemory [17].

MemSnap leaves the question of a memory-mapped over-

commit API out of scope, much like the other SLSes, because

it is orthogonal to its core goal of efficient persistence. Mem-

Snap does not limit the design of new overcommit APIs. The

lack of an overcommit API however, limits our MemSnap

case studies to datasets that fit in memory.

MemSnap is designed with page-aligned data structures

in mind and causes write amplification with data structures

that use small key-value pairs. MemSnap flushes at a 4 KiB

page granularity regardless of how much data in the page is

actually dirty, incurring disk write amplification. MemSnap

also requires transactions to lock the dataset at a page gran-

ularity. Buffer caches already do this, but for systems like

key-value stores, changes are required to either use a single

per-page write lock for all key-value pairs in the same page,

potentially losing parallelism, or placing each key-value pair

in its own page, causing space amplification.

6 Evaluation
ImplementationMemSnap takes up 2.5 KSLOC of kernel

code for tracking pages, initiating the IOs and enforcing

COW on the pages being written out. We implement these

mechanisms on top of FreeBSD 12.3. We built MemSnap’s

storage system is 3 KSLOC with 1 KSLOC for radix trees

while the rest is for the object store’s logic.

We wrote 500 SLOC for SQLite, 400 SLOC for RocksDB,

and 1 KSLOC for PostgreSQL, porting each to MemSnap.

MemSnap makes redundant 7 KSLOC in SQLite, 40 KSLOC

in RocksDB, and 10 KSLOC in PostgreSQL.

In this section we analyze MemSnap’s performance and

show why it is faster than file-based persistence mecha-

nisms and Aurora’s checkpointing. First we characterize the

msnap_persist call and compare its performance against

fsync and Aurora’s region checkpointing. We then show

that MemSnap has major benefits for three real world case

studies: SQLite, RocksDB, and PostgreSQL. We present the

databases and the changes necessary to use MemSnap, and

evaluate their benefits in terms of performance and code

complexity.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Emil Tsalapatis, Ryan Hancock, Rakeeb Hossain, and Ali José Mashtizadeh

For all benchmarks we use a dual Intel Xeon Silver 4116

CPUs (Skylake-SP) running at 2.1 GHz with 96 GiB of mem-

ory. For storage, we use two Intel 900P PCIe SSDs striped

together in 64 KiB blocks.

Comparing Persistence APIsMemSnap persists data at

a lower latency than the file API and region checkpointing.

We compare msnap_persist against fsync and Aurora by

using them to persist writes with access patterns that we

see in our case studies. We test fsync under both the FFS

and ZFS file systems to show that fsync’s overheads are
consistent across file systems. FFS [27] uses soft updates [20]

and journaling for consistency, while ZFS uses copy-on-write.

We show that MemSnap has lower latency than Aurora’s

region checkpointing even though both checkpoint the same

amount of data.

Table 6 shows the latency of different persistence APIs for

sequential and random writes. The microbenchmark flushes

dirty data using msnap_persist, fsync, or direct disk IO.

Random write patterns are seen during database checkpoint-

ing. Sequential write patterns are prevalent during write

ahead logging and LSM-Tree writes. We also measure direct

IO to the striped disks with one outstanding IO.

We evaluate MemSnap with the random IO workload and

measure the synchronous and asynchronous persistence la-

tency. Asynchronous latency is the CPU time spent on reap-

plying page protections to each dirty page. Synchronous

latency is the total end-to-end time for persisting a trans-

action to the disk. We evaluate msnap_persist only with

random writes as it persists modifications to primary data

made in-place.

Table 6 shows that MemSnap outperforms both FFS and

ZFS in sequential and random workloads. This is due to

MemSnap’s optimized dirty page tracking and COW object

store, which translates random object updates into sequential

writes on disk. MemSnap’s random IO latency (sequential on

disk) outperforms our direct disk IO measurement for large

writes because having more outstanding IOs results in better

saturation of the disk’s throughput.

MemSnap vs. Aurora Figure 3 shows that MemSnap

is up to 60× faster than Aurora’s application checkpoints

and 7× faster than its region checkpoints. We show this

by synchronously persisting a randomly distributed dirty

set using MemSnap and Aurora’s application and region

checkpointing then measure the total latency of the call.

We keep all data in a single mapped region because region

checkpoints cannot handle dirty sets spread across multiple

mappings.

Region checkpointing provides data persistence like Mem-

Snap does, but uses object shadowing and collapsing to man-

age tracking the memory region. Aurora’s application check-

pointing overhead is an order of magnitude larger than re-

gion checkpointing because it must protect the entire address

space and has larger post-checkpoint cleanup operations that

Size Disk fsync (µs) fsync (µs) memsnap
(KB) (µs) Sequential Random Random (µs)

FFS|ZFS FFS|ZFS Sync.|Async.

4 17 70|64 156|232 34|6

8 18 79|71 252|371 36|6

16 22 89|80 464|706 41|6

32 31 111|134 828|1.4K 48|6

64 44 134|137 1.9K|2.9K 50|6

128 N/A 164|204 4.3K|7.8K 70|9

256 N/A 218|347 8.8K|11.7K 112|13

512 N/A 338|672 12.6K|15.6K 168|23

1024 N/A 581|937 17.9K|18.2K 297|36

2048 N/A 1.1K|1.7K 23.5K|20.2K 552|57

4096 N/A 1.9K|3.0K 33.7K|30.9K 1.0K|108

Table 6. The latency of persistence for fsync,
msnap_persist, and Aurora. We use fsync after writing

out a random or sequential series of 4 KiB pages and

compare its latency with that of msnap_persist for a

random IO pattern of the same size. MemSnap outperforms

disk writes for large write sizes because disk writes always

have one outstanding IO.

4KiB 64KiB 4MiB

IO Size

0

1 k

2 k

3 k

4 k

L
a
te
n
c
y
(𝜇
s
)

2063.0
2270.0

2973.0

236.0
366.0

1573.0

34.0 50.0

1044.0

Aurora (application)

Aurora (region)

MemSnap

Figure 3. Comparison of MemSnap with Aurora’s region

and application checkpointing. We measure the latency of a

synchronous persistence operation for randomly distributed

dirty sets of different sizes. MemSnap outperforms Aurora’s

region checkpointing by 7× for small IOs because it processes

individual pages.

add latency. MemSnap has 70% the latency of region check-

pointing as it avoids the overhead of system shadowing.

7 Case Studies
To show how MemSnap is a general purpose tool for per-

sistence we apply our API across three databases: SQLite,

RocksDB, and PostgreSQL. Databases are unique applica-

tions as they stress many edge cases of a persistence API

while demanding performance. These databases are chosen

as they represent different database designs. SQLite is a read

optimized single writer SQL database. RocksDB is a write

MemSnap µCheckpoints: A Data Single Level Store for Fearless Persistence ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

optimized key/value store that uses LSM-Trees. PostgreSQL

is a multi process system that uses multi version concurrency

control (MVCC) for highly concurrent transactions.

