
Technical Report 3002
Rev. C 3/95

File System Design
for an NFS
File Server Appliance

by
Dave Hitz, James Lau, and Michael Malcolm
NetworkAppliance

Presented January 19, 1994
USENIX Winter 1994 — San Francisco, California
Copyright © 1994 The USENIX Association. Reproduced by permission.

2 File System Design for An NFS File Server Appliance - Rev. C 3/95

© 1995 Network Appliance Corporation-Printed in USA.
319 North Bemardo Avenue, Mountain View, CA 94043

All rights reserved. No part of this publication covered by copyright may be reproduced in
any form or by any means-graphic, electronic or mechanical, including photocopying,
recording, taping, or storage in an electronic retrieval system-without prior written
permission of the copyright owner.

Network Appliance reserves the right to change any products described herein at any time,
and without notice. Network Appliance assumes no responsibility or liability arising
from the use of products described herein, except as expressly agreed to in writing by
Network Appliance. The use and purchase of this product do not convey a license user any
patent rights, trademark rights, or any other intellectual property right of Network
Appliance.

The product described in this publication may be protected by one or more U.S. patents,
foreign patents, and/or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical
Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR
52-227-19 (June 1987).

Trademark Acknowledgment

FAServer, WAFL, and Snapshot are trademarks of Network Appliance. SunOS, NFS and
PC-NFS are registered trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.
Ethernet is a registered trademark of Xerox Corporation.
Intel 486 is a registered trademark of Intel Corporation.

All other products or services mentioned in this document are identified by the trademarks,
service marks, or product names as designated by the companies who market these
products. Inquiries concerning such trademarks should be made directly to those
companies.

File System Design for An NFS File Server Appliance - Rev. C 3/95 3

Table of Contents

Abstract...4

1. Introduction...5

2. Introduction To Snapshots..6
2.1. User Access to Snapshots..6
2.2. Snapshot Administration ..7

3. WAFL Implementation...8
3.1. Overview ..8
3.2. Meta-Data Lives in Files ...8
3.3. Tree of Blocks..9
3.4. Snapshots...10
3.5. File System Consistency and Non-Volatile RAM12
3.6. Write Allocation ...14

4. Snapshot Data Structures And Algorithms16
4.1. The Block-Map File ...16
4.2. Creating a Snapshot..17

5. Performance ...19

6. Conclusion.. 20

Bibliography.. 22

Biographies.. 23

4 File System Design for An NFS File Server Appliance - Rev. C 3/95

Abstract
Network Appliance recently began shipping a new kind of network server called an
NFS file server appliance, which is a dedicated server whose sole function is to provide
NFS file service. The file system requirements for an NFS appliance are different from
those for a general-purpose UNIX system, both because an NFS appliance must be
optimized for network file access and because an appliance must be easy to use.

This paper describes WAFL (Write Anywhere File Layout), which is a file system
designed specifically to work in an NFS appliance. The primary focus is on the
algorithms and data structures that WAFL uses to implement Snapshots™, which are
read-only clones of the active file system. WAFL uses a copy-on-write technique to
minimize the disk space that Snapshots consume. This paper also describes how WAFL
uses Snapshots to eliminate the need for file system consistency checking after an
unclean shutdown.

File System Design for An NFS File Server Appliance - Rev. C 3/95 5

1. Introduction
An appliance is a device designed to perform a particular function. A recent trend in
networking has been to provide common services using appliances instead of general-
purpose computers. For instance, special-purpose routers from companies like Cisco
and Bay Networks have almost entirely replaced general-purpose computers for packet
routing, even though general purpose computers originally handled all routing. Other
examples of network appliances include network terminal concentrators, network FAX
servers, and network printers.

A new type of network appliance is the NFS file server appliance. The requirements
for a file system operating in an NFS appliance are different from those for a general
purpose file system: NFS access patterns are different from local access patterns, and
the special-purpose nature of an appliance also affects the design.

WAFL (Write Anywhere File Layout) is the file system used in Network Appliance
Corporation's FAServer™ NFS appliance. WAFL was designed to meet four primary
requirements:

1. It should provide fast NFS service.
2. It should support large file systems (tens of GB) that grow dynamically as

disks are added.
3. It should provide high performance while supporting RAID (Redundant Array

of Independent Disks).
4. It should restart quickly, even after an unclean shutdown due to power failure

or system crash.

