
1

Everyone Else is Using ML, Why Aren’t We?

AlphaGo AlphaFold CoPilotChatGPT AlphaProof

Cluster Scheduling
[Decima (SIGCOMM’20)]

Query Optimization
[Neo (VLDB’19), Bao

(SIGMOD’22)]

Configuration Tuning
[SelfTune (NSDI’23), MLOS

(VLDB’24)]

Widespread adoption in other domains

And learned systems

1

Everyone Else is Using ML, Why Aren’t We?

AlphaGo AlphaFold CoPilotChatGPT AlphaProof

Does using ML in the OS make sense?

Cluster Scheduling
[Decima (SIGCOMM’20)]

Query Optimization
[Neo (VLDB’19), Bao

(SIGMOD’22)]

Configuration Tuning
[SelfTune (NSDI’23), MLOS

(VLDB’24)]

Widespread adoption in other domains

And learned systems

1

Everyone Else is Using ML, Why Aren’t We?

AlphaGo AlphaFold CoPilotChatGPT AlphaProof

Does using ML in the OS make sense?

Processor

Network File and Storage

Memory

Operating System

OS is subject to diverse applications and environments,

necessitating dynamic and adaptive policies!

Exploit the capability of ML of using rich features

and take predictive actions!

Cluster Scheduling
[Decima (SIGCOMM’20)]

Query Optimization
[Neo (VLDB’19), Bao

(SIGMOD’22)]

Configuration Tuning
[SelfTune (NSDI’23), MLOS

(VLDB’24)]

Widespread adoption in other domains

And learned systems

2

“Keep Your Damn Models Out of My Kernel!”

Unsafe decisions because of

incomplete training/unseen inputs

Feature

Vector Unsafe

Decision

Inputs Output

Inputs Output

Performance overheads of using

learning-based policies

Opaque decisions undermine

reproducibility and compromise security.

Policy ?

How I learned to stop worrying
and love learned OS policies

Divyanshu Saxena*, Jiayi Chen*, Sujay Yadalam, Yeonju Ro, Rohit Dwivedula,
Eric Campbell, Aditya Akella, Christopher Rossbach, Michael Swift

Guardrails for OS Policies

4

Guardrails for OS Policies

Enable learned policies where beneficial and avoid catastrophic outcomes.

4

• Task: Predict whether an I/O access will be slow or fast [LinnOS (OSDI’20)]

• Trained using the latency distribution of current workload.

5

A Guardrail Case Study – I/O Latency Predictor

Features

• Latencies of

recent I/Os

• Number of
pending I/Os

SSDFast

Slow

Revoke

Kernel

Application I/O access

Workload

Latencies

Trained

Model

Detect potential issues by monitoring inputs, outputs and system behavior.

6

Detecting When Things Go Wrong

Output
System

Behavior

LinnOS Policy

Input

Features

Out-of-distribution inputs:

Workload changes can change the

fast/slow threshold.

Poor decisions because of noise:

Model may yield different outputs for

similar inputs.

Poor end-to-end performance:

Gains of good decisions may be

negated by model overhead.

𝑓

𝑓 + ϵ Fast?

Slow

Simple detection is not enough ⇒ Automatic recovery when problems arise.

7

Recovering from Undesirable Outcomes

Output

Report to log on an

incorrect prediction.

Replace model with a

hedging-based heuristic.

Retrain the latency

prediction model.

Deprioritize kswapd to

reduce I/O requests.

System

Behavior

Input

Features

LinnOS Policy

8

The Guardrail Abstraction

Description of desired

behaviors, constraints and

invariants.

Property

Prescriptions for system

responses when a property is

violated

Action

Input

Features

Learning-based

Policy
System

Behavior

Example Properties:

• In-distribution inputs

• Robustness to noise

• Better performance

than default

Example Actions:

• Report

• Replace

• Retrain

• Deprioritize

8

The Guardrail Abstraction

Description of desired

behaviors, constraints and

invariants.