7.1 Case Study: SQLite
The MemSnap integration with SQLite shows how the Mem-

Snap mechanism speeds up database persistence without

changing the design or requiring major modifications to the

database. SQLite is a popular [7] database that is embed-

ded into larger applications to provide data persistence. We

present SQLite before and after adding MemSnap, show the

equivalence of the two versions, and compare performance.

SQLite’s architecture follows the general layered designed

outlined in Section 4. The database models each table as a

B-tree with a key-value pair for each row, and the database’s

upper layer translates SQL statements down to API calls on

the B-tree’s keys. The API includes locking and persistence.

For example, upper layers isolate transactions by locking

keys to prevent uncommitted values from being visible.

The SQLite storage engine implements the B-tree API and

moves data between the WAL and the database (DB) file. The

storage engine mmap()s both the DB file and the WAL into

memory. The WAL doubles as a cache for the DB file and

services reads and writes. The engine also includes a lock

manager for the WAL and DB file’s contents.

Baseline SQLite writes B-tree nodes dirtied during a trans-

action to theWAL, and calls fsync on it when the transaction
ends. When the WAL becomes large from all the logged data,

SQLite checkpoints by copying its contents into the DB file.

SQLite fsyncs both files, then truncates the WAL.

To integrate MemSnap with SQLite, we developed an

SQLite plugin that replaces file IO with MemSnap equiv-

alents. The plugin is loaded at runtime, requiring no modifi-

cation or recompilation of SQLite. The plugin is 347 SLOC

and replaces the standard 4.8 KSLOC Unix file module.

MemSnap SQLite persists changes directly in the DB file

and skips persisting the WAL with fsync. In our system,

the storage engine backs the WAL in volatile memory and

the database with a MemSnap persistent region. During a

commit we move the transaction’s dirty set from the WAL

to the persistent region, and flush with msnap_persist.
Our change retains the storage engine and lock manager’s

logic. We still use the “WAL” as a cache, and when we flush

the transaction data to the persistent region we reuse the

calls that baseline SQLite uses to flush the WAL to the DB

file during a checkpoint. To the upper layers of SQLite, the

MemSnap plugin semantically is identical to a checkpoint

occurring after every transaction. However, checkpointing

frequency only impacts performance and does not degrade

transaction semantics or crash consistency.

Our system satisfies all properties in Section 4:

1 We have moved the main database from a DB file to

a persistent region. The main database is already accessed

4 8
16 32 64

12
8
25
6
51
2

10
24

Transaction Size (KiB)

10
0

10
1

10
2

10
3

L
a
te
n
c
y
(m

s
)

MemSnap Baseline

(a) Random, Avg. Latency

4 8
16 32 64

12
8
25
6
51
2

10
24

Transaction Size (KiB)

10
0

10
1

10
2

L
a
te
n
c
y
(m

s
)

(b) Sequential, Avg. Latency

4 8
16 32 64

12
8
25
6
51
2

10
24

Transaction Size (KiB)

10
0

10
1

10
2

10
3

L
a
te
n
c
y
(m

s
)

(c) Random, 99
𝑡ℎ
% Latency

4 8
16 32 64

12
8
25
6
51
2

10
24

Transaction Size (KiB)

10
0

10
1

10
2

L
a
te
n
c
y
(m

s
)

(d) Sequential, 99𝑡ℎ% Latency

Figure 4. Performance of MemSnap vs the

WAL+Checkpoint baseline for transaction sizes from

4 KiB to 1 MiB. The actual IO done is larger than the

transaction size because of write amplification. The latency

for both configurations scales linearly with transaction size,

but MemSnap is faster both for average and tail latency

across all transaction sizes. MemSnap has a fixed per-4 KiB

page latency across all transaction sizes, while the baseline’s

latency rises for smaller sizes.

through memory-mapping, so this change does not affect

the rest of the code.

2 SQLite already stores data in database page-aligned

chunks, and locks them at the same granularity. SQLite thus

already prevents two transactions from dirtying the same

page. We configure the size of each database page to be 4 KiB,

to make SQLite lock data at the same granularity with which

MemSnap tracks the dirty set.

3 SQlite already uses the lock manager to uphold its

ACID guarantees and crash consistency. Our changes do not

affect the lock manager, so MemSnap’s µCheckpoints do not

include uncommitted modifications by other threads.

EvaluationWe first compare MemSnap to the baseline

by measuring the number and latency of persistence related

system calls made during the dbbench workload. dbbench
generates up to 1M keys with 128 byte values. Key/value

pairs are batched sequentially or randomly into write trans-

actions ranging from 4 KiB to 1 MiB in size until 2 million

total key value pair writes have been performed. Checkpoint-

ing is configured to occur every 4 MiB worth of dirty data

as is the default [10].

Table 7 shows the latency and number of system calls for

MemSnap versus the file API baseline. We show the average

call latency and total calls made for each system call over

several transaction sizes. SQLite makes one fsync call on

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Emil Tsalapatis, Ryan Hancock, Rakeeb Hossain, and Ali José Mashtizadeh

memsnap fsync write read
Transaction Size Latency Total Ops Latency Total Ops Latency Total Ops Latency Total Ops

Random IO
4 KiB 152.2 µs 63.1 K 1137.3 µs 67.4 K 6.7 µs 7584.1 K 2.9 µs 2846.8 K

64 KiB 1621.0 µs 3.9 K 10024.4 µs 6.2 K 6.7 µs 6703.2 K 2.9 µs 2729.7 K

1024 KiB 17521.8 µs 0.2 K 41521.7 µs 0.9 K 6.7 µs 4127.1 K 2.9 µs 2046.8 K

Sequential IO
4 KiB 51.0 µs 59.4 K 155.6 µs 63.5 K 6.7 µs 1174.7 K 3.1 µs 94.6 K

64 KiB 97.7 µs 3.5 K 471.4 µs 3.8 K 6.7 µs 247.3 K 2.9 µs 90.2 K

1024 KiB 564.8 µs 0.2 K 3429.1 µs 0.3 K 6.7 µs 176.1 K 2.8 µs 88.0 K

Table 7. The number and cost of persistence-related system calls for both MemSnap and the baseline. MemSnap only requires

the msnap_persist call that is both less frequent and cheaper than fsync. The baseline in contrast uses WAL-and-checkpoint

that generates a significant amount of file IO.

Baseline %CPU MemSnap %CPU

Random IO
userspace 1.58% userspace 10.51%

fsync 29.15% memsnap 9.31%

write 30.34% memsnap flush 8.57%

read 3.92% page faults 30.90%

Wall clock time 175s 35.4s
Sequential IO
userspace 24.63% userspace 60.34%

fsync 14.33% memsnap 3.15%

write 26.62% memsnap flush 2.74%

read 2.51% page faults 10.38%

Wall clock time 12.5s 7.2s
Table 8. CPU usage and total dbbench execution time for

MemSnap and the baseline. MemSnap runs 2× to 5× faster

than the baseline while doing a similar amount of work in

userspace.