The requirement for fast NFS service is obvious, given WAFL's intended use in an NFS
appliance. Support for large file systems simplifies system administration by allowing
all disk space to belong to a single large partition. Large file systems make RAID
desirable because the probability of disk failure increases with the number of disks.
Large file systems require special techniques for fast restart because the file system
consistency checks for normal UNIX file systems become unacceptably slow as file
systems grow.

NFS and RAID both strain write performance: NFS because servers must store data
safely before replying to NFS requests, and RAID because of the read-modify-write
sequence it uses to maintain parity [Patterson88]. This led us to use non-volatile RAM
to reduce NFS response time and a write-anywhere design that allows WAFL to write to
disk locations that minimize RAID's write performance penalty. The write-anywhere
design enables Snapshots, which in turn eliminate the requirement for time-consuming
consistency checks after power loss or system failure.

6 File System Design for An NFS File Server Appliance - Rev. C 3/95

2. Introduction To Snapshots
WAFL's primary distinguishing characteristic is Snapshots, which are read-only copies
of the entire file system. WAFL creates and deletes Snapshots automatically at
prescheduled times, and it keeps up to 20 Snapshots on-line at once to provide easy
access to old versions of files.

Snapshots use a copy-on-write technique to avoid duplicating disk blocks that are the
same in a Snapshot as in the active file system. Only when blocks in the active file
system are modified or removed do Snapshots containing those blocks begin to
consume disk space.

Users can access Snapshots through NFS to recover files that they have accidentally
changed or removed, and system administrators can use Snapshots to create backups
safely from a running system. In addition, WAFL uses Snapshots internally so that it
can restart quickly even after an unclean system shutdown.

2.1. User Access to Snapshots
Every directory in the file system contains a hidden sub-directory named
.snapshot that allows users to access the contents of Snapshots over NFS.
Suppose that a user has accidentally removed a file named todo and wants to
recover it. The following example shows how to list all the versions of todo
saved in Snapshots:

spike% ls -lut .snapshot/*/todo

-rw-r--r-- 1 hitz 52880 Oct 15 00:00

.snapshot/nightly.0/todo

-rw-r--r-- 1 hitz 52880 Oct 14 19:00

.snapshot/hourly.0/todo

-rw-r--r-- 1 hitz 52829 Oct 14 15:00

.snapshot/hourly.1/todo

...

-rw-r--r-- 1 hitz 55059 Oct 10 00:00

.snapshot/nightly.4/todo

-rw-r--r-- 1 hitz 55059 Oct 9 00:00

.snapshot/nightly.5/todo

With the -u option, ls shows todo's access time, which is set to the time when
the Snapshot containing it was created. The user can recover the most recent
version of todo by copying it back into the current directory:

spike% cp .snapshot/hourly.0/todo .

File System Design for An NFS File Server Appliance - Rev. C 3/95 7

The .snapshot directories are “hidden” in the sense that they do not show up
in directory listings. If .snapshot were visible, commands like find would
report many more files than expected, and commands like rm -rf would fail
because files in Snapshots are read-only and cannot be removed.

2.2. Snapshot Administration
The FAServer has commands to let system administrators create and delete
Snapshots, but it creates and deletes most Snapshots automatically. By default,
the FAServer creates four hourly Snapshots at various times during the day,
and a nightly Snapshot every night at midnight. It keeps the hourly Snapshots
for two days, and the nightly Snapshots for a week. It also creates a weekly
Snapshot at midnight on Sunday, which it keeps for two weeks.

For file systems that change quickly, this schedule may consume too much
disk space, and Snapshots may need to be deleted sooner. A Snapshots is
useful even if it is kept for just a few hours, because users usually notice
immediately when they have removed an important file. For file systems that
change slowly, it may make sense to keep Snapshots on-line for longer. In
typical environments, keeping Snapshots for one week consumes 10 to 20
percent of disk space.

8 File System Design for An NFS File Server Appliance - Rev. C 3/95

3. WAFL Implementation

3.1. Overview
WAFL is a UNIX compatible file system optimized for network file access. In
many ways WAFL is similar to other UNIX file systems such as the Berkeley
Fast File System (FFS) [McKusick84] and TransArc's Episode file system
[Chutani92]. WAFL is a block-based file system that uses inodes to describe
files. It uses 4 KB blocks with no fragments.

