
Petal: Distributed Virtual Disks

Edward K. Lee and Chandramohan A. Thekkath

Systems Research Center
Digital Equipment Corporation

130 Lytton Ave, Palo Alto, CA 94301.

Abstract

The ideal storage system is globally accessible, always available,
provides unlimited performance and capacity for a large number
of clients, and requires no management. This paper describes
the design, implementation, and performance of Petal, a system
that attempts to approximate this ideal in practice through a novel
combination of features. Petal consists of a collection of network-
connected servers that cooperatively manage a pool of physical
disks. To a Petal client, this collection appears as a highly available
block-level storage system that provides large abstract containers
called virtual disks. A virtual disk is globally accessible to all Petal
clients on the network. A client can create a virtual disk on demand
to tap the entire capacity and performance of the underlying phys-
ical resources. Furthermore, additional resources, such as servers
and disks, can be automatically incorporated into Petal.

We have an initial Petal prototype consisting of four 225 MHz
DEC 3000/700 workstations running Digital Unix and connected
by a 155 Mbit/s ATM network. The prototype provides clients
with virtual disks that tolerate and recover from disk, server, and
network failures. Latency is comparable to a locally attached disk,
and throughput scales with the number of servers. The prototype
can achieve I/O rates of up to 3150 requests/sec and bandwidth up
to 43.1 Mbytes/sec.

1 Introduction

Currently, managing large storage systems is an expensive and
complicated process. Often a single component failure can halt the
entire system, and requires considerable time and effort to resume
operation. Moreover, the capacity and performance of individual
components in the system must be periodically monitored and
balanced to reduce fragmentation and eliminate hot spots. This
usually requires manually moving, partitioning, or replicating files
and directories.

This paper describes the design, implementation, and perfor-
mance of Petal, an easy-to-manage distributed storage system.
Clients, such as file systems and databases, view Petal as a collec-
tion of virtual disks as shown in Figure 1. A Petal virtual disk is a

Published in The Proceedings of the 7th International Conference on Architectural
Support for Programming Languages and Operating Systems. Copyright c

�
1996

by the Assocation for Computing Machinery. All rights reserved. Republished by
permission.

Scalable Network

NT FS PC FS BSD FFS

Petal

/dev/vdisk11
/dev/vdisk2

/dev/vdisk3
/dev/vdisk4

/dev/vdisk5

(Petal Client)(Petal Client) (Petal Client)(Petal Client)
 LFS

A virtual disk

Figure 1: Client View

container that provides a sparse 64-bit byte storage space. As with
ordinary magnetic disks, data are read and written to Petal virtual
disks in blocks. In addition, it has the following novel combination
of characteristics, which we believe will reduce the complexity of
managing large storage systems:

� It can tolerate and recover from any single component failure
such as disk, server, or network.

� It can be geographically distributed to tolerate site failures
such as power outages and natural disasters.

� It transparently reconfigures to expand in performance and
capacity as new servers and disks are added.

� It uniformly balances load and capacity throughout the
servers in the system.

� It provides fast, efficient support for backup and recovery
in environments with multiple types of clients, such as file
servers and databases.

Petal’s virtual disks allow us to cleanly separate a client’s view
of storage from the physical resources that are used to implement it.
This allows us to share the physical resources more flexibly among
many clients, and to offer important services such as “snapshots”
and incremental expandability in an efficient manner.

The disk-like interface offered by Petal provides a lower-level
service than a distributed file system; however, we believe that a
distributed file system can be efficiently implemented on top of
Petal, and that the resulting system as a whole will be as cost

1

Scalable Network

NT FS PC FS BSD FFSLFS

Storage Server Storage ServerStorage Server Storage Server

Disk Storage Disk Storage Disk Storage Disk Storage

Figure 2: Physical View

effective as a comparable distributed file system implementation
that accesses local disks directly. By separating the system cleanly
into a block-level storage system and a file system, and by handling
many of the distributed systems problems in the block-level storage
system, we have an overall system that is easier to model, design,
implement, and tune. This simplicity is particularly important
when the design is expected to scale to a large size and provide
reliable data storage over a long period of time. An additional
benefit is that the block-level interface is useful for supporting
heterogeneous clients and client applications; that is, we can easily
support many different types of file systems and databases.

We have implemented Petal servers on Alpha workstations run-
ning Digital Unix connected by the Digital ATM network [2]. A
Petal client interface exists for Digital Unix and is implemented
as a kernel device driver, allowing all standard Unix applications,
utilities, and file systems to run unmodified when using Petal.
Our implementation exhibits graceful scaling and provides perfor-
mance that is comparable to local disks while providing significant
new functionality.

2 Design of Petal

As shown in Figure 2, Petal consists of a pool of distributed storage
servers that cooperatively implement a single, block-level storage
system. Clients view the storage system as a collection of vir-
tual disks and access Petal services via a remote procedure call
(RPC) [3] interface. A basic principle in the design of the Petal
RPC interface was to maintain all state needed for ensuring the in-
tegrity of the storage system in the servers, and maintain only hints
in the clients. Clients maintain only a small amount of high-level
mapping information that is used to route read and write requests
to the “most appropriate” server. If a request is sent to an inappro-
priate server, the server returns an error code, causing the client to
update its hints and retry the request.