1k 10k 100k 1M

Number of Records

0

20 k

40 k

60 k

80 k

100 k

T
o
ta
l
T
r
a
n
s
a
c
ti
o
n
s

Baseline MemSnap

Figure 5. TATP benchmark. The baseline slightly outper-

forms MemSnap for small database sizes by because of its

WAL index, but heavily degrades in performance for larger

databases.

every transaction that ranges from 4 KiB to 1 MiB in size,

and an fsync call on every checkpoint after 4 MiBs of writes.

The table shows that MemSnap does fewer and faster calls

than the file API, lowering the cost of persistence. The num-

ber of MemSnap calls is equal to the number of transactions,

while the number of fsync calls is equal to the number of

transactions and checkpoints made during the benchmark.

The number of checkpoints made by the baseline is larger

due to write amplification of the WAL. SQLite implements

the WAL such that when any block is dirtied through a write,

the block is appended to the WAL. This means every 128-

byte value written is amplified to a 1 KiB write into the WAL

resulting in more checkpoints. Every write to a block causes

a write to the WAL even during the same transaction.

We show the average call latency for different transaction

sizes in Table 7. Write amplification to the WAL causes the

total IO to exceed the transaction size and further increases

the performance benefit of MemSnap. MemSnap’s cost scales

linearly with the transaction size, with 64 KiB transactions

having 16× the cost of a 4 KiB transaction. fsync calls are on
average an order of magnitude slower compared toMemSnap

for 4 KiB transactions, because the average fsync latency is

skewed by checkpoint fsyncs.
Both systems use memcpy to update the in-memory data

and file IO is only ever done for the baseline. The write and

read calls have low latency as they are serviced from the

OS buffer cache, but are numerous and so add significant

latency. MemSnap does not do write/read system calls.

Figure 4 shows average and 99
𝑡ℎ

percentile latency. Mem-

Snap has 4 times lower latency with low variance, while the

baseline’s variance increases as smaller transactions incur

less latency while checkpointing latency remains constant

and skews the average. The performance gap is even larger

for random transactions. MemSnap does sequential IO even

for random in-memory writes, while the baseline’s IO pat-

terns are affected by the writes’ sequentiality. All configu-

rations are subject to write amplification as values are 128

bytes long, but pages and FS blocks are both 4 KiB.

MemSnap µCheckpoints: A Data Single Level Store for Fearless Persistence ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

CPUUsageMemSnap-based SQLite increases throughput

because it reduces kernel time. Table 8 shows the CPU usage

breakdown of the dbbench workload. The table shows that
MemSnap spends 10% of its CPU time in userspace for ran-

dom IO, and 60% for sequential. This higher ratio is because

aggregating the dirty page set into a µCheckpoint takes less

than 1% of total CPU time (i.e., memsnap).
MemSnap’s speedups over the baseline are due to cheaper

persistence-related calls in SQLite’s critical path. The base-

line spends 25% of its CPU time on writes to the WAL, and

15-30% of its CPU time on the fsync calls required for per-

sistence. MemSnap’s cost in contrast mainly stems from the

page faults required to track the dirty set, about 30% of CPU

time for random access and 10% for sequential due to locality.

TATP BenchmarkWe demonstrate MemSnap through-

put benefits using the TATP database workload [8]. TATP

is used by SQLite’s authors to evaluate its performance for

real-world database workloads [19]. These workloads have a

80% read, 20% write transaction mix and span across multiple

tables. All write transactions commit synchronously to the

disk. We run the benchmark for 60 seconds using different

database sizes (1 K to 1 M records as are typical [19]), and

measure the total transactions done.

MemSnap consistently outperforms the baseline with the

difference increasing for larger database sizes. MemSnap sees

a 23% reduction in throughput as it increases the database

size from 1 k to 1 M records, while the baseline system sees a

63% reduction. The baseline system’s fsync costs increases

with the resident size of the mapping and not just the dirty

set. This behavior is consistent across OSes including Linux

and FreeBSD. MemSnap’s overhead is independent of the

resident size of themapping and so its throughput stays more

consistent. Both systems lose throughput because larger

databases include userspace overheads, e.g, SQLite’s internal

B-Trees become slower because their height increases.

7.2 Case Study: RocksDB
The main challenge of integrating RocksDB with MemSnap

is its in-memory skip list data structure, which was not de-

signed to be written to the disk. This is in contrast to our

other workloads where MemSnap persists the data under the

same on-disk format as the original database. We optimize

the skip list for MemSnap and ensure crash consistency.

MemSnap replaces RocksDB’sWAL-and-checkpointmech-

anism. RocksDB distributes data between a WAL file, in-

memory skip lists called MemTables, and SSTable files. Put
calls in RocksDB write new KV pairs to the WAL, persist

them with fsync, then add them to the skip list. When the

WAL gets too large, RocksDB checkpoints the skip list by se-

rializing it into a new file. Our goal is to removeWAL logging

and serialization and use MemSnap-based persistence.

We remove the WAL and use MemSnap to directly persist

the skip list, merging both their functionality into a single

data structure. Skip lists are ordered singly linked lists where

each node holds one KV pair. Nodes have extra skip pointers
that skip ranges of keys, speeding up random searches.

To satisfy Property 1 , we move the skip list from volatile

memory to a persistent MemSnap region. We also add an

msnap_persist call at the end of the skip list’s Insert call

made by RocksDB’s Put. Our changes retain the persistence

semantics of the Put call as Insert happens after the WAL

logging and within the same critical section.

Changes to the skip list retain RocksDB’s transaction

semantics. The skip list’s own internal locking only pre-

serves its own integrity, not the database’s ACID guarantees.

RocksDB implements range queries and transactions on top

of RocksDB’s snapshot versioning and lock management

mechanisms respectively, and we do not modify either.

We adjust the skip list’s internal locking to prevent threads

from being able to overwrite unpersisted modifications, satis-

fying Property 3 . The skip list’s Insert operation updates

linked list pointers in existing nodes using compare-and-set

(CAS). To prevent an uncommitted node from being modified

before the msnap_persist call we replace the CAS operation
with a per-node spinlock. This introduces minimal perfor-

mance overhead, in the order of a few dozen cycles.

As an optimization, we do not persist skip pointers be-

cause we only need to guarantee the crash consistency of

the underlying linked list. For each write we then persist

only the new node and its previous in the list. Skip pointers

speed up searches, and act as an index on top of the linked

list structure. We can recreate this index after a crash by

traversing the restored linked list.

Finally, we adjust the size of each node to be compatible

with MemSnap’s page tracking and satisfy property 2 . We

adjust the node size to 4 KiB to align them with MemSnap’s

page tracking mechanism. This makes it possible to track

each KV pair separately using our dirty page tracking at the

cost of additional write amplification.

Crash Recovery Interrupted µCheckpoints are automati-

cally cleaned up after restoring. MemSnap-RocksDB recovers

after a crash by restoring the MemSnap region from the on-

disk state. The object store updates its data using COW, so

interrupted µCheckpoints cannot overwrite persisted data.

RocksDB creates a single µCheckpoint for each transac-

tion commit, so the on-disk data includes no uncommitted

writes. We use RocksDB’s WriteCommitted configuration

that writes data to the MemTable only when committing a

transaction, using a single MultiPut to write all changes.