Each WAFL inode contains 16 block pointers to indicate which blocks belong
to the file. Unlike FFS, all the block pointers in a WAFL inode refer to blocks
at the same level. Thus, inodes for files smaller than 64 KB use the 16 block
pointers to point to data blocks. Inodes for files smaller than 64 MB point to
indirect blocks which point to actual file data. Inodes for larger files point to
doubly indirect blocks. For very small files, data is stored in the inode itself in
place of the block pointers.

3.2. Meta-Data Lives in Files
Like Episode, WAFL stores meta-data in files. WAFL's three meta-data files
are the inode file, which contains the inodes for the file system, the block-map
file, which identifies free blocks, and the inode-map file, which identifies free
inodes. The term “map” is used instead of “bit map” because these files use
more than one bit for each entry. The block-map file's format is described in
detail below.

Root Inode

Inode File

All Other Files
...

Block Map
File

Inode Map
File

Other Files in the File system

Figure 1
The WAFL file system is a tree of blocks with the root inode, which describes the inode file, at the top,
and meta-data files and regular files underneath.

File System Design for An NFS File Server Appliance - Rev. C 3/95 9

Keeping meta-data in files allows WAFL to write meta-data blocks anywhere
on disk. This is the origin of the name WAFL, which stands for Write
Anywhere File Layout. The write-anywhere design allows WAFL to operate
efficiently with RAID by scheduling multiple writes to the same RAID stripe
whenever possible to avoid the 4-to-1 write penalty that RAID incurs when it
updates just one block in a stripe.

Keeping meta-data in files makes it easy to increase the size of the file system
on the fly. When a new disk is added, the FAServer automatically increases the
sizes of the meta-data files. The system administrator can increase the number
of inodes in the file system manually if the default is too small.

Finally, the write-anywhere design enables the copy-on-write technique used
by Snapshots. For Snapshots to work, WAFL must be able to write all new
data, including meta-data, to new locations on disk, instead of overwriting the
old data. If WAFL stored meta-data at fixed locations on disk, this would not
be possible.

3.3. Tree of Blocks
A WAFL file system is best thought of as a tree of blocks. At the root of the
tree is the root inode, as shown in Figure 1. The root inode is a special inode
that describes the inode file. The inode file contains the inodes that describe
the rest of the files in the file system, including the block-map and inode-map
files. The leaves of the tree are the data blocks of all the files.

Figure 2 is a more detailed version of Figure 1. It shows that files are made up
of individual blocks and that large files have additional layers of indirection
between the inode and the actual data blocks. In order for WAFL to boot, it
must be able to find the root of this tree, so the one exception to WAFL's
write-anywhere rule is that the block containing the root inode must live at a
fixed location on disk where WAFL can find it.

10 File System Design for An NFS File Server Appliance - Rev. C 3/95

Root Inode

Inode File
Indirect blocks

Inode File
Data Blocks

......

...

Regular File
Indirect Blocks

Regular File
Data Blocks

Block Map
File

Inode Map
File

Random
Small File

Random
Large File

...
Figure 2
A more detailed view of WAFL's tree of blocks.

3.4. Snapshots
Understanding that the WAFL file system is a tree of blocks rooted by the
root inode is the key to understanding Snapshots. To create a virtual copy of
this tree of blocks, WAFL simply duplicates the root inode. Figure 3 shows
how this works.

Figure 3(a) is a simplified diagram of the file system in Figure 2 that leaves
out internal nodes in the tree, such as inodes and indirect blocks.

Figure 3(b) shows how WAFL creates a new Snapshot by making a duplicate
copy of the root inode. This duplicate inode becomes the root of a tree of
blocks representing the Snapshot, just as the root inode represents the active
file system. When the Snapshot inode is created, it points to exactly the same
disk blocks as the root inode, so a brand new Snapshot consumes no disk
space except for the Snapshot inode itself.

Figure 3(c) shows what happens when a user modifies data block D. WAFL
writes the new data to block D' on disk, and changes the active file system to
point to the new block. The Snapshot still references the original block D
which is unmodified on disk. Over time, as files in the active file system are
modified or deleted, the Snapshot references more and more blocks that are
no longer used in the active file system. The rate at which files change
determines how long Snapshots can be kept on line before they consume an
unacceptable amount of disk space.