Figure 3 illustrates the software structure of Petal. Each of the
ovals represents a software module. Arrows indicate the use of
one module by another. Two modules, the liveness module and the
global state module, manage much of the distributed system aspect
of Petal. The liveness module ensures that all servers in the system
will agree on the operational status, whether running or crashed, of
each other. This service is used by the other modules, notably the
global state manager, to guarantee continuous, consistent operation
of the system as a whole in the face of server and communication
failures. The operation of the liveness module is based on majority

Recovery ModuleLiveness Module

Global State
 Module

Data Access
 Module

Virtual to Physical
 Translator

Figure 3: Petal Server Modules

consensus and the periodic exchange of “I’m alive” and “You’re
alive” messages between the servers. These message exchanges
must be done in a timely manner to ensure progress but can be
arbitrarily delayed or reordered without affecting correctness.

Petal maintains information that describes the current members
of the storage system and the currently supported virtual disks.
This information is replicated across all Petal servers in the system.
The global state manager is responsible for consistently maintain-
ing this information, which is less than a megabyte in our current
implementation. Our algorithm for maintaining global state is
based on Leslie Lamport’s Paxos, or “part-time parliament” algo-
rithm [14] for implementing distributed, replicated state machines.
The algorithm assumes that servers fail by ceasing to operate and
that networks can reorder and lose messages. The algorithm en-
sures correctness in the face of arbitrary combinations of server and
communication failures and recoveries, and guarantees progress as
long as a majority of servers can communicate with each other.
This ensures that management operations in Petal, such as creat-
ing, deleting, or snapshotting virtual disks, or adding and deleting
servers, are fault tolerant.

The other three modules deal with servicing the read and write
requests issued by Petal clients. The data accessand recovery mod-
ules control how client data is distributed and stored in the Petal
storage system. A different set of data access and recovery mod-
ules exists for each type of redundancy scheme supported by the
system. We currently support simple data striping without redun-
dancy and a replication-based redundancy scheme called chained-
declustering [13]. The desired redundancy scheme for a virtual
disk is specified when the virtual disk is created. Subsequently,
the redundancy scheme, and other attributes, can be transparently
changed via a process called virtual disk reconfiguration. The
virtual-to-physical address translation module contains common
routines used by the various data access and recovery modules.
These routines translate the virtual disk offsets to physical disk
addresses. The rest of this section will examine specific aspects of
the system in greater detail.

2.1 Virtual to Physical Translation

This section describes how Petal translates the virtual disk ad-
dresses used by clients into physical disk addresses. The basic
problem is to translate virtual addresses of the form �

virtual-
disk-identifier, offset � to physical addresses of the form �

server-
identifier, disk-identifier, disk-offset � . This translation must be
done consistently and efficiently in a distributed system where
events that alter virtual disk address translation, such as server

2

GMap

Server 0 Server 1 Server 2 Server 3

offset serverID GMap GMap

PMap0 PMap1 PMap2 PMap3

VDir VDir VDir VDirvdiskID

<vdiskID, offset> −> <serverID, diskID, diskOffset>

<diskID, diskOffset>

Figure 4: Virtual to Physical Mapping

failure or recovery, can occur unexpectedly.
Figure 4 illustrates the basic data structures and the steps in the

translation procedure. There are three important data structures: a
virtual disk directory (VDir), a global map (GMap), and a physical
map (PMap). The dotted lines around the virtual disk directory and
the global map indicate that these are global data structures that are
replicated and consistently updated on all the servers by the global
state manager. Each server also has a physical map that is local to
that server. Translating a client-supplied virtual disk identifier and
offset into a particular disk offset occurs in three steps as shown in
Figure 4.

1. The virtual disk directory translates the client-supplied virtual
disk identifier into a global map identifier.

2. The specified global map determines the server responsible
for translating the given offset.

3. The physical map at the specified server translates the global
map identifier and the offset to a physical disk and an offset
within that disk.

To minimize communication, in almost all cases, the server that
performs the translation in Step 2 will be the same server that
performs the translation in Step 3. Thus, if a client has initially
sent the request to the appropriate server, that server can perform
all three steps in the translation locally without communicating
with any other server.

There is one global map per virtual disk that specifies the tuple
of servers spanned by the virtual disk and the redundancy scheme
used to protect client data stored on the virtual disk. To tolerate
server failures, a secondary server can be assigned responsibility
for mapping the same offset when the primary is not available.
Global maps are immutable; to change a virtual disk’s tuple of
servers or redundancy scheme, the virtual disk must be assigned a
new global map. Section 2.3 describing reconfiguration provides
more details about this process.

The physical map is the actual data structure used to translate
an offset within a virtual disk to a physical disk and an offset
within that disk. It is similar to a page table in a virtual memory
system and each physical map entry translates a 64 Kbyte region of
physical disk. The server that performs the translation will usually
also perform the disk operations needed to service the original
client request. The separation of the translation data structures
into global and local physical maps allows us to keep the bulk of

the mapping information local. Doing so minimizes the amount
of information that must be kept in global data structures that are
replicated and, therefore, expensive to update.

2.2 Support for Backup

Petal attempts to simplify a client’s backup procedure by providing
a common mechanism that can be applied by clients to automate
the backup and recovery of all data stored on the system. The
mechanism Petal provides is fast efficient snapshots of virtual disks.
By using copy-on-write techniques, Petal can quickly create an
exact copy of a virtual disk at a specified point in time. A client
treats the snapshot like any other virtual disk, except that it cannot
be modified.