To restore, the RocksDB instance retrieves the on-disk

regions in the object store and maps these regions to their

specified in-memory location to ensure that the linked list

pointers are valid. It then traverses the linked list nodes to

recompute skip pointers. The restored RocksDB skip list is

consistent and includes all data committed before the crash.

We run a test to ensure that in-memory transactions re-

main properly atomic, isolated, and crash consistent. The test

starts with an initialized database containing 100 k random

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Emil Tsalapatis, Ryan Hancock, Rakeeb Hossain, and Ali José Mashtizadeh

key-value pairs and running 20 threads. Each thread creates

a transaction that randomly selects 100 keys and increments

each of their values, and repeats 100 k times. We then verify

the consistency of the dataset by summing all values.

We re-run the above test to verify that the database is

crash consistent, by crashing with a kernel panic during the

test. We load the on-disk data to a new instance and verify

that the values sum up to the correct amount, by referencing

acknowledged transactions that occurred before the crash.

Effects of Removing the LSM Trees Our design re-

moves the on-disk LSM tree that RocksDB uses to tier data

on the disk, by placing all data in a single MemTable (i.e

skip list). This choice was made because the LSM tree’s main

advantage is automatic tiering for larger-than-memorywork-

loads that we do not consider in this work. Removing the

on-disk LSM tree has the advantages that it reduces applica-

tion complexity and removes the need for compaction.

MemSnap integration does not fundamentally require us-

ing a single MemTable or removing the LSM tree. Alternative

designs can periodically swap out MemTables to generate

multiple smaller on-disk regions and tier them into an LSM

tree in the same way that the baseline creates an LSM tree

out of SSTable files.

Evaluation We compare a MemSnap-RocksDB system

with a system that uses Aurora’s region checkpointing. The

Aurora system stores all MemTable data in a single mapping

and issues a checkpoint after each write. On a checkpoint

call Aurora stops all application threads and atomically cre-

ates an incremental checkpoint of the region, then resumes

all threads except for the caller and synchronously flushes

the data. We modify Aurora to synchronously persist region

checkpoints so that region checkpointing provides identical

guarantees to MemSnap and baseline RocksDB.

We evaluate MemSnap with RocksDB using the Meta’s

MixGraph workload. MixGraph replicates usage patterns

seen in large-scale deployments and is commonly used to

evaluate RocksDB [14]. The workload is composed of 84%

Get, 14% Put, and 3% Seek requests and represent queries

and updates to Facebook’s social media graph. For this work-

load RocksDB persists writes synchronously. We fill the data-

base with 20 M 48-byte keys - 100-byte value pairs (3 GiB).

Keys are chosen uniformly, while writes are chosen using a

generalized Pareto distribution. We run with 12 threads, and

measure total throughput, average and tail latency.

We benchmark our system using three different configu-

rations. The first uses MemSnap for persistence after every

write to the MemTable. The second uses the unmodified

RocksDB code that uses a WAL for single write persistence

and creates a new SSTable file every 64 MiB worth of writes.

The third configuration uses Aurora’s region checkpointing

which checkpoints after every write to the database.

Table 9 compares the overall performance of the three sys-

tems and shows how MemSnap’s low latency translates to

Metric

Configuration Kops Avg(µs) 99th(µs)

memsnap 420.7 138.9788 239.62

Baseline+WAL 388.0 162.7709 248.44

Aurora 91.8 751.9326 4.2K

Metrics

System Call Latency (µs) Total Count

memsnap 51.4 208.1K

fsync 63.1 190.4K

write 19.4 190.6K

checkpoint 204 88.6K

Table 9. RocksDB latency comparison between MemSnap

RocksDB, a WAL-based baseline, and Aurora’s region check-

pointing. MemSnap provides 3× lower latency than Aurora

as it persists data with a single call. MemSnap’s costs scale

down with the dirty set, unlike Aurora’s region checkpoints.

better total throughput. MemSnap has significantly lower la-

tency than the baseline system, both in the average and 99
𝑡ℎ

percentile. The lower latency directly translates to higher

overall throughput for the workload because persistence-

related overheads are the main bottleneck. The table also

demonstrates that Aurora’s region-based persistence has un-

acceptable overheads for multi threaded applications. Check-

pointing an address space region with Aurora reduces overall

throughput by 75% as region checkpointing includes a fixed-

cost overhead that does not scale down with the dirty set.

Table 9 explains the performance differences between

the three systems by measuring the number and latency

of persistence-related calls. Persistence-related calls make

up for themajority of end-to-end operation latency, while the

total number of operations done heavily correlates with the

overall throughput of the benchmark. MemSnap uses a single

msnap_persist call to persist the modified data, while the

baseline uses a write call immediately followed by an fsync,
and Aurora uses a checkpoint call. The msnap_persist call
has an average latency of 51 𝜇s compared to the cumulative

latency of write and fsync of 82.5 𝜇s. The fsync call is

costlier than msnap_persist because of its more complex

code path that includes traversing the buffer cache and initi-

ating the write in the file system.

Figure 10 shows MemSnap is 4× faster than Aurora’s

checkpoint. This is because the cost of region checkpoint-

ing scales with the size of thememory region and the cleanup

routines must run after the IO completes. These routines are

associated with Aurora’s “system shadowing” COW mech-

anism and are unavoidable. Aurora also only supports one

outstanding checkpoint at a time for each region resulting in

serializing calls from multiple threads even if their working

sets are independent. RocksDB avoids contention in Aurora

MemSnap µCheckpoints: A Data Single Level Store for Fearless Persistence ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Time (µs)

Operation MemSnap Aurora

Waiting for Calls N/A 26.7

Applying COW 5.1 79.8

Flush IO 46.3 27.9

Removing COW N/A 91.7

Total 51.4 208.1
Table 10. Breakdown of MemSnap vs Aurora’s persistence

cost. Aurora’s region COW tracking causes 80% of its total

latency. MemSnap’s page tracking avoids these overheads.

MemSnap also avoids contention between concurrent per-

sistence operations compared to Aurora.

ff
s

ff
s
+
m

ff
s
+
m
,b
d

m
e
m
s
n
a
p

0

2 k

4 k

T
x
n
/s

(a) Transactions per Second

ff
s

ff
s
+
m

ff
s
+
m
,b
d

m
e
m
s
n
a
p

0

5

10

L
a
te
n
c
y
(m

s
)

(b) Latency (ms)

ff
s

ff
s
+
m

ff
s
+
m
,b
d

m
e
m
s
n
a
p

0

200 k

400 k

600 k

K
iB
/s

(c)Write Throughput

ff
s

ff
s
+
m

ff
s
+
m
,b
d

m
e
m
s
n
a
p

0

5 k

10 k

15 k

IO
P
/s

(d) IO’s per Second

Figure 6. Performance of four variations of PostgreSQL

running a TPC-C benchmark: Baseline FFS, FFS with mmap’d
files, FFS with mmap and also directly writing data instead

of using the buffer cache (i.e., bufdirect, labeled "bd"), and

MemSnap.

by also taking advantage of flat-combining but still experi-

ences an average of 26.7 µs in stall time per checkpoint.