File System Design for An NFS File Server Appliance - Rev. C 3/95 11

(a) Before Snapshot

Root
Inode

A B C D E

(b) After Snapshot

Root
Inode

A B C D E

New
Snapshot

(c) After Block Update

Root
Inode

A B C D E

New
Snapshot

D'

Figure 3
WAFL creates a Snapshot by duplicating the root inode that describes the inode file. WAFL avoids
changing blocks in a Snapshot by writing new data to new locations on disk.

It is interesting to compare WAFL's Snapshots with Episode's fileset clones.
Instead of duplicating the root inode, Episode creates a clone by copying the
entire inode file and all the indirect blocks in the file system. This generates
considerable disk I/O and consumes a lot of disk space. For instance, a 10 GB
file system with one inode for every 4 KB of disk space would have 320 MB
of inodes. In such a file system, creating a Snapshot by duplicating the inodes
would generate 320 MB of disk I/O and consume 320 MB of disk space.
Creating 10 such Snapshots would consume almost one-third of the file
system's space even before any data blocks were modified.

By duplicating just the root inode, WAFL creates Snapshots very quickly and
with very little disk I/O. Snapshot performance is important because WAFL
creates a Snapshot every few seconds to allow quick recovery after unclean
system shutdowns.

Figure 4 shows the transition from Figure 3(b) to 3(c) in more detail. When a
disk block is modified, and its contents are written to a new location, the
block's parent must be modified to reflect the new location. The parent's
parent, in turn, must also be written to a new location, and so on up to the root
of the tree.

Inode File
Indirect block

Inode File
 Block

Regular File
Indirect Block

Regular File
Data Block

(a) Before Block Update (b) After Block Update

Snapshot
Inode

Root
Inode

Snapshot
Inode

Root
Inode

D D D'

Figure 4
To write a block to a new location, the pointers in the block's ancestors must be updated, which requires
them to be written to new locations as well.

12 File System Design for An NFS File Server Appliance - Rev. C 3/95

WAFL would be very inefficient if it wrote this many blocks for each NFS
write request. Instead, WAFL gathers up many hundreds of NFS requests
before scheduling a write episode. During a write episode, WAFL allocates
disk space for all the dirty data in the cache and schedules the required disk
I/O. As a result, commonly modified blocks, such as indirect blocks and
blocks in the inode file, are written only once per write episode instead of
once per NFS request.

3.5. File System Consistency and Non-Volatile RAM
WAFL avoids the need for file system consistency checking after an unclean
shutdown by creating a special Snapshot called a consistency point every few
seconds. Unlike other Snapshots, a consistency point has no name, and it is
not accessible through NFS. Like all Snapshots, a consistency point is a
completely self consistent image of the entire file system. When WAFL
restarts, it simply reverts to the most recent consistency point. This allows a
FAServer to reboot in about a minute even with 20 GB or more of data in its
single partition.

Between consistency points, WAFL does write data to disk, but it writes only to
blocks that are not in use, so the tree of blocks representing the most recent
consistency point remains completely unchanged. WAFL processes hundreds
or thousands of NFS requests between consistency points, so the on-disk
image of the file system remains the same for many seconds until WAFL
writes a new consistency point, at which time the on-disk image advances
atomically to a new state that reflects the changes made by the new requests.
Although this technique is unusual for a UNIX file system, it is well known
for databases. See, for instance, [Astrahan76] which describes the shadow
paging technique used in System R. Even in databases it is unusual to write as
many operations at one time as WAFL does in its consistency points.

WAFL uses non-volatile RAM (NVRAM) to keep a log of NFS requests it has
processed since the last consistency point. (NVRAM is special memory with
batteries that allow it to store data even when system power is off.) After an
unclean shutdown, WAFL replays any requests in the log to prevent them
from being lost. When a FAServer shuts down normally, it creates one last
consistency point after suspending NFS service. Thus, on a clean shutdown
the NVRAM doesn't contain any unprocessed NFS requests, and it is turned
off to increase its battery life.

WAFL actually divides the NVRAM into two separate logs. When one log gets
full, WAFL switches to the other log and starts writing a consistency point to
store the changes from the first log safely on disk. WAFL schedules a

File System Design for An NFS File Server Appliance - Rev. C 3/95 13

consistency point every 10 seconds, even if the log is not full, to prevent the
on-disk image of the file system from getting too far out of date.