Supporting snapshots requires a slightly more complicated
virtual-to-physical translation procedure than described in the pre-
vious section. In particular, the virtual disk directory does not
translate a virtual disk identifier to a global map identifier, but
rather to the tuple �

global-map-identifier, epoch-number � . The
epoch-number is a monotonically increasing version number that
distinguishes data stored at the same virtual disk offset at different
points in time. The tuple �

global-map-identifier, epoch-number �
is then used by the physical map in the last step of the translation.

When the system creates a snapshot of a virtual disk, a new tuple
with a later epoch number is created in the virtual disk directory.
All accesses to the original virtual disk are then made using the
new epoch number. The older epoch number is used by the newly
created snapshot. This ensures that any new data written to the
original virtual disk will create new entries in the new epoch rather
than overwriting the data in the previous epoch. Also, read requests
can find the data most recently written to a particular offset by
looking for the most recent epoch.

Creating a snapshot that is consistent at the client application
level requires pausing the application for the brief time, less than
one second, it takes to create a Petal snapshot. An alternative
approach would not require pausing the application and would
create a “crash-consistent” snapshot, that is, the snapshot would
be similar to the disk image that would be left after an application
crashed. Such snapshots could later be made consistent at the
application level by running an application-dependent recovery
program such as fsck in the case of Unix file systems. We are
considering implementing crash-consistent snapshots, but they are
currently not supported.

Snapshots can be kept on-line and facilitate the recovery of ac-
cidentally deleted files. Also, since a snapshot behaves exactly like
a read-only local disk, a Petal client can use it to create consistent
archives of data using utilities such as tar.

2.3 Incremental Reconfiguration

Occasionally, it is desirable to change a virtual disk’s redundancy
scheme or the set of servers over which it is mapped. Such a
change is often precipitated by the addition or removal of disks and
servers. This section describes how Petal incorporates new disks
and servers, and how existing virtual disks can be reconfigured to
take advantage of these new resources. The former processes are
described only from the point of view of adding new resources
but are easily generalized to the removal of resources. The latter
process is referred to as virtual disk reconfiguration and is the
primary focus of this section.

The addition of a disk to a server is handled locally by the given
server. Subsequent storage allocation requests automatically take

3

the new disk into consideration. However, for load balance, it
is desirable to redistribute previously allocated storage to the new
disk as well. This redistribution is most easily accomplishedas part
of a local background process that periodically moves data among
disks. We have not yet implemented such a background process in
Petal. Nonetheless, existing data is redistributed to newly added
disks as a side-effect of the virtual disk reconfiguration.

The addition of a Petal server is a global operation composed
of several steps involving the global state management module
and the liveness module. First, the new server is added to the
membership of the Petal storage system. Thereafter, the new server
will participate in any future global operations. Next, the sets
of servers used by the liveness module for determining whether
a particular server is up or down is adjusted to incorporate the
new server. Finally, existing virtual disks are reconfigured to take
advantage of the new server, using the process described below.

Given the virtual-to-physical translation procedure already de-
scribed in Section 2.1, and in the absenceof any other activity in the
system, virtual disk reconfiguration can be trivially implemented
as follows:

1. Create a new global map with the desired redundancy scheme
and server mapping.

2. Change all virtual disk directory entries that refer to the old
global map to refer to the new one.

3. Redistribute the data to the servers according to the transla-
tions specified in the new global map. This data distribution
could potentially require substantial amounts of network and
disk traffic.

The challenge is to perform reconfiguration incrementally and con-
currently with the processing of normal client requests. We find it
acceptable if the procedure takes a few hours but it must not de-
grade the performance of the system significantly. For example, if
a virtual disk is reconfigured because a new server has been added,
the performance of the virtual disk should gradually increase dur-
ing reconfiguration from its level before reconfiguration to its level
after reconfiguration. We will describe our reconfiguration algo-
rithm in two steps. First, we describe the basic algorithm and then
a refinement to that algorithm. The refined algorithm is what is
actually implemented in our system.

In the basic algorithm, steps one and two, described above, are
first executed. Next, starting with the translations in the most recent
epoch that have not yet been moved, data is transferred to the new
collection of servers as specified by the new global map. Because
of the amount of data that may need to be moved, reconfiguration
can take a long time to complete. In the meantime, clients will wish
to read and write data to a virtual disk that is being reconfigured.
To accommodate such requests, our read and write procedures are
designed to function as follows. When a client read request is
serviced, the old global map is tried if an appropriate translation
is not found in the new global map. This ensures that translations
that have not yet been moved will still be found in the old global
map. Any client write requests will always access only the new
global map. Also, since we move data starting with the most recent
epoch, we ensure that read requests will not return data from an
older epoch than that requested by the client.

The main limitation of the basic algorithm is that server map-
pings for an entire virtual disk are changed before any data is
moved. This means that almost every client read request submitted
that is based on the new global map will miss in the new global

Server 1 Server 2 Server 3Server 0

D0

D0

D1

D1 D2

D2

D3

D3

D4

D4

D5

D5 D6

D6

D7

D7

Virtual Disk

Figure 5: Chained-Declustering

map and will have to be forwarded to the old one. This will usu-
ally require additional communication between servers and has the
potential to seriously degrade the performance of the system.