7.3 Case Study: PostgreSQL
We evaluate the effectiveness of MemSnap with PostgreSQL,

a widely used database with over 25 years of development.

PostgreSQL is highly configurable and optimized and is

unique among our case studies as it is a multiprocess ap-

plication with a complex buffer cache.

The buffer cache is a shared memory region, which con-

sists of 8 KiB blocks that are associated with a file and offset.

Each buffer is described by a buffer descriptor, which holds

metadata and a logical pointer to the file block. The buffer

cache manager persists buffers through an OS agnostic file

interface that uses OS-specific persistence calls (e.g., fsync).
For MemSnap integration we must convert the underlying

file interface to MemSnap regions, and modify the buffer

cache to point directly to these regions. This removes the

need for PostgreSQL to first write to the WAL and stage

writes in its volatile buffer cache region.

We now show the changes required for the storage en-

gine to satisfy MemSnap’s three properties, and how these

changes retain the ACID guarantees of PostgreSQL.

1 To uphold the first property we replace files with Mem-

Snap regions. We modify PostgreSQL’s file module and file

data structure to include a MemSnap region. We further mod-

ify read and write to perform memory copies to the region

versus using file related system calls. We then change Post-

greSQL’s buffer cache to directly point to these new memory

regions instead of using its volatile shared memory.

2 Page isolation between writes is satisfied within Post-

greSQL due to locking semantics and PostgreSQL’s use of

MVCC semantics. MVCC means PostgreSQL never directly

modifies values and instead appends changes to the buffer.

Changes that are a part of an uncommitted transaction can be

flushed without risking data corruption, allowing a transac-

tion to commit other transactions’ writes safely. This means

MemSnap can persist buffer pages even if another transac-

tion thread is currently still working on them.

3 PostgreSQL upholds the key modification property due

to the sameMVCCmechanism that upholds property 2 . Key

data is never directly modified by a transaction and always

appended, so a transactions’ uncommitted writes cannot be

overwritten by subsequent transactions.

We disable the appending of data to the WAL, by dis-

abling the "full page writes" configuration option within

PostgreSQL. As described in Section 3 our on-disk COW

mechanism allows us to safely write directly to MemSnap

regions, which represent table data, to ensure crash consis-

tency in the event of a power failure. In case of a crash we

use the last persisted copy of the region in the store.

Recovery PostgreSQL starts by fetching files required to

initialize the database. Our changes modify the file module

to instead use MemSnap related calls. MemSnap persisted

regions are named after the same path used by PostgreSQL.

After restoring, MemSnap-PostgreSQL maps all MemSnap

regions to their original fixed memory address. PostgreSQL

then runs its existing recovery logic, since the difference

between regions and files is transparent to the upper layers.

Evaluation We evaluate PostgreSQL by using the sys-

bench TPC-C benchmark, a 50% write, online transaction

processing (OLTP) benchmark. The benchmark is scaled to

150 warehouses (around 30 GiB). The TPC-C benchmark was

run for 2 minutes, run with 24 connections, and all processes

were pinned to the first CPU socket to reduce NUMA effects.

The sysbench threads were pinned to the other socket.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Emil Tsalapatis, Ryan Hancock, Rakeeb Hossain, and Ali José Mashtizadeh

We configured PostgreSQL using a performance tuning

guide [5] and used a 48 GiB buffer cache. Huge pages are

disabled, as this resulted in a performance decrease, likely

due to the random write workload of TPCC [2].

To better show MemSnap’s performance improvements,

we demonstrate that modifying PostgreSQL’s data in place

using existing OS APIs for persistence incurs significant per-

formance penalties. We do this with two additional systems:

the first ("ffs-mmap"), which directly maps table data and sec-

ond ("ffs-mmap-bufdirect"), which uses directlymapped table

data and allows for the direct modification of the data over

using buffer pages. Through these intermediate variations

we show data that corroborates the historical observation

that directly mapping data incurs performance penalties [17],

in contrast to a buffer cache.

Our last system replaces all mmap persistence API calls with
MemSnap calls ("ffs-mmap-bufdirect"). We see in Figure 6

that rather then incurring a 25% decrease in transactions per

second, we see a 1.5% increase. This can be attributed to an

overall reduced write throughput and the lower latency of

MemSnap.

As seen in Figure 6, the overall disk throughput as reported

by disk statistics during the running of the benchmark was

reduced by 80%when compared to the baseline for MemSnap.

This reduction is due to two reasons: First, the block size by

default in PostgreSQL is 8 KiB, resulting in larger amounts of

write amplification for smaller writes to the WAL and when

checkpointing. Second, checkpointing flushes of buffers in

the buffer cache are no longer required as MemSnap modi-

fies data in place further reducing write amplification. For

example, a 4 KiB dirty page within standard PostgreSQL can

result in 16 KiBs of writes. The 16 KiBs comes from the block

being written to the WAL and then to the file directly.

There is an increase in overall IO per second by 26% for

MemSnap. This is because MemSnap requires creating an IO

for every table object modified during every transaction. The

baseline aggregates writes into one IO to the WAL. Buffer

flushes occur more rarely.

A major advantage MemSnap brings to PostgreSQL is a

simplification of the storage stack. For example, PostgreSQL’s

buffer/file subsystems account for over 10 KSLOC not includ-

ing the hundreds of various call sites, and logic within the

other subsystems. Furthermore, data is no longer managed

in four separate forms: the userspace buffer cache, the kernel

buffer cache, theWAL, and all file objects. Rather, the storage

stack can be collapsed into in memory versions of tables with

serialization points at transaction commits, greatly reducing

code and likelihood of bugs.

Furthermore, the MemSnap system is the bottom end of

what is achievable with better kernel supplied virtual mem-

ory abstractions. Further optimizations would require signif-

icant engineering effort as PostgreSQL is a highly complex

system, with a storage backend of 600 KSLOC.

An example is the transition states required by PostgreSQL

to notify users when a buffer is currently being read in. These

states and surrounding policy is no longer required as paging

itself by the OS is able to perform this task transparently.

8 Related Work
Checkpointing systems like Remus [18] use continuous dif-

ferential checkpointing for transparent fault tolerance of

VMs. Project PBerry [13] eliminates the overheads of page-

level dirty set tracking and can benefit many checkpointing

systems but requires specialized hardware.

File system extensions [22–24, 35, 38, 42, 46, 49] extend

file semantics or extend buffer cache usability, however are

designed solely within the storage subsystems. Other sys-

tems focus solely on improving virtual memory systems or

paging mechanisms [11, 29, 32, 33, 43].

Numerous works [21, 28, 34, 36, 47] attempt to eliminate

persistence bugs by reducing the complexity associated with

transactional systems and databases. These works demon-

strate the difficulty of building persistence as an application

developer, and motivate our work on MemSnap.

Some systems remove the overheads of persistence by

delaying the externalization of side effects until commit

time [15, 30, 31]. Rethink the sync [31] uses this to speed

up operations like file moves that require multiple commit

points. These techniques are used in SLSes to gain through-

put at the cost of extra operation latency.