Logging NFS requests to NVRAM has several advantages over the more
common technique of using NVRAM to cache writes at the disk driver layer.
Lyon and Sandberg describe the NVRAM write cache technique, which
Legato's Prestoserve™ NFS accelerator uses [Lyon89].

Processing an NFS request and caching the resulting disk writes generally
takes much more NVRAM than simply logging the information required to
replay the request. For instance, to move a file from one directory to another,
the file system must update the contents and inodes of both the source and
target directories. In FFS, where blocks are 8 KB each, this uses 32 KB of
cache space. WAFL uses about 150 bytes to log the information needed to
replay a rename operation. Rename—with its factor of 200 difference in
NVRAM usage—is an extreme case, but even for a simple 8 KB write, caching
disk blocks will consume 8 KB for the data, 8 KB for the inode update, and—
for large files—another 8 KB for the indirect block. WAFL logs just the 8 KB
of data along with about 120 bytes of header information. With a typical mix
of NFS operations, WAFL can store more than 1000 operations per megabyte
of NVRAM.

Using NVRAM as a cache of unwritten disk blocks turns it into an integral
part of the disk subsystem. An NVRAM failure can corrupt the file system in
ways that fsck cannot detect or repair. If something goes wrong with WAFL's
NVRAM, WAFL may lose a few NFS requests, but the on-disk image of the
file system remains completely self consistent. This is important because
NVRAM is reliable, but not as reliable as a RAID disk array.

A final advantage of logging NFS requests is that it improves NFS response
times. To reply to an NFS request, a file system without any NVRAM must
update its in-memory data structures, allocate disk space for new data, and
wait for all modified data to reach disk. A file system with an NVRAM write
cache does all the same steps, except that it copies modified data into NVRAM
instead of waiting for the data to reach disk. WAFL can reply to an NFS
request much more quickly because it need only update its in-memory data
structures and log the request. It does not allocate disk space for new data or
copy modified data to NVRAM.

3.6. Write Allocation
Write performance is especially important for network file servers. Ousterhout
observed that as read caches get larger at both the client and server, writes

14 File System Design for An NFS File Server Appliance - Rev. C 3/95

begin to dominate the I/O subsystem [Ousterhout89]. This effect is especially
pronounced with NFS which allows very little client-side write caching. The
result is that the disks on an NFS server may have 5 times as many write
operations as reads.

WAFL's design was motivated largely by a desire to maximize the flexibility
of its write allocation policies. This flexibility takes three forms:

(1) WAFL can write any file system block (except the one containing the
root inode) to any location on disk.
In FFS, meta-data, such as inodes and bit maps, is kept in fixed
locations on disk. This prevents FFS from optimizing writes by, for
example, putting both the data for a newly updated file and its inode
right next to each other on disk. Since WAFL can write meta-data
anywhere on disk, it can optimize writes more creatively.

(2) WAFL can write blocks to disk in any order.
FFS writes blocks to disk in a carefully determined order so that
fsck(8) can restore file system consistency after an unclean shutdown.
WAFL can write blocks in any order because the on-disk image of the
file system changes only when WAFL writes a consistency point. The
one constraint is that WAFL must write all the blocks in a new
consistency point before it writes the root inode for the consistency
point.

File System Design for An NFS File Server Appliance - Rev. C 3/95 15

(3) WAFL can allocate disk space for many NFS operations at once in a
single write episode.
FFS allocates disk space as it processes each NFS request. WAFL
gathers up hundreds of NFS requests before scheduling a consistency
point, at which time it allocates blocks for all requests in the
consistency point at once. Deferring write allocation improves the
latency of NFS operations by removing disk allocation from the
processing path of the reply, and it avoids wasting time allocating space
for blocks that are removed before they reach disk.

These features give WAFL extraordinary flexibility in its write allocation
policies. The ability to schedule writes for many requests at once enables
more intelligent allocation policies, and the fact that blocks can be written to
any location and in any order allows a wide variety of strategies. It is easy to
try new block allocation strategies without any change to WAFL's on-disk data
structures.