The refined algorithm solves the limitation of the basic algorithm
by relocating only small portions of a virtual disk at a time. The
basic idea is to break up a virtual disk’s address range into three
regions: old, new, and fenced. Requests to the old and new regions
simply use the old and new global maps, respectively. Requests
to the fenced region, however, use the basic algorithm we have
described above. Once we have relocated everything in the fenced
region, it becomes a new region and we fence another part of the
old region. We repeat until we have moved all the data in the old
region into the new region.

By keeping the relative size of the fenced region small, roughly
one to ten percent of the entire range, we minimize the forward-
ing overhead. To help guard against fencing off a heavily used
subrange of the virtual disk, we construct the fenced region by
collecting small non-contiguous ranges distributed throughout the
virtual disk, instead of a single contiguous region.

2.4 Data Access and Recovery

This section describes Petal’s chained-declustered[13] data access
and recovery modules. These modules give clients highly available
access to data by automatically bypassing failed components. Dy-
namic load balancing eliminates system bottlenecks by ensuring
uniform load distribution even in the face of component failures.
We start by describing the basic idea behind chained-declustering
and then move into detailed descriptions of exactly what happens
on each read and write operation.

Figure 5 illustrates the chained-declustered data placement
scheme. The dotted rectangle emphasizes that the data on the
storage servers appear as a single virtual disk to clients. Each
sequence of letters represents a block of data stored in the stor-
age system. Note that the two copies of each block of data are
always stored on neighboring servers.Furthermore, every pair of
neighboring servers has data blocks in common. Because of this
arrangement, if Server 1 fails, servers 0 and 2 will automatically
share Server 1’s read load; however, Server 3 will not experience
any load increase. By performing dynamic load balancing, we can
do better. For example, since Server 3 has copies of some data
from servers 0 and 2, servers 0 and 2 can offload some of their
normal read load on Server 3 and achieve uniform load balancing.

Chaining the data placement allows each server to offload some
of its read load to the server either immediately following or pre-

4

ceding the given server. By cascading the offloading across multi-
ple servers, a uniform load can be maintained across all surviving
servers. In contrast, with a simple mirrored redundancy scheme
that replicates all the data stored on two servers, the failure of
either would result in a 100% load increase at the other with no
opportunities for dynamic load balancing. In a system that stripes
over many mirrored servers, the 100% load increase at this single
server would reduce the overall system throughput by 50%.

Our current prototype implements a simple dynamic load bal-
ancing scheme. Each client keeps track of the number of requests
it has pending at each server and always sends read requests to the
server with the shorter queue length. This works well if most of
the requests are generated by a few clients but, obviously, would
not work well if most requests are generated by many clients that
only occasionally issue I/O requests. The choice of load balancing
algorithm is currently an active area of research within the Petal
project.

An additional advantage with chained-declustering is that by
placing all the even-numbered servers at one site and all the odd-
numbered servers at another site, we can tolerate site failures. A
disadvantage of chained-declustering relative to simple mirroring
is that it is less reliable. With simple mirroring, if a server failed,
only the failure of its mirror server would result in data becoming
unavailable. With chained-declustering, if a server fails, the failure
of either one of its two neighboring servers will result in data
become unavailable.

In our implementation of chained-declustering, one of the two
copies of each data block is denoted the primary and the other is
denoted the secondary. Read requests can be serviced from either
the primary or the secondary copy but the servicing of write re-
quests must always start at the primary, unless the server containing
the primary is down in which case it may start at the secondary.
Becausewe lock copies of the data blocks before reading or writing
them to guarantee consistency, this ordering guarantee is necessary
to avoid deadlocks.

On a read request, the server that receives the request attempts
to read the requested data. If successful, the server returns the
requested data, otherwise it returns an error code and the client tries
another server. If a request times out due to network congestion
or because a server is down, the client will alternately retry the
primary and secondary servers until either the request succeeds
or both servers return error codes indicating that it is not possible
to satisfy the request. Currently, this happens only if both disks
containing copies of the requested data have been destroyed.

On a write request, the server that receives the request first
checks to see if it is the primary for the specified data element. If
it is the primary, it first marks this data element as busy on stable
storage. It then simultaneously sends write requests to its local
copy and the secondary copy. When both requests complete, the
busy bit is cleared and the client that issued the request is sent a
status code indicating the success or failure of the operation. If the
primary crashes while performing the update, the busy bits are used
during crash recovery to ensure that the primary and secondary
copies are consistent. Write-ahead-logging with group commits
makes updating the busy bits efficient. As a further optimization,
the clearing of busy bits is done lazily and we maintain a cache
of the most recently set busy bits. Thus, if write requests display
locality, a given busy bit will already be set on disk and will not
require additional I/O.

If the server that received the write request is the secondary for
the specified data element, then it will service the request only
if it can determine that the server containing the primary copy is

Petal Client Petal Client Petal Client Petal Client

Petal Virtual Disk

Log

Petal Server

Log

Petal Server

Log

Petal Server

Log

Petal Server

Digital ATM Network

Figure 6: Petal Prototype

down. In this case, the secondary marks the data element as stale
on stable storage before writing it to its local disk. The server
containing the primary copy will eventually have to bring all data
elements marked stale up-to-date during its recovery process. A
similar procedure is used by the primary if the secondary dies.

3 Implementation and Performance

Our Petal prototype is illustrated in Figure 6. Four 225 MHz DEC
3000/700s running Digital Unix act as server machines. Each runs
a single Petal server, which is a user-level process that accesses the
physical disks using the Unix raw disk interface, and the network
using UDP/IP Unix sockets. Each server machine is configured
with 14 Digital RZ29 disks, each of which is a 3.5 inch SCSI device
with a 4.3 Gbyte capacity. Each machine uses one of the disks for
write-ahead logging and the remaining to store client data. The
disks are connected to the server machine via two 10 Mbyte/s fast
SCSI strings using the Digital PMZAA-C host bus adapter.