Property

Prescriptions for system

responses when a property is

violated

Action

Input

Features

Learning-based

Policy
System

Behavior

Example Properties:

• In-distribution inputs

• Robustness to noise

• Better performance

than default

Example Actions:

• Report

• Replace

• Retrain

• Deprioritize

8

The Guardrail Abstraction

Description of desired

behaviors, constraints and

invariants.

Property

Prescriptions for system

responses when a property is

violated

Action

Input

Features

Learning-based

Policy
System

Behavior

Need introspective support to monitor properties

at run time and take corrective actions.

Example Properties:

• In-distribution inputs

• Robustness to noise

• Better performance

than default

Example Actions:

• Report

• Replace

• Retrain

• Deprioritize

Providing Support for OS Guardrails

9

Output

Policy/Subsystem

High-level interface to

specify guardrails

Input

Features

System

Behavior

Guardrail Interface – Specifying Properties

10

Properties

and Actions

〈Guardrail〉 ::= 〈Property〉 〈Action〉+

Interface Grammar

〈Property〉 ::= 〈Trigger〉+ 〈Rule〉+
〈Trigger〉 ::= TIMER | FUNCTION
〈Rule〉 ::= 〈Expression〉

Guardrail Interface – Specifying Properties

10

Properties

and Actions

〈Guardrail〉 ::= 〈Property〉 〈Action〉+

Interface Grammar

〈Property〉 ::= 〈Trigger〉+ 〈Rule〉+
〈Trigger〉 ::= TIMER | FUNCTION
〈Rule〉 ::= 〈Expression〉

In-distribution inputs:

At every model invocation,

check if 𝑖𝑛𝑝𝑢𝑡 ∼ 𝐷𝑡𝑟𝑎𝑖𝑛

Robustness to noise:

At every model invocation,

check if 𝑀 𝑖𝑛𝑝𝑢𝑡 ≈ 𝑀(𝑖𝑛𝑝𝑢𝑡 + 𝛿)

Better performance than default:

At 10 second intervals, check if
𝑃𝑒𝑟𝑓 𝑀 > 𝑃𝑒𝑟𝑓(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

Guardrail Interface – Specifying Properties

10

Properties

and Actions

〈Guardrail〉 ::= 〈Property〉 〈Action〉+

Interface Grammar

〈Property〉 ::= 〈Trigger〉+ 〈Rule〉+
〈Trigger〉 ::= TIMER | FUNCTION
〈Rule〉 ::= 〈Expression〉

In-distribution inputs:

At every model invocation,

check if 𝑖𝑛𝑝𝑢𝑡 ∼ 𝐷𝑡𝑟𝑎𝑖𝑛

Robustness to noise:

At every model invocation,

check if 𝑀 𝑖𝑛𝑝𝑢𝑡 ≈ 𝑀(𝑖𝑛𝑝𝑢𝑡 + 𝛿)

Better performance than default:

At 10 second intervals, check if
𝑃𝑒𝑟𝑓 𝑀 > 𝑃𝑒𝑟𝑓(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

RULE TRIGGER

Guardrail Interface – Specifying Actions

11

Properties

and Actions

〈Guardrail〉 ::= 〈Property〉 〈Action〉+

Interface Grammar

〈Property〉 ::= 〈Trigger〉+ 〈Rule〉+
〈Trigger〉 ::= TIMER | FUNCTION
〈Rule〉 ::= 〈Expression〉

〈Action〉 ::= REPORT | REPLACE | RETRAIN |
DEPRIORITIZE | <Expression>

Report to a log

𝑅𝑒𝑝𝑜𝑟𝑡(𝑠𝑡𝑎𝑡𝑒, 𝑙𝑜𝑔)
Replace with a heuristic

𝑅𝑒𝑝𝑙𝑎𝑐𝑒(𝑚𝑜𝑑𝑒𝑙, 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
Retrain the model

𝑅𝑒𝑡𝑟𝑎𝑖𝑛(𝑚𝑜𝑑𝑒𝑙, 𝑖𝑛𝑝𝑢𝑡𝑠)
Deprioritize tasks

𝐷𝑒𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑧𝑒(𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠)

〈Guardrail〉 ::= 〈Property〉 〈Action〉+

Interface Grammar

〈Property〉 ::= 〈Trigger〉+ 〈Rule〉+
〈Trigger〉 ::= TIMER | FUNCTION
〈Rule〉 ::= 〈Expression〉

〈Action〉 ::= REPORT | REPLACE | RETRAIN |
DEPRIORITIZE | <Expression>

• Rich properties and actions may require states, such as:
• States available in the learned policy,

• States tracked by the rule, e.g., counters, aggregates, etc.