Recent key-value stores have novel architectures aimed

towards high throughput, random access-friendly SSDs. The

Kvell KV store [25] uses a shared-nothing architecture and

avoids sorting data on disk to minimize CPU usage and maxi-

mize throughput. Kvell+ [26] expands this system to optimize

long-lived operations like scans. SplinterDB [16] minimizes

the CPU and IO write amplification costs of compaction for

small keys using STB
ε
trees to reduce writes during com-

paction. MemSnap is compatible with these systems as it only

changes applications’ persistence-related logic and leaves

operations like range scans and compactions unmodified.

9 Conclusion
In this paper we presented MemSnap, a system for efficient

persistence using an architecture inspired by single level

stores. MemSnap provides clear persistence semantics, al-

lowing users to directlymodify their main dataset inmemory,

reducing code complexity while outperforming both WAL-

and-checkpoint and application checkpointing techniques.

We introduce our unified COW mechanism, which is nec-

essary to perform atomic µCheckpoints at sub-millisecond

latency. Our experiments show that MemSnap has a 14%

overhead over direct disk IO, compared to file APIs that

are 43× slower. We also show speed ups in databases like

RocksDB of 8.5% and PostgreSQL of 1.5%, while reducing

code complexity by up to 40%.

MemSnap µCheckpoints: A Data Single Level Store for Fearless Persistence ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

A Artifact Appendix
A.1 Abstract
The artifact contains the MemSnap code and the benchmarks

presented in this paper. The artifact includes modified ver-

sions of RocksDB and PostgreSQL, and a SQLite module

to be used with an unmodified SQLite codebase. The Mem-

Snap code runs on any hardware that can run a FreeBSD

12.3 instance, and the benchmarks assume low-latency SSD

storage. The artifact contains the MemSnap kernel module,

configuration scripts to set up and run the benchmarks, and

graphing scripts to reproduce the paper tables and figures.

A.2 Artifact Checklist (Meta-Information)
• Compilation: LLVM C and C++ compilers

• Run-time environment: FreeBSD 12.3

• Hardware: Dual Intel Xeon Silver 4116 CPUs (Skylake-SP)

2.1 GHz, 96 GiB of memory. Two Intel 900P PCIe SSDs.

• Output: Stored in data directories in each database. Output

is PNG files or LaTeX tables printed to the command line.

• Experiments: File systemmicrobenchmarks, SQLite dbbench

and TATP, RocksDB dbbench, Postgres TPC-C.

• Howmuch disk space required (approximately)?: 50GiB
for root, 96 GiB for data

• How much time is needed to prepare workflow (ap-
proximately)?: Setting up the FreeBSD 12.3 instance and

compiling the benchmarks: 2 hours

• How much time is needed to complete experiments
(approximately)?:Microbenchmarks (10 minutes), SQLite

(2 hours), RocksDB (30 minutes), Postgres (5 hours)

• Publicly available?: On Zenodo. A development version is

available on https://www.github.com/etsal/memsnap-artifact.
• Code licenses (if publicly available)?: BSD 3-Clause

A.3 Description
A.3.1 How to access. The artifact can be accessed on Zen-

odo (https://doi.org/10.5281/zenodo.10864510).

A.3.2 Software dependencies. FreeBSD 12.3, SQLite 3.41.

A.4 Installation, Experiment Worklow
Download the repository from Github and follow the in-

structions outlined in the README. The README provides

a walkthrough on how to set up the system, generate the

numbers, and reproduce the graphs.

A.5 Evaluation and expected results
The supplied scripts within the provided repository can be

used to fully regenerate all graphs and figures in the paper.

References
[1] PostgreSQL’s fsync() suprise. https://lwn.net/Articles/752063/, April

2018.

[2] PostgreSQL and Huge Pages. https://wiki.postgresql.org/images/7/7d/
PostgreSQL_and_Huge_pages_-_PGConf.2019.pdf, 2019.

[3] PostgreSQL’s fsync() surprise. https://lwn.net/Articles/752063, January
2021.

[4] bcachefs: The COW filesystem for Linux that won’t eat your data.

https://www.sqlite.org/wal.html, August 2023.
[5] Chapter 14. Performance Tips. https://www.postgresql.org/docs/

current/performance-tips.html, August 2023.
[6] RocksDB | A persistent key-value store. https://www.rocksdb.org,

April 2023.

[7] SQLite: Most Widely Deployed and Used Database Engine. https:
//www.sqlite.org/mostdeployed.html, August 2023.

[8] TATP Benchmark. https://tatpbenchmark.sourceforge.net/TATP_
Description.pdf, August 2023.

[9] Welcome to BTRFS Documentation. https://btrfs.readthedocs.io, Au-
gust 2023.

[10] Write-Ahead Logging. https://www.sqlite.org/wal.html, August 2023.
[11] Chloe Alverti, Vasileios Karakostas, Nikhita Kunati, Georgios Goumas,

and Michael Swift. Daxvm: Stressing the limits of memory as a file

interface. In 2022 55th IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 369–387, 2022. https://doi.org/10.1109/
MICRO56248.2022.00037.

[12] Jeff Bonwick, Matt Ahrens, Val Henson, Mark Maybee, and Mark

Shellenbaum. The Zettabyte File System. 215, 2003.

[13] Irina Calciu, Ivan Puddu, Aasheesh Kolli, Andreas Nowatzyk, Jayneel

Gandhi, Onur Mutlu, and Pratap Subrahmanyam. Project pberry:

Fpga acceleration for remote memory. In Proceedings of the Workshop
on Hot Topics in Operating Systems, HotOS ’19, page 127–135, New

York, NY, USA, 2019. Association for Computing Machinery. https:
//doi.org/10.1145/3317550.3321424.

[14] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. Charac-

terizing, modeling, and benchmarking RocksDB Key-Value workloads

at facebook. In 18th USENIX Conference on File and Storage Technologies
(FAST 20), pages 209–223, Santa Clara, CA, February 2020. USENIX

Association. https://dlnext.acm.org/doi/abs/10.5555/3386691.3386712.
[15] Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Optimistic crash

consistency. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, page 228–243, New York, NY,

USA, 2013. Association for Computing Machinery. https://doi.org/10.
1145/2517349.2522726.

[16] Alexander Conway, Abhishek Gupta, Vijay Chidambaram, Martin

Farach-Colton, Richard Spillane, Amy Tai, and Rob Johnson. Splin-

terDB: Closing the bandwidth gap for NVMe Key-Value stores. In 2020
USENIX Annual Technical Conference (USENIX ATC 20), pages 49–63.
USENIX Association, July 2020.

[17] Andrew Crotty, Viktor Leis, and Andrew Pavlo. Are you sure you

want to use mmap in your database management system. In CIDR
2022, Conference on Innovative Data Systems Research, 2022.

[18] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm

Hutchinson, and Andrew Warfield. Remus: High availability via

asynchronous virtual machine replication. In Proceedings of the
5th USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI’08, page 161–174, USA, 2008. USENIX Association.

https://dl.acm.org/doi/10.5555/1387589.1387601.
[19] Kevin P. Gaffney, Martin Prammer, Larry Brasfield, D. Richard Hipp,

Dan Kennedy, and Jignesh M. Patel. Sqlite: Past, present, and future.