Four additional machines running Digital Unix are configured
as Petal clients to generate load on the servers. Each client’s kernel
is loaded with the Petal device driver for accessing Petal virtual
disks. This allows clients to access Petal virtual disks just like local
disks. Both the servers and clients are connected to each other via
155 Mbit/s ATM links over a Digital ATM network.

The entire Petal RPC interface has 24 calls and many of these
calls are devoted to management functions, such as creating and
deleting virtual disks, making snapshots, reconfiguring a virtual
disk, and adding and deleting servers. These calls are typically
used by user-level utilities to perform tasks such as virtual disk
creation and monitoring the physical resource pools in the system
to determine when additional servers or disk should be added.

Petal RPC calls that implement management functions are infre-
quently executed and generally take less than a second to complete.
In particular, create and snapshot operations take about 650 mil-
liseconds. Delete and reconfiguration take about 650 milliseconds
to initiate, but their total execution time is dependent on the actual
amount of physical storage associated with the specified virtual
disk.

In the remainder of the section, we will report on the perfor-
mance of accessing a Petal virtual disk and the behavior of file sys-
tems built on Petal. Our primary performance goals are to provide
latency roughly comparable to a locally attached disk, through-

5

Client Request Latency (ms)
Request Local Disk Petal

RZ29 Log NVRAM Log

512 byte Read 9 10 10
8 Kbyte Read 11 12 12
64 Kbyte Read 21 28 28
512 byte Write 10 19 12
8 Kbyte Write 12 22 16
64 Kbyte Write 20 40 33

Table 1: Latency of a Chained-Declustered Virtual Disk

put that scales with the number of servers, and performance that
gracefully degrades as servers fail.

3.1 Petal Performance

This section examines the read and write performance of a Petal
chain-declustered virtual disk. For a read request, the client makes
an RPC to a Petal server that simply returns the data from its local
disk. When a server receives a write request, it first writes a small
log entry that is used to recover to a consistent state after a server
crash. Next, the server simultaneously writes the data to its local
disk and a second disk on a mirror server. When both disk writes
complete, the first, or primary, server replies to the client. The read
and write procedures used by Petal are described in greater detail
in Section 2.4.

Table 1 compares the read and write latency of a chained-
declustered Petal virtual disk with a local RZ29 disk. For this
experiment, a single client generates requests of the specified size
to random disk offsets. We show Petal performance with two kinds
of write-ahead-logging devices, an RZ29 disk and an NVRAM de-
vice simulated using RAM. The log device is used only to service
write requests and does not affect read performance. Logging to
NVRAM improves write latency by approximately 7 ms.

For read requests of 512 bytes and 8 Kbytes, the Petal latency
is only slightly worse than an RZ29. For 64 Kbyte reads, the
latency gap widens to 7 ms. Most of the increased latency is due to
the additional delay in transmitting the data over the network and
includes the Unix socket, UDP/IP, and ATM hardware overheads,
which accounts for over 6 ms. The Petal server software and the
client interface overheads are negligible. If we overlapped the
reading of data from disks with the transfer of data over the network,
we could eliminate much of this 7 ms overhead.

Even with an NVRAM log device, Petal write performance is
worse than a local RZ29 disk. In addition to the network delay in
sending the data to the primary server, there is an additional delay
because the primary has to send the data to the mirror server and
wait for an acknowledgment before returning to the client. The
latencies due to the network transmissions are approximately 1 ms,
3 ms, and 12 ms for 512 byte, 8 Kbyte, and 64 Kbyte write requests
respectively. Also, the arms and the spindles of the primary and
secondary disks are unsynchronized. This lack of synchronization
causes write requests to wait for the slower of the primary and
secondary disk writes.

The second column of Table 2 shows the peak throughput of
a chained-declustered Petal virtual disk using an RZ29 as a log
device. (The peak write throughput is about 10% higher if we
use an NVRAM log device.) For small request sizes, we express
throughput as the number of requests per second, while for larger
request sizes, it is shown in megabytes per second. To measure

Aggregate Throughput (RZ29 Log)
Request Normal Failed % of Normal

512 byte Read 3150 req/s 2310 req/s 73%
8 Kbyte Read 20 Mbytes/s 14.6 Mbytes/s 73%
64 Kbyte Read 43.1 Mbytes/s 33.7 Mbytes/s 78%
512 byte Write 1030 req/s 1055 req/s 102 %
8 Kbyte Write 6.6 Mbytes/s 6.6 Mbytes/s 100 %
64 Kbyte Write 12.3 Mbytes/s 12.5 Mbytes/s 101 %

Table 2: Normal and Failed Throughput of a Chained-Declustered
Virtual Disk

�
 512 byte Read

�
 8 Kbyte Read

�
 64 Kbyte Read

�
 512 byte Write

�
 8 Kbyte Write

�
 64 Kbyte Write

|
0

|
1

|
2

|
3

|
4

|
5

|0.00

|0.20

|0.40

|0.60
|0.80

|1.00

 Number of Servers

 R
el

at
iv

e
T

hr
ou

gh
pu

t

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 7: Scaling with Increased Servers

peak throughput, each of the four Petal clients shown in Figure 6
make random requests to a single Petal virtual disk.