The details of WAFL's write allocation policies are outside the scope of this
paper. In short, WAFL improves RAID performance by writing to multiple
blocks in the same stripe; WAFL reduces seek time by writing blocks to
locations that are near each other on disk; and WAFL reduces head-
contention when reading large files by placing sequential blocks in a file on a
single disk in the RAID array. Optimizing write allocation is difficult because
these goals often conflict.

16 File System Design for An NFS File Server Appliance - Rev. C 3/95

4. Snapshot Data Structures And Algorithms

4.1. The Block-Map File
Most file systems keep track of free blocks using a bit map with one bit per
disk block. If the bit is set, then the block is in use. This technique does not
work for WAFL because many snapshots can reference a block at the same
time. WAFL's block-map file contains a 32-bit entry for each 4 KB disk
block. Bit 0 is set if the active file system references the block, bit 1 is set if
the first Snapshot references the block, and so on. A block is in use if any of
the bits in its block-map entry are set.

Figure 5 shows the life cycle of a typical block-map entry. At time t1, the
block-map entry is completely clear, indicating that the block is available. At
time t2, WAFL allocates the block and stores file data in it. When Snapshots
are created, at times t3 and t4, WAFL copies the active file system bit into the
bit indicating membership in the Snapshot. The block is deleted from the
active file system at time t5. This can occur either because the file containing
the block is removed, or because the contents of the block are updated and
the new contents are written to a new location on disk. The block can't be
reused, however, until no Snapshot references it. In Figure 5, this occurs at
time t8 after both Snapshots that reference the block have been removed.

Time 	 Block-Map Entry 	 Description

t1 	 0 0 0 0 0 0 0 0 		 Block is unused.
t2 	 0 0 0 0 0 0 0 1 		 Block is allocated for active FS
t3 	 0 0 0 0 0 0 1 1 		 Snapshot #1 is created
t4 	 0 0 0 0 0 1 1 1 		 Snapshot #2 is created
t5 	 0 0 0 0 0 1 1 0 		 Block is deleted from active FS
t6	 0 0 0 0 0 1 1 0	 	 Snapshot #3 is created
t7 	 0 0 0 0 0 1 0 0 		 Snapshot #1 is deleted
t8 	 0 0 0 0 0 0 0 0 		 Snapshot #2 is deleted; block is unused

 • bit 0: set for active file system
 • bit 1: set for Snapshot #1
 • bit 2: set for Snapshot #2
• bit 3: set for Snapshot #3

Figure 5
The life cycle of a block-map file entry.

4.2. Creating a Snapshot
The challenge in writing a Snapshot to disk is to avoid locking out incoming
NFS requests. The problem is that new NFS requests may need to change
cached data that is part of the Snapshot and which must remain unchanged
until it reaches disk. An easy way to create a Snapshot would be to suspend
NFS processing, write the Snapshot, and then resume NFS processing.
However, writing a Snapshot can take over a second, which is too long for an

File System Design for An NFS File Server Appliance - Rev. C 3/95 17

NFS server to stop responding. Remember that WAFL creates a consistency
point Snapshot at least every 10 seconds, so performance is critical.

WAFL's technique for keeping Snapshot data self consistent is to mark all the
dirty data in the cache as “IN_SNAPSHOT.” The rule during Snapshot
creation is that data marked IN_SNAPSHOT must not be modified, and data
not marked IN_SNAPSHOT must not be flushed to disk. NFS requests can
read all file system data, and they can modify data that isn't IN_SNAPSHOT,
but processing for requests that need to modify IN_SNAPSHOT data must be
deferred.

To avoid locking out NFS requests, WAFL must flush IN_SNAPSHOT data as
quickly as possible. To do this, WAFL performs the following steps:

(1) Allocate disk space for all files with IN_SNAPSHOT blocks. WAFL
caches inode data in two places: in a special cache of in-core inodes,
and in disk buffers belonging to the inode file. When it finishes write
allocating a file, WAFL copies the newly updated inode information
from the inode cache into the appropriate inode file disk buffer, and
clears the IN_SNAPSHOT bit on the in-core inode. When this step is
complete no inodes for regular files are marked IN_SNAPSHOT, and
most NFS operations can continue without blocking. Fortunately, this
step can be done very quickly because it requires no disk I/O.

(2) Update the block-map file. For each block-map entry, WAFL copies
the bit for the active file system to the bit for the new Snapshot.