Proc. VLDB Endow., 15(12):3535–3547, aug 2022.
[20] Gregory R. Ganger, Marshall Kirk McKusick, Craig A. N. Soules, and

Yale N. Patt. Soft updates: A solution to the metadata update problem

in file systems. ACM Trans. Comput. Syst., 18(2):127–153, may 2000.

https://www.github.com/etsal/memsnap-artifact
https://doi.org/10.5281/zenodo.10864510
https://lwn.net/Articles/752063/
https://wiki.postgresql.org/images/7/7d/PostgreSQL_and_Huge_pages_-_PGConf.2019.pdf
https://wiki.postgresql.org/images/7/7d/PostgreSQL_and_Huge_pages_-_PGConf.2019.pdf
https://lwn.net/Articles/752063
https://www.sqlite.org/wal.html
https://www.postgresql.org/docs/current/performance-tips.html
https://www.postgresql.org/docs/current/performance-tips.html
https://www.rocksdb.org
https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/mostdeployed.html
https://tatpbenchmark.sourceforge.net/TATP_Description.pdf
https://tatpbenchmark.sourceforge.net/TATP_Description.pdf
https://btrfs.readthedocs.io
https://www.sqlite.org/wal.html
https://doi.org/10.1109/MICRO56248.2022.00037
https://doi.org/10.1109/MICRO56248.2022.00037
https://doi.org/10.1145/3317550.3321424
https://doi.org/10.1145/3317550.3321424
https://dlnext.acm.org/doi/abs/10.5555/3386691.3386712
https://doi.org/10.1145/2517349.2522726
https://doi.org/10.1145/2517349.2522726
https://dl.acm.org/doi/10.5555/1387589.1387601

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Emil Tsalapatis, Ryan Hancock, Rakeeb Hossain, and Ali José Mashtizadeh

https://doi.org/10.1145/350853.350863.
[21] Yige Hu, Zhiting Zhu, Ian Neal, Youngjin Kwon, Tianyu Cheng, Vijay

Chidambaram, and Emmett Witchel. Txfs: Leveraging file-system

crash consistency to provide acid transactions. ACM Trans. Storage,
15(2), may 2019. https://doi.org/10.1145/3318159.

[22] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John

Esmet, Yizheng Jiao, Ankur Mittal, Prashant Pandey, Phaneendra

Reddy, Leif Walsh, Michael A. Bender, Martin Farach-Colton, Rob

Johnson, Bradley C. Kuszmaul, and Donald E. Porter. Betrfs: Write-

optimization in a kernel file system. ACM Trans. Storage, 11(4), nov
2015. https://doi.org/10.1145/2798729.

[23] Dong Hyun Kang, Changwoo Min, Sang-Won Lee, and Young Ik Eom.

Making application-level crash consistency practical on flash storage.

IEEE Transactions on Parallel and Distributed Systems, 31(5):1009–1020,
2020. https://doi.org/10.1109/TPDS.2019.2959305.

[24] Viktor Leis, Adnan Alhomssi, Tobias Ziegler, Yannick Loeck, and Chris-

tian Dietrich. Virtual-memory assisted buffer management. Proc. ACM
Manag. Data, 1(1), may 2023. https://doi.org/10.1145/3588687.

[25] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel.

Kvell: the design and implementation of a fast persistent key-value

store. In Proceedings of the 27th ACM Symposium on Operating Sys-
tems Principles, SOSP ’19, page 447–461, New York, NY, USA, 2019.

Association for Computing Machinery.

[26] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel.

Kvell+: Snapshot isolation without snapshots. In 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 20),
pages 425–441. USENIX Association, November 2020.

[27] Marshall K. McKusick, William N. Joy, Samuel J. Leffler, and Robert S.

Fabry. A fast file system for unix. ACM Trans. Comput. Syst.,
2(3):181–197, aug 1984. https://doi.org/10.1145/989.990.

[28] Changwoo Min, Woon-Hak Kang, Taesoo Kim, Sang-Won Lee, and

Young Ik Eom. Lightweight application-level crash consistency on

transactional flash storage. In Proceedings of the 2015 USENIX Confer-
ence on Usenix Annual Technical Conference, USENIX ATC ’15, page

221–234, USA, 2015. USENIX Association. https://dl.acm.org/doi/10.
5555/2813767.2813784.

[29] Juan Navarro, Sitararn Iyer, Peter Druschel, and Alan Cox. Practi-

cal, transparent operating system support for superpages. SIGOPS
Oper. Syst. Rev., 36(SI):89–104, dec 2003. https://doi.org/10.1145/844128.
844138.

[30] Edmund B. Nightingale, Daniel Peek, Peter M. Chen, and Jason Flinn.

Parallelizing security checks on commodity hardware. In Proceed-
ings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XIII, page
308–318, New York, NY, USA, 2008. Association for Computing Ma-

chinery. https://doi.org/10.1145/1346281.1346321.
[31] Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and

Jason Flinn. Rethink the sync. ACM Trans. Comput. Syst., 26(3), sep
2008. https://doi.org/10.1145/1394441.1394442.

[32] Anastasios Papagiannis, Giorgos Saloustros, Pilar González-Férez, and

Angelos Bilas. An efficient memory-mapped key-value store for flash

storage. In Proceedings of the ACM Symposium on Cloud Computing,
SoCC ’18, page 490–502, New York, NY, USA, 2018. Association for

Computing Machinery. https://doi.org/10.1145/3267809.3267824.
[33] Anastasios Papagiannis, Giorgos Xanthakis, Giorgos Saloustros, Mano-

lis Marazakis, and Angelos Bilas. Optimizing memory-mapped i/o

for fast storage devices. In Proceedings of the 2020 USENIX Confer-
ence on Usenix Annual Technical Conference, USENIX ATC’20, USA,

2020. USENIXAssociation. https://dl.acm.org/doi/abs/10.5555/3489146.
3489202.

[34] Daejun Park and Dongkun Shin. Stackable transactional file system

using kernel-level wal. IEEE Access, 10:110088–110099, 2022. https:
//doi.org/10.1109/ACCESS.2022.3214521.

[35] Stan Park, Terence Kelly, and Kai Shen. Failure-atomic msync(): A sim-

ple and efficientmechanism for preserving the integrity of durable data.

In Proceedings of the 8th ACM European Conference on Computer Sys-
tems, EuroSys ’13, page 225–238, New York, NY, USA, 2013. Association

for Computing Machinery. https://doi.org/10.1145/2465351.2465374.
[36] Thanumalayan Sankaranarayana Pillai, Ramnatthan Alagappan,

Lanyue Lu, Vijay Chidambaram, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. Application crash consistency and per-

formance with ccfs. ACM Trans. Storage, 13(3), sep 2017. https:
//doi.org/10.1145/3119897.