Throughput is mostly limited by CPU overheads. In all cases,
each server’s CPU is approximately 90-100% utilized with a sig-
nificant fraction of the time spent in copying and checksumming
data for network access. Our Petal servers run at user-level and
we use the standard UNIX socket interface and UDP/IP protocol
stacks. Techniques for streamlining these network accesses are
well understood [9, 18]. As an experiment, we eliminated copy-
ing and checksums at the network layer for large read requests.
For 64 Kbyte read requests, this optimization reduced CPU uti-
lization to 48% and increased throughput from 43.1 Mbytes/s to
48.5 Mbytes/s. In this case, the throughput was limited by the disk
controller.

The third column of Table 2 shows the performance of a chain-
declustered Petal disk when one of the four servers has crashed.
For read requests, the performance is 73–78% of normal, that is,
with three-quarters of the servers, we get about three-quarters of
the normal performance. This indicates that the data placement
and dynamic load balancing schemes are working effectively to
redistribute load. The write performance under failure is about
the same as the normal case. This is because, when servers fail,
the virtual disk addresses managed by those servers are no longer
mirrored. This reduces the number of disk writes in the system
by the fraction of failed servers. Therefore, the load seen by each
surviving server before and after a server failure is nearly the same.

Figure 7 shows the effect of scaling Petal from two to four
servers. The throughput for each request type is normalized with
respect to the maximum throughput for that request type. The

6

Elapsed Time (seconds)
UFS AdvFS

Phase RZ29 Petal RZ29 Petal

Create Directories 0.9 1.4 0.28 0.28
Copy Files 4.1 4.4 3.6 3.7
Directory Status 4.3 4.1 4.2 4.6
Scan Files 5.1 5.2 5.2 5.3
Compile 41.1 41.8 40.0 40.6

Table 3: Modified Andrew Benchmark

system configurations measured are not large enough to determine
if the scaling is likely to remain linear, but the observed scaling is
promising.

3.2 File System Performance

Petal provides clients with a large virtual disk that is available
to all clients on the network. “Cluster file systems” such as the
xFS [1] and parallel databases such as the Oracle Parallel Server
may be able to take advantageof this fact by concurrently accessing
a single virtual disk from multiple machines. However, because
such systems are not widely available, we will restrict our attention
to Digital’s UNIX File System (UFS) and Advanced File System
(AdvFS).

Table 3 compares the performance of the Modified Andrew
Benchmark on four configurations: the UFS on a locally attached
disk, the UFS on a Petal virtual disk, the AdvFS on a collection of
14 locally attached disks, and the AdvFS on a Petal virtual disk.
The Petal virtual disk is configured to use the chain-declustered
data placement and an RZ29 disk for logging.

The Modified Andrew Benchmark has five phases. The first
phase recursively creates subdirectories. The second phase mea-
sures the file system’s data transfer capabilities. The third phase
recursively examines the status of directories and the files contained
therein. The fourth phase scans the contents of data stored in each
file. The final phase is indicative of the program development
phase and is somewhat computationally intensive.

In all casesbut one, the file system level performance of the Petal
virtual disk is comparable to locally attached disks. The only ex-
ception is in the first phase of the benchmark using the UFS, which
generates many synchronous writes. As we mentioned earlier,
writes to a chained-declustered Petal virtual disk can incur logging
and other overheads that increase the synchronous write latency.
The AdvFS, which journals meta-data updates to reduce the num-
ber of synchronous writes, does not suffer from these overheads
when running on Petal, and achieves much higher performance
than the UFS in the first phase of the benchmark.

In the local disk measurements, although the UFS uses only a
single disk while the AdvFS uses 14 disks,they achieve very similar
performance. This is because the Modified Andrew Benchmark
primarily stresses the latency rather than the throughput of the
storage system. In the case of the compilation phase, performance
is primarily limited by the speed of the CPU.

4 Discussion

The availability of cost-effective scalable networks is the driving
force behind our work. By thinking of the network as the primary
system-level interconnect, we can build incrementally expandable
distributed storage systems with availability, capacity, and perfor-
mance far beyond those of current centralized storage systems.

Unfortunately, such distributed storage systems, pose several diffi-
cult managementand consistencyproblems. Petal is an experiment
in trying to address these problems.

Petal uses virtual disks to hide the distributed nature of the sys-
tem from its clients. It allows independent applications to share the
performance and capacity of the physical storage resources in the
system. It can transparently incorporate new storage components
and provide convenient management features such as snapshots.
We currently do not provide any special support for protecting a
client’s data from other clients; however, it would not be difficult
to provide security on a per virtual disk basis.

Petal’s use of the virtual disk abstraction adds an additional
level of overhead, and can prevent application-specific disk op-
timizations that rely on careful placement of data. We believe
that this is not a serious problem and is a reasonable tradeoff for
the benefits that Petal can provide. We view the virtualization as
another example of the current trend towards sophisticated disk
array controllers, and SCSI disks that obscure the physical disk
geometry. In fact, each Petal server is of approximately the same
complexity as a RAID controller and has very similar hardware
resource requirements.