(3) Write all IN_SNAPSHOT disk buffers in cache to their newly-allocated
locations on disk. As soon as a particular buffer is flushed, WAFL
restarts any NFS requests waiting to modify it.

(4) Duplicate the root inode to create an inode that represents the new
Snapshot, and turn the root inode's IN_SNAPSHOT bit off. The new
Snapshot inode must not reach disk until after all other blocks in the
Snapshot have been written. If this rule were not followed, an
unexpected system shutdown could leave the Snapshot in an
inconsistent state.

Once the new Snapshot inode has been written, no more IN_SNAPSHOT data
exists in cache, and any NFS requests that are still suspended can be
processed. Under normal loads, WAFL performs these four steps in less than a
second. Step (1) can generally be done in just a few hundredths of a second,
and once WAFL completes it, very few NFS operations need to be delayed.

Deleting a Snapshot is trivial. WAFL simply zeros the root inode representing
the Snapshot and clears the bit representing the Snapshot in each block-map
entry.

18 File System Design for An NFS File Server Appliance - Rev. C 3/95

5. Performance
It is difficult to compare WAFL's performance to other file systems directly. Since
WAFL runs only in an NFS appliance, it can be benchmarked against other file
systems only in the context of NFS. The best NFS benchmark available today is the
SPEC SFS (System File Server) benchmark, also known as LADDIS. The name
LADDIS stands for the group of companies that originally developed the benchmark:
Legato, Auspex, Digital, Data General, Interphase, and Sun.

LADDIS tests NFS performance by measuring a server's response time at various
throughput levels. Servers typically handle requests most quickly at low load levels; as
the load increases, so does the response time. Figure 6 compares the FAServer's
LADDIS performance with that of other well-known NFS servers.

Using a system level benchmark, such as LADDIS, to compare file system
performance can be misleading. One might argue, for instance, that Figure 6
underestimates WAFL's performance because the FAServer cluster has only 8 file
systems, while the other servers all have dozens. On a per file system basis, WAFL
outperforms the other file systems by almost eight to one. Furthermore, the FAServer
uses RAID (which typically degrades file system performance substantially for the
small request sizes characteristic of NFS), whereas the other servers do not use RAID.

On the other hand, one might argue that the benchmark overestimates WAFL's
performance, because the entire FAServer is designed specifically for NFS, and much
of its performance comes from NFS-specific tuning of the whole system—not just to
WAFL.

Given WAFL's special purpose nature, there is probably no fair way to compare its
performance to general purpose file systems, but it clearly satisfies the design goal of
performing well with NFS and RAID.

File System Design for An NFS File Server Appliance - Rev. C 3/95 19

6. Conclusion
WAFL was developed, and has become stable, surprisingly quickly for a new file
system. It has been in use as a production file system for over a year, and we know of
no case where it has lost user data.

We attribute this stability in part to WAFL's use of consistency points. Processing file
system requests is simple because WAFL updates only in-memory data structures and
the NVRAM log. Consistency points eliminate ordering constraints for disk writes,
which are a significant source of bugs in most file systems. The code that writes
consistency points is concentrated in a single file, it interacts little with the rest of
WAFL, and it executes relatively infrequently.

NFS operations/second

A
v

e
ra

g
e

re

s
p

o
n

s
e

ti

m
e

(m

s
e

c
)

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0

FAServer 8X Cluster

Auspex NS 6000

Sun SPARCenter 2000

Sun SPARCcluster 1

Sun SPARCserver 1000

Figure 6
Graph of SPECnfs_A93 operations per second. (For clusters, the graph shows SPECnfs_A93 cluster
operations per second.)

More importantly, we believe that it is much easier to develop high quality, high
performance system software for an appliance than for a general purpose operating
system. Compared to a general purpose file system, WAFL handles a very regular and
simple set of requests. A general purpose file system receives requests from thousands
of different applications with a wide variety of different access patterns, and new
applications are added frequently. By contrast, WAFL receives requests only from the
NFS client code of other systems. There are few NFS client implementations, and new
implementations are rare. Of course, applications are the ultimate source of NFS
requests, but the NFS client code converts file system requests into a regular pattern of
network requests, and it filters out error cases before they reach the server. The small
number of operations that WAFL supports makes it possible to define and test the
entire range of inputs that it is expected to handle.