[37] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-

natthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. All file systems are not created equal:

On the complexity of crafting crash-consistent applications. In Pro-
ceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation, OSDI’14, page 433–448, USA, 2014. USENIX As-

sociation. https://dl.acm.org/doi/10.5555/2685048.2685082.
[38] Donald E. Porter, Owen S. Hofmann, Christopher J. Rossbach, Alexan-

der Benn, and Emmett Witchel. Operating system transactions. In

Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles, SOSP ’09, page 161–176, New York, NY, USA, 2009. Asso-

ciation for Computing Machinery. https://doi.org/10.1145/1629575.
1629591.

[39] Anthony Rebello, Yuvraj Patel, Ramnatthan Alagappan, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Can applications

recover from fsync failures? ACM Trans. Storage, 17(2), jun 2021.

https://doi.org/10.1145/3450338.
[40] Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The linux b-tree

filesystem. ACM Trans. Storage, 9(3), aug 2013.
[41] Jonathan S. Shapiro and Jonathan Adams. Design evolution of the eros

single-level store. In Proceedings of the General Track of the Annual
Conference on USENIX Annual Technical Conference, ATEC ’02, page

59–72, USA, 2002. USENIX Association. https://dl.acm.org/doi/10.5555/
647057.713855.

[42] Kai Shen, Stan Park, and Meng Zhu. Journaling of journal is (almost)

free. In Proceedings of the 12th USENIX Conference on File and Storage
Technologies, FAST’14, page 287–293, USA, 2014. USENIX Association.

https://dl.acm.org/doi/10.5555/2591305.2591333.
[43] Dimitrios Skarlatos, Apostolos Kokolis, Tianyin Xu, and Josep Torrel-

las. Elastic cuckoo page tables: Rethinking virtual memory transla-

tion for parallelism. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’20, page 1093–1108, New York, NY, USA,

2020. Association for Computing Machinery. https://doi.org/10.1145/
3373376.3378493.

[44] Emil Tsalapatis, Ryan Hancock, Tavian Barnes, and Ali José Mashti-

zadeh. The aurora operating system: Revisiting the single level store.

In Proceedings of the Workshop on Hot Topics in Operating Systems,
HotOS ’21, page 136–143, New York, NY, USA, 2021. Association for

Computing Machinery. https://doi.org/10.1145/3458336.3465285.
[45] Emil Tsalapatis, Ryan Hancock, Tavian Barnes, and Ali José Mashti-

zadeh. The aurora single level store operating system. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles,
SOSP ’21, page 788–803, New York, NY, USA, 2021. Association for

Computing Machinery. https://doi.org/10.1145/3477132.3483563.
[46] Rajat Verma, Anton Ajay Mendez, Stan Park, Sandya Mannarswamy,

Terence Kelly, and Charles B. Morrey. Failure-atomic updates of appli-

cation data in a linux file system. In Proceedings of the 13th USENIX Con-
ference on File and Storage Technologies, FAST’15, page 203–211, USA,
2015. USENIX Association. https://dl.acm.org/doi/10.5555/2750482.
2750498.

[47] Youjip Won, Jaemin Jung, Gyeongyeol Choi, Joontaek Oh, Seongbae

Son, Jooyoung Hwang, and Sangyeun Cho. Barrier-enabled io stack

for flash storage. In Proceedings of the 16th USENIX Conference on File

https://doi.org/10.1145/350853.350863
https://doi.org/10.1145/3318159
https://doi.org/10.1145/2798729
https://doi.org/10.1109/TPDS.2019.2959305
https://doi.org/10.1145/3588687
https://doi.org/10.1145/989.990
https://dl.acm.org/doi/10.5555/2813767.2813784
https://dl.acm.org/doi/10.5555/2813767.2813784
https://doi.org/10.1145/844128.844138
https://doi.org/10.1145/844128.844138
https://doi.org/10.1145/1346281.1346321
https://doi.org/10.1145/1394441.1394442
https://doi.org/10.1145/3267809.3267824
https://dl.acm.org/doi/abs/10.5555/3489146.3489202
https://dl.acm.org/doi/abs/10.5555/3489146.3489202
https://doi.org/10.1109/ACCESS.2022.3214521
https://doi.org/10.1109/ACCESS.2022.3214521
https://doi.org/10.1145/2465351.2465374
https://doi.org/10.1145/3119897
https://doi.org/10.1145/3119897
https://dl.acm.org/doi/10.5555/2685048.2685082
https://doi.org/10.1145/1629575.1629591
https://doi.org/10.1145/1629575.1629591
https://doi.org/10.1145/3450338
https://dl.acm.org/doi/10.5555/647057.713855
https://dl.acm.org/doi/10.5555/647057.713855
https://dl.acm.org/doi/10.5555/2591305.2591333
https://doi.org/10.1145/3373376.3378493
https://doi.org/10.1145/3373376.3378493
https://doi.org/10.1145/3458336.3465285
https://doi.org/10.1145/3477132.3483563
https://dl.acm.org/doi/10.5555/2750482.2750498
https://dl.acm.org/doi/10.5555/2750482.2750498

MemSnap µCheckpoints: A Data Single Level Store for Fearless Persistence ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

and Storage Technologies, FAST’18, page 211–226, USA, 2018. USENIX
Association. https://dl.acm.org/doi/10.5555/3189759.3189779.

[48] Fangnuo Wu, Mingkai Dong, Gequan Mo, and Haibo Chen. Treesls:

A whole-system persistent microkernel with tree-structured state

checkpoint on nvm. In 29th ACM Symposium on Operating Systems
Principles (SOSP 23). USENIX Association, 2023.

[49] Yang Zhan, Alex Conway, Yizheng Jiao, Nirjhar Mukherjee, Ian Groom-

bridge, Michael A. Bender, Martin Farach-Colton, William Jannen, Rob

Johnson, Donald E. Porter, and Jun Yuan. Copy-on-abundant-write

for nimble file system clones. ACM Trans. Storage, 17(1), jan 2021.

https://doi.org/10.1145/3423495.
[50] Mai Zheng, Joseph Tucek, Dachuan Huang, Feng Qin, Mark Lillib-

ridge, Elizabeth S. Yang, Bill W. Zhao, and Shashank Singh. Torturing

databases for fun and profit. In Proceedings of the 11th USENIX Confer-
ence on Operating Systems Design and Implementation, OSDI’14, page
449–464, USA, 2014. USENIX Association. https://dl.acm.org/doi/10.
5555/2685048.2685083.

https://dl.acm.org/doi/10.5555/3189759.3189779
https://doi.org/10.1145/3423495
https://dl.acm.org/doi/10.5555/2685048.2685083
https://dl.acm.org/doi/10.5555/2685048.2685083

	Abstract
	1 Introduction
	2 Motivation
	3 Design
	4 MemSnap-based Crash Consistency
	5 Scope and Limitations
	6 Evaluation
	7 Case Studies
	7.1 Case Study: SQLite
	7.2 Case Study: RocksDB
	7.3 Case Study: PostgreSQL

	8 Related Work
	9 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Checklist (Meta-Information)
	A.3 Description
	A.4 Installation, Experiment Worklow
	A.5 Evaluation and expected results

	References