Petal provides a disk-like interface that allows clients to read and
write blocks of data. We chose this interface because it can be easily
integrated into any existing computer system and can transparently
support most existing file systems and databases. One alternative
to Petal is to design distributed storage with a richer interface that
is more like a file system as is being done in the CMU NASD
project [11]. This could potentially result in a system that is more
efficient overall; however, we currently believe that the simpler
Petal interface is adequate and that higher level services can be
efficiently built on top of it.

Petal’s framework is sufficiently general to incorporate other
classes of redundancy schemes such as those based on parity [5, 17].
However, we have chosen to concentrate on replication-based re-
dundancy schemes like chained-declustering, even though they
impose a higher capacity overhead, because they are more read-
ily applicable for tolerating site failures, present opportunities for
dynamic load balancing, and are easier to implement efficiently in
distributed systems.

5 Related Work

This section describes work related to Petal in terms of four primary
characteristics: type of abstraction (block-level or file-system-
level), degree of distribution, level of fault tolerance, and support
for incremental expandability.

Related block-level storage systems include RAID-II [7],
TickerTAIP [5], Logical Disk [8], Loge [10], Mime [6], Au-
toRAID [19], and Swift [4]. Some of these systems support only
simple algorithmic mappings between the address space seen by a
client and the underlying physical disks. This mapping is usually
completely specified when the system is configured. In contrast,
AutoRAID, Logical Disk, Loge, and Mime, like Petal, support
more flexible mappings by using index data structures. Except for
AutoRAID and Petal, none of these systems support the creation
of multiple virtual disks.

Most of the block-level systems, including AutoRAID, do not
support distribution across multiple nodes or over geographically
distributed sites. Two exceptions are TickerTAIP and Swift, both
of which provide support for distributing data over multiple nodes.
However, both assume that the communication interconnect is re-

7

liable and therefore do not deal with the full range of distributed
systems issues addressed by Petal. Although many of the systems
above can tolerate disk failures, TickerTAIP is the only one that can
tolerate node failures. In contrast, Petal supports wider distribution
and can tolerate both node and network failures.

The most closely related file systems include xFS [1], Zebra [12],
Echo [15], and AFS [16]. All these systems except xFS use a
single meta-data server for a given partial subtree of the file system
name space; ultimately limiting their scalability. Because xFS can
distribute the management of meta-data across multiple nodes on
an object-by-object basis, it is one of the few file systems that we
know of that does not suffer from this problem.

All the file and disk systems above can be considered incre-
mentally expandable in the sense that data can be first dumped
to tape and then later restored after adding extra components and
reconfiguring the system. Some of these systems go a step further.
Both Zebra and AutoRAID allow new disks to be incorporated
into the system dynamically and transparently with respect to its
clients. AFS allows new nodes to be added and volumes, corre-
sponding to partial subtrees of the file system name space, to be
moved between nodes transparently; however, AFS does not allow
a volume to span more than a single node. This is in contrast
with Petal where a virtual disk can span multiple nodes. A goal
of the xFS design is to be able to change the management node
for a particular file dynamically for load balancing or in response
to node additions or deletions. However, this functionality has not
yet been implemented.

Petal supports the addition and deletion of nodes from the system
in the face of arbitrary node and network failures, and a Petal virtual
disk, which can span multiple nodes, can be transparently reconfig-
ured to take advantage of the additional nodes. This reconfiguration
is transparent to Petal clients. To the best of our knowledge, Petal
is the first distributed block-level storage system that supports vir-
tual “containers.” Because managing physical resources becomes
more difficult as the storage system becomes larger and more dis-
tributed, we have found that distribution and virtual containers are
particularly powerful when combined. Distribution allows the sys-
tem to scale to large sizes and virtual containers make it easier
to allocate physical resources efficiently in large-scale systems.
Petal is also the first storage system that supports transparent ad-
dition and deletion of nodes to existing “storage containers” in the
face of arbitrary component and network failures. This allows the
system-level performance of a single container to scale gracefully
as additional nodes are added.

6 Summary and Conclusions

Petal is a distributed block-level storage system that tolerates and
recovers from any single component failure, dynamically balances
load between servers, and transparently expands in performance
and capacity. Our principal goal has been to design a storage sys-
tem for heterogeneous environments that is easy to manage and
that can scale gracefully in capacity and performance without sig-
nificantly increasing the cost of managing the system. We believe
that we have found a novel combination of features that allow us to
achieve this goal; however, only the actual use of the system over
a significant period of time can conclusively prove this assertion.

In designing Petal, we decided to use distributed software so-
lutions rather than hardware solutions whenever applicable. One
example of this software/hardware tradeoff is Petal’s strategy for
fault tolerance, which uses distributed mirroring rather than provid-

ing redundant hardware paths to each disk. This approach makes it
easier to geographically distribute the system and to scale to larger
system sizes. Another tradeoff is the use of distributed algorithms
to determine when servers have failed, or more generally to achieve
consensus, rather than using reliable communication hardware or
specialized hardware for synchronization.

Petal provides a block-level rather than a file-level interface.
This allows Petal to handle heterogeneousclient file systems grace-
fully. The choice of a block-level interface has greatly simplified
our work without adversely limiting the functionality that we can
provide. It also opens the possibility of encapsulating the Petal
server software into a disk array controller in much the same way
RAID software is encapsulated into disk array controllers today.

Petal’s virtual disks have proved invaluable in separating a
client’s view of storage from the physical resources in the sys-
tem. Virtualization makes it easier to allocate physical resources
among many heterogeneousclients and has enabled useful features
such as snapshots and transparent incremental expandability.