20 File System Design for An NFS File Server Appliance - Rev. C 3/95

These advantages apply to any appliance, not just to file server appliances. A network
appliance only makes sense for protocols that are well defined and widely used, but for
such protocols, an appliance can provide important advantages over a general purpose
computer.

File System Design for An NFS File Server Appliance - Rev. C 3/95 21

Bibliography
[Astrahan76] M. Astrahan, M. Blasgen, K. Chamberlain, K. Eswaran, J. Gravy,

P. Griffiths, W. King, I. Traiger, B. Wade and V. Watson.
System R: Relational Approach to Database Management.
ACM Transactions on Database Systems 1, 2 (1976), pp. 97-137.

[Chutani92] Sailesh Chutani, et. al.
The Episode File System.
Proceedings of the Winter 1992 USENIX Conference, pp. 43-60,
San Francisco, CA, January 1992.

[Hitz93] Dave Hitz.
An NFS File Server Appliance.
Network Appliance Corporation, 2901 Tasman Drive, Suite 208,
Santa Clara, CA 95054

[Lyon89] Bob Lyon and Russel Sandberg.
Breaking Through the NFS Performance Barrier.
SunTech Journal 2(4): 21-27, Autumn 1989.

[McKusick84] Marshall K. McKusick.
A Fast File System for UNIX.
ACM Transactions on Computer Systems 2(3): 181-97, August
1984.

[Ousterhout89] John Ousterhout and Fred Douglis
Beating the I/O Bottleneck: A Case for Log-Structured File
Systems.
ACM SIGOPS, 23, January 1989.

[Patterson88] D. Patterson, G. Gibson, and R. Katz.
A Case for Redundant Arrays of Inexpensive Disks (RAID).
ACM SIGMOD 88, Chicago, June 1988, pp. 109-116.

[Sandberg85] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh,
and Bob Lyon.
Design and Implementation of the Sun Network File System.
Proceedings of the Summer 1985 USENIX Conference, pp. 119-
30, Portland, OR, June 1985.

22 File System Design for An NFS File Server Appliance - Rev. C 3/95

Biographies
Dave Hitz Dave Hitz is a co-founder and system architect at Network

Appliance, which builds NFS file server appliances. At Network
Appliance Dave has focused on designing and implementing the
Network Appliance file system, and on the overall design of the
Network Appliance file server. He also worked at Auspex
Systems in the file system group, and at MIPS in the System V
kernel group. Other jobs and hobbies have included herding,
castrating, and slaughtering cattle, pen-based computer
programming, and typing names onto Blue Shield Insurance
cards. After dropping out of high school, he attended George
Washington University, Swarthmore College, Deep Springs
College, and finally Princeton University where he received his
computer science BSE in 1986. The author can be reached via e-
mail at hitz@netapp.com.

James Lau James Lau is a co-founder and director of engineering at
Network Appliance. Before that, James spent three years at
Auspex Systems, most recently as director of software
engineering. He was instrumental in defining product
requirements and the high level architecture of Auspex's high
performance NFS file server. Before joining Auspex, James spent
five years at Bridge Communications where he implemented a
variety of protocols in XNS, TCP/IP, Ethernet, X25, and HDLC.
He spent the last year at Bridge as the group manager of PC
products. James received his masters degree in computer
engineering from Stanford and bachelors degrees in computer
science and applied mathematics from U.C. Berkeley. The author
can be reached via e-mail at jlau@netapp.com.

Michael Malcolm Michael Malcolm is a co-founder and senior vice president of
strategic development at Network Appliance. Previously, he ran a
successful management consulting practice with clients focused
on distributed computing, networking, and file storage
technology. He was founder and CEO of Waterloo Microsystems,
a Canadian developer of network operating system software. In
the past, he was an Associate Professor of Computer Science at
University of Waterloo where he taught hundreds of students how
to program real-time systems to control electric model trains. His
research spanned the areas of network operating systems,
portable operating systems, interprocess communication,
compiler design, and numerical mathematics. He led the
development of two major operating systems: Thoth, and
Waterloo Port. He received a B.S. in Mechanical Engineering
from University of Denver in 1966, and a Ph.D. in Computer

File System Design for An NFS File Server Appliance - Rev. C 3/95 23

Science from Stanford University in 1973. The author can be
reached via e-mail at malcolm@netapp.com.