• System metrics, e.g., CPU utilization.

12

Guardrail State Store

SAVE(key, value)

LOAD(key)

A lightweight, global state store

• Target policy: I/O device latency predictor in
LinnOS (OSDI’20)

• Property:

• Rule: False submits should not be greater
than 5%

• Trigger: Periodically, every 1 second

• Action: Fallback to the default kernel policy.

13

How Guardrails May Help in Practice

SSDFast

Slow

RevokeI/O access

False Submit: The model predicted

an I/O access to be fast, but it ended

up as a slow access.

• Target policy: I/O device latency predictor in
LinnOS (OSDI’20)

• Property:

• Rule: False submits should not be greater
than 5%

• Trigger: Periodically, every 1 second

• Action: Fallback to the default kernel policy.

13

How Guardrails May Help in Practice

guardrail low-false-submit {
trigger: { TIMER(1) },
rule: { false_submit_rate <= 0.05 },
action: { ml_enabled = false }

}

SSDFast

Slow

RevokeI/O access

False Submit: The model predicted

an I/O access to be fast, but it ended

up as a slow access.

• Target policy: I/O device latency predictor in
LinnOS (OSDI’20)

• Property:

• Rule: False submits should not be greater
than 5%

• Trigger: Periodically, every 1 second

• Action: Fallback to the default kernel policy.

13

How Guardrails May Help in Practice

guardrail low-false-submit {
trigger: { TIMER(1) },
rule: { false_submit_rate <= 0.05 },
action: { ml_enabled = false }

}

SSDFast

Slow

RevokeI/O access

False Submit: The model predicted

an I/O access to be fast, but it ended

up as a slow access.

Accessed via global
state store

14

How Guardrails May Help in Practice

guardrail low-false-submit {
trigger: { TIMER(1) },
rule: { false_submit_rate <= 0.05 },
action: { ml_enabled = false }

}

if LOAD("ml_enabled") {
// Use LinnOS predictions

}
...
// Update false submit rate
SAVE("false_submit_rate", false_submit_rate)

Changes inside LinnOS code

SSDFast

Slow

RevokeI/O access

+

14

How Guardrails May Help in Practice

guardrail low-false-submit {
trigger: { TIMER(1) },
rule: { false_submit_rate <= 0.05 },
action: { ml_enabled = false }

}

if LOAD("ml_enabled") {
// Use LinnOS predictions

}
...
// Update false submit rate
SAVE("false_submit_rate", false_submit_rate)

Changes inside LinnOS code

SSDFast

Slow

RevokeI/O access

+

14

How Guardrails May Help in Practice

guardrail low-false-submit {
trigger: { TIMER(1) },
rule: { false_submit_rate <= 0.05 },
action: { ml_enabled = false }

}

if LOAD("ml_enabled") {
// Use LinnOS predictions

}
...
// Update false submit rate
SAVE("false_submit_rate", false_submit_rate)

Changes inside LinnOS code

SSDFast

Slow

RevokeI/O access

Default Linux

Policy

+

15

Open Research Directions

Evolve guardrails as properties or

actions change.

Low-overhead property tracking,

when using system-wide features

Seamless guardrail compilation for in-

kernel enforcement.

Managing interference among guardrails

monitoring different properties

Learned

Policy

Learned

Policy 1

Learned

Policy 2

...and many more

• We propose OS Guardrails—a framework that enables
safe, effective, and high-impact use of learned policies.

• Guardrails track adherence to a property and allow
taking corrective actions when violated.

• Preliminary experiments show promising results for the
proposed interface and design.

• Opens several avenues for research on enabling low-
overhead and flexible guardrails in the OS.

16

Summary

Violation

Action

Thank You!