We are generally satisfied with the performance of our proto-
type. The read and write latencies for a chain-declustered Petal
virtual disk are somewhat larger than that for a locally attached
disk. We can achieve I/O rates up to 3150 requests/sec for small
read requests and bandwidth up to 43.1 Mbytes/sec for large read
requests. The throughput for write request is less but we believe
that we understand how to improve their significantly performance.
The performance of Petal degrades gracefully as a fraction of the
number of failed servers and the throughput of the system scales
well with the number of servers. We have not measured a suffi-
ciently large system to determine whether the performance scaling
is linear, but we feel confident that it will be. The prototype has
been running for the past several months and we are currently
working on building a larger production system for deployment
and day-to-day use at our laboratory.

Acknowledgments

The authors would like to thank Roger Needham, Mike Schroeder,
Bill Weihl, and the anonymous referees for their comments on
earlier drafts of the paper. Cynthia Hibbard provided valuable
editorial assistance.

References

[1] Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe,
David A. Patterson, Drew S. Roselli, and Randolph Y. Wang.
Serverless network file systems. ACM Transactions on Com-
puter Systems, 14(1):41–79, February 1996.

[2] Thomas E. Anderson, Susan S. Owicki, James B. Saxe, and
Charles P. Thacker. High-speed switch scheduling for local-
area networks. ACM Transactions on Computer Systems,
11(4):319–352, November 1993.

[3] Andrew D. Birrell and Bruce Jay Nelson. Implementing
remote procedure calls. ACM Transactions on Computer
Systems, 2(1):39–59, February 1984.

[4] Luis-Felipe Cabrera and Darrel D. E. Long. Swift: Using
distributed disk striping to provide high I/O data rates. ACM
Computing Systems, 4:405–436, Fall 1991.

[5] Pei Cao, Swee Boon Lim, Shivakumar Venkataraman, and
John Wilkes. The TickerTAIP parallel RAID architecture.

8

ACM Transactions on Computer Systems, 12(3):236–269,
August 1994.

[6] C. Chao, R. English, D. Jacobson,A. Stepanov, and J. Wilkes.
Mime: A high performance parallel storage device with
strong recovery guarantees. Technical Report HPL-CSP-92-
9, Hewlett-Packard Laboratories, November 1992.

[7] Peter M. Chen, Edward K. Lee, Ann L. Drapeau, Ken Lutz,
Ethan L. Miller, Srinivasan Seshan, Ken Shirriff, David A.
Patterson, and Randy H. Katz. Performance and design eval-
uation of the RAID-II storage server. Journal of Distributed
and Parallel Databases, 2(3):243–260, July 1994.

[8] Wiebren de Jonge, M. Frans Kaashoek, and Wilson C. Hsieh.
The logical disk: A new approach to improving file systems.
In Proceedings of the 14th ACM Symposium on Operating
Systems Principles, pages 15–28, December 1989.

[9] Peter Druschel, Larry L. Peterson, and Bruce S. Davie. Ex-
periences with a high-speed network adaptor: A software
perspective. In Proceedings of the 1994 SIGCOMM Sympo-
sium on Communications Architectures, Protocols and Ap-
plications, pages 2–13, August 1994.

[10] R. M. English and A. A. Stepanov. Loge: A self-organizing
disk controller. In Proceedings of the Winter 1992 USENIX
Conference, pages 237–251, January 1992.

[11] Garth A. Gibson, David F. Nagle, Khalil Amiri, Fay W.
Chang, Eugene Feinberg,Howard Gobioff, Chen Lee, Berend
Ozceri, Erik Riedel, and David Rochberg. A case for
network-attached secure disks. Technical Report CMU-CS-
96-142, Department of Electrical and Computer Engineering,
Carnegie-Mellon University, June 1996.

[12] John H. Hartman and John K. Ousterhout. The Zebra striped
network file system. ACM Transactions on Computer Sys-
tems, 13(3):274–310, August 1995.

[13] Hui-I Hsiao and David J. DeWitt. Chained declustering:
A new availability strategy for multiprocessor database ma-
chines. Technical Report CS TR 854, University of Wiscon-
sin, Madison, June 1989.

[14] Leslie Lamport. The Part-Time Parliament. Technical Re-
port 49, Digital Equipment Corporation, Systems Research
Center, 130 Lytton Ave., Palo Alto, CA 94301-1044, Septem-
ber 1989.

[15] Timothy Mann, Andrew D. Birrell, Andy Hisgen, Chuck
Jerian, and Garret Swart. A coherent distributed file cache
with directory write-behind. ACM Transactionson Computer
Systems, 12(2):123–164, May 1994.

[16] M. Satyanarayanan. Scalable, secure, and highly available
distributed file access. IEEE Computer, 23(5):9–21, May
1990.

[17] Daniel Stodolsky, Mark Holland, William V. Courtright II,
and Garth A. Gibson. Parity-logging disk arrays. ACM Trans-
actions on Computer Systems, 12(3):206–235, August 1994.

[18] Chandramohan A. Thekkath and Henry M. Levy. Limits to
low-latency communication on high-speed networks. ACM
Transactions on Computer Systems, 11(2):179–203, May
1993.

[19] John Wilkes, Richard Golding, Carl Staelin, and Tim Sul-
livan. The HP AutoRAID hierarchical storage system. In
Proceedings of the 15th ACM Symposium on Operating Sys-
tems Principles, pages 96–108, December 1995.

9

